
Revision 1.2 / October 2023

Performance Motion Devices, Inc.

80 Central Street, Boxborough, MA 01719

www.pmdcorp.com

C-Motion PRP

Programming Reference

ii C-Motion PRP Programming Reference

NOTICE

This document contains proprietary and confidential information of Performance Motion Devices, Inc., and is protected
by federal copyright law. The contents of this document may not be disclosed to third parties, translated, copied, or du-
plicated in any form, in whole or in part, without the express written permission of PMD.

The information contained in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form, by any means, electronic or mechanical, for any purpose, without the express
written permission of PMD.

Copyright 1998–2023 by Performance Motion Devices, Inc.

Juno, Atlas, Magellan, ION, Prodigy, Pro-Motion, C-Motion and VB-Motion are trademarks of Performance Motion
Devices, Inc.

C-Motion PRP Programming Reference iii

Warranty

Performance Motion Devices, Inc. warrants that its products shall substantially comply with the specifications applicable
at the time of sale, provided that this warranty does not extend to any use of any Performance Motion Devices, Inc.
product in an Unauthorized Application (as defined below). Except as specifically provided in this paragraph, each
Performance Motion Devices, Inc. product is provided “as is” and without warranty of any type, including without
limitation implied warranties of merchantability and fitness for any particular purpose.

Performance Motion Devices, Inc. reserves the right to modify its products, and to discontinue any product or service,
without notice and advises customers to obtain the latest version of relevant information (including without limitation
product specifications) before placing orders to verify the performance capabilities of the products being purchased. All
products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including
those pertaining to warranty, patent infringement and limitation of liability.

Unauthorized Applications

Performance Motion Devices, Inc. products are not designed, approved or warranted for use in any application where
failure of the Performance Motion Devices, Inc. product could result in death, personal injury or significant property or
environmental damage (each, an “Unauthorized Application”). By way of example and not limitation, a life support
system, an aircraft control system and a motor vehicle control system would all be considered “Unauthorized
Applications” and use of a Performance Motion Devices, Inc. product in such a system would not be warranted or
approved by Performance Motion Devices, Inc.

By using any Performance Motion Devices, Inc. product in connection with an Unauthorized Application, the customer
agrees to defend, indemnify and hold harmless Performance Motion Devices, Inc., its officers, directors, employees and
agents, from and against any and all claims, losses, liabilities, damages, costs and expenses, including without limitation
reasonable attorneys’ fees, (collectively, “Damages”) arising out of or relating to such use, including without limitation
any Damages arising out of the failure of the Performance Motion Devices, Inc. product to conform to specifications.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must
be provided by the customer to minimize inherent procedural hazards.

Disclaimer

Performance Motion Devices, Inc. assumes no liability for applications assistance or customer product design.
Performance Motion Devices, Inc. does not warrant or represent that any license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property right of Performance Motion Devices,
Inc. covering or relating to any combination, machine, or process in which such products or services might be or are
used. Performance Motion Devices, Inc.’s publication of information regarding any third party’s products or services
does not constitute Performance Motion Devices, Inc.’s approval, warranty or endorsement thereof.

Patents

Performance Motion Devices, Inc. may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials
and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents,
trademarks, copyrights, or other intellectual property rights.

Patents and/or pending patent applications of Performance Motion Devices, Inc. are listed at
https://www.pmdcorp.com/company/patents.

https://www.pmdcorp.com/company/patents

iv C-Motion PRP Programming Reference

Related Documents

Magellan Motion Control IC User Guide

Complete description of the Magellan Motion Control IC features and functions with detailed theory of its
operation.

C-Motion Magellan Programming Reference

Descriptions of all C-Motion Magellan Motion Control IC commands, with coding syntax and examples, listed
alphabetically for quick reference.

C-Motion Engine Development Tools Manual

Describes the C-Motion Engine Development Tools that allow user application code to be created and
compiled on a host PC, then downloaded, executed and monitored on a CME device C-Motion Engine
module.

ION/CME 500 Digital Drive User Manual

Complete description of the ION/CME 500 Digital Drive including getting started section, operational
overview, detailed connector information, and complete electrical and mechanical specifications..

Prodigy/CME Machine-Controller User Guide

Complete description of the ION/CME 500 Digital Drive including getting started section, operational
overview, detailed connector information, and complete electrical and mechanical specifications..

C-Motion PRP Programming Reference v

Table of Contents
Chapter 1. Introduction . 7
1.1 Introduction. 7
1.2 PMD Products and C-Motion Version . 7
1.3 Overview of C-Motion PRP . 8

Chapter 2. PMD Resource Access Protocol (PRP) . 11
2.1 Introduction. 11
2.2 PRP Resources. 11
2.3 PRP Actions and Sub-Actions . 12
2.4 PRP Addresses. 12
2.5 PRP Packet Structure . 13
2.6 Using PRP . 14

Chapter 3. PMD C-Motion API Reference . 21
3.1 Naming Conventions . 21
3.2 Data Types . 21
3.3 Return Values . 22
3.4 C-Motion Engine . 22
3.5 Microsoft .NET Programming . 23
3.6 PMD Library Procedures . 26
3.7 Alphabetical C-Motion API Reference . 27

Chapter 4. PRP Action Reference. 69
4.1 Action Table - Code Order . 70
4.2 Action Table - Alphabetical Order . 71

Appendix A. PRP Transport . 115
A.1 PRP Transport Over Serial . 115
A.2 PRP Transport Over TCP/IP . 116
A.3 PRP Transport Over CAN . 116

Index . 119

vi C-Motion PRP Programming Reference

1

This page intentionally left blank.

C-Motion PRP Programming Reference 7

1
1.Introduction
In This Chapter
Introduction
PMD Products and C-Motion Version
Overview of C-Motion PRP

1.1 Introduction

This manual documents C-Motion PRP, which is a software library used to control and monitor various PMD motion
control products. PRP stands for PMD Resource Access Protocol, which is the protocol used to communicate with
these devices.

There are two other C-Motion versions; C-Motion Magellan and C-Motion PRP II. All of these software systems are
available in separate SDKs as detailed below:

• C-Motion Magellan SDK – an SDK (Software Developer Kit) for creating motion applications using the
C/C++ programming language for PMD products that utilize a direct Magellan or Juno formatted
protocol.

• C-Motion PRP SDK – an SDK for creating PC and downloadable user code for systems utilizing either
a PRP (PMD Resource Access Protocol) protocol device or a Magellan/Juno protocol device. C-Motion
PRP is also used in motion applications that will use the .NET (C#, VB) programming languages.

• C-Motion PRP II SDK – This SDK is similar to C-Motion PRP but is used with ION/CME N-Series
ION Digital Drives. Compared to standard C-Motion PRP, C-Motion PRP II supports additional features
such as multi-tasking, mailboxes, mutexes, and enhanced event management.

For detailed information on Magellan/Juno protocol C-Motion refer to the C-Motion Magellan Programming Reference. For
detailed information on C-Motion PRP II refer to the C-Motion PRP II Programming Reference.

1.2 PMD Products and C-Motion
Version

The following table shows the C-Motion versions that can be used with each PMD product family:

Product Family Compatible C-Motion Versions
Magellan ICs C-Motion Magellan, C-Motion PRP*
Juno ICs C-Motion Magellan, C-Motion PRP*
ION/CME N-Series C-Motion PRP II
ION 500 C-Motion Magellan, C-Motion PRP*
ION/CME 500 C-Motion PRP
ION 3000 C-Motion Magellan, C-Motion PRP*
Prodigy PC/104 C-Motion Magellan, C-Motion PRP*

Introduction

8 C-Motion PRP Programming Reference

1

*C-Motion PRP typically only used for .NET support, or if a mix of Magellan/Juno protocol and PRP protocol
devices are attached.

1.3 Overview of C-Motion PRP

C-Motion is PMD’s C-language based motion control programming system. It is provided in source code form for
easy integration on a wide variety of platforms. Its primary purpose is to provide a C-language API to interface with,
and access the resources of, PMD’s motion control products.

All PMD products utilize packet-based protocols for communication, so a primary purpose of C-Motion is to translate
the information contained in C-language function calls to the proper packet format. This allows C-Motion application
developers to avoid having to learn the low level communication formats required by each PMD product.

Within the full PMD product set there are two different packet protocols used. A protocol known as the Magellan/
Juno protocol is used when directly interfacing with PMD Magellan ICs or Juno ICs. PRP (PMD Resource Access
Protocol) is the protocol used with products such as ION/CME Digital Drives and Prodigy/CME boards.

Not all C-Motion function calls are translated into packets that will be sent, or received, by a PMD product. Especially
for C-Motion PRP or C-Motion PRP II libraries, many function calls are used to manage application execution,
memory resources, tasks, or to access resources located within the same device executing the C-Motion engine user
code.

1.3.1 Resource Access Virtualization

In addition to handling the details of packet protocol conversion, another important feature of C-Motion is its support
for virtualization of resource access.

Whether accessing a Magellan Motion Control IC, a memory block, a digital I/O port, or a CANbus peripheral port,
C-Motion calls accept a handle which provides access to that resource independent of its location on a network or
even PMD product type.

To instantiate a particular resource handle C-Motion calls are used to establish needed access information. It is this
handle that is then provided to downstream C-Motion calls which command, or query, that resource. We will discuss
the specifics of initializing access information in more detail later, but what is important about access virtualization is
that it makes it easy to re-use previously written code for new machine control projects, or to transport code from
prototyping setups to custom-designed production boards.

1.3.2 C-Motion Code Execution

A special and unique capability of the C-Motion PRP system is that it allows application code sequences to be run
either from an external host (such as a PC) or from the C-Motion Engine on the device. This is convenient for code
development, which is often easier and faster when located on the PC.

When operating on a host PC the C-Motion PRP system converts C-Motion calls to PRP protocol packets and sends
them through the network interface to the device. This same C-Motion application code, when re-compiled for
operation on the target device’s C-Motion Engine (sometimes called CME for short) no longer sends packets in PRP
format but instead makes the conversions needed to access the on-device resources from the CME, using the device’s
internal high speed communication bus.

Prodigy/CME PC/104 C-Motion PRP
Prodigy/CME Stand-Alone C-Motion PRP
Prodigy/CME Machine-Controller C-Motion PRP

Introduction

C-Motion PRP Programming Reference 9

1

1.3.3 Communication Networks

Another unique and powerful feature of the C-Motion PRP system is that it allows layered networks to be created. For
example if a host PC talks directly to a Prodigy/CME Machine-Controller board via an Ethernet connection this board
can in turn have a network of ION/CME units attached through its CAN network interface.

PRP allows both the resources on the Prodigy board and the ‘sub network’ ION/CME resources to be seamlessly
addressed from the PC. Built into the PRP resource accessing scheme is the capability for devices to act as network
gateways, directly processing messages intended for local resources, and passing on messages intended for resources
connected by network to the local device.

From the perspective of the C-Motion user code running on the PC access to all resources is automatic. To achieve
this, as before, once the location of the devices and resources of the PRP network is established through C-Motion
initialization calls, subsequent calls use just a C-language handle, whether the resources is directly-connected, or
connected through a network.

In the next chapter we will expand on all of these concepts and give examples of how C-Motion PRP II is used to
achieve various common control functions.

Introduction

10 C-Motion PRP Programming Reference

1

This page intentionally left blank.

C-Motion PRP Programming Reference 11

2

2.PMD Resource Access
Protocol (PRP)

In This Chapter
Introduction
PRP Resources
PRP Actions and Sub-Actions
PRP Addresses
PRP Packet Structure
Using PRP

2.1 Introduction

Access to Prodigy/CME boards, ION/CME Drives, and Ethernet-capable ION drives is provided by a protocol called
PMD Resource Access Protocol (PRP). PRP may be transmitted via serial, CAN, Ethernet TCP/IP, or SPI (Serial
Peripheral Interface). PRP is both a protocol which can be transmitted across various connection interfaces and an
architecture for how resources on PRP devices are accessed. A complete understanding of C-Motion PRP therefore
requires an understanding of PRP.

PRP device functions are organized into resources; resources process actions sent to them. Actions can send information,
request information, or command specific events to occur. Addresses allow access to a specific resource on the device or
connected to the device.

A basic communication to a PRP device consists of a 16 bit PRP header and for some communications a message body.
The message body, if present, contains data associated with the specified PRP action. The header contains various
information used to process the PRP messages including identifiers for the resource type, action type, and resource
address. After a PRP communication is sent to a device, a return communication is sent by the PRP device which
consists of a response header and an optional return message body. The return message body may contain information
associated with the requested PRP action, or it may contain error information if there was a problem processing the
requested action.

PRP is a master/slave system. The host functions as the master and initiates communication sequences which the
connected device must respond to. The connected device can not initiate messages on its own within the PRP protocol.
Note however that some PRP-supported networks, in particular CAN and Ethernet, allow one or more non-PRP
protocol connections to be established to support asynchronous communication from the attached device to the host.

In the sections below more information is provided on each of these PRP constructs.

2.2 PRP Resources

There are five different resource types supported by PRP devices. The Device resource indicates functionality that is
addressed to the entire board or digital drive, the MotionProcessor resource indicates a Magellan Motion Control IC,
the CMotionEngine resource indicates the C-Motion Engine, the Memory resource indicates RAM or non-volatile
RAM (Random Access Memory), and the Peripheral resource indicates a communications connection.

PMD Resource Access Protocol (PRP)

12 C-Motion PRP Programming Reference

2

The following table summarizes the various resource types and their numeric codes as specified in the header.

2.3 PRP Actions and Sub-Actions

There are ten different PRP actions including Command, which is used to send commands to resources such as the
Magellan Motion Processor, Send and Receive, which are used to communicate using serial, CAN, Ethernet, or SPI, Read
and Write, which are used to access memory-type devices, and Set and Get, which are used to load or read parameters.

The behavior of an action depends on the resource type to which it is addressed. The same action may take a different
set of arguments, return different data, and have different effects depending on its resource type. Many, but not all,
actions are only fully specified by adding a sub-action, an 8 bit code qualifying the action to take. Finally, a few commands
also accept a sub command, another 8 bit qualifier of the action to take.

The following table summarizes the various Action types and their numeric codes.

2.4 PRP Addresses

Every resource accessible via PRP is identified by a numeric address. Addresses for Memory, Motion Processor, and
C-Motion Engine resources local to a PRP device are fixed numbers. Refer to the user manual for the C-Motion
PRP-based product you are using for a detailed list. Addresses for Peripheral resources and resources on remote PRP
devices, that is devices not directly connected to the host, are obtained by PRP actions and are automatically assigned.
For more information on automatically assigned see Section 2.6.2, Automatically Assigned Addresses and Peripherals

While these automatically assigned addresses may in practice be predictable, it is important not to assume their values,
which may change depending on the state of the device assigning them.

Name Code Description
Device 0 A Prodigy/CME card or ION/CME module
CMotionEngine 1 A C-Motion Engine
MotionProcessor 2 A Magellan Motion Control IC
Memory 3 A random access memory
Peripheral 4 A connection to a remote device over a communications channel.

Name Value Meaning
NOP 0 No operation
Reset 1 Perform a reset
Command 2 Motion Processor and miscellaneous actions
Open 3 Open an addressable resource
Close 4 Close a remote resource
Send 5 Send data to a stream-like resource
Receive 6 Receive data from a stream-like resource
Write 7 Write data to an indexed resource
Read 8 Read data from an indexed resource
Set 9 Change a setting or operating state
Get 10 Get a setting or operating state
Clear 11 Erases the memory resources

PMD Resource Access Protocol (PRP)

C-Motion PRP Programming Reference 13

2

2.5 PRP Packet Structure

2.5.1 Outgoing PRP Packet

The core of the PMD Resource Access Protocol is a header that accompanies all PRP communications. The figure
below shows the format of the resource access protocol header. The PRP header is a single 16 bit word divided into
five fields. Normally, the PRP header is immediately followed by a message body, but there are certain communications
that do not require a message body.

The table below shows the structure of an outgoing PRP packet:

PRP outgoing packet header descriptions:

Version - This two bit field encodes the version of PRP being used. The value of this field for all PRP devices should
always be 1 (binary 01) unless documentation included with your PRP device indicates otherwise.

Status code - For PRP communications being sent out by the host, this 2 bit field should contain the value 2.

Action - This 4 bit field contains an action identifier that is used to process PRP messages. See Section 2.3, PRP
Actions and Sub-Actions, for a summary of the PRP actions supported by PRP.

Resource - This 3 bit field encodes the specific resource type being addressed. See the table in Section 2.2, PRP
Resources, for the summary of resources supported by PRP.

Address - This 5 bit field encodes the address of the particular resource being communicated to. Fixed addresses are
used for resources that are local to the PRP device. Automatically assigned addresses are used to access attached
devices, and are also used to create peripheral connections, which are communication ‘conversations’ between the PRP
device and another device.

2.5.2 PRP Response Packet

When an outgoing PRP packet is received by the device it responds with a response packet, which consists of at least
a one byte (8 bit) header, followed by a message body. The length of the message body depends on the particular action
- in some cases no body is required, in some cases a fixed length body is required, and in some cases a variable length
body is used. In the case of a variable length body, information on packet length external to PRP is used to determine
the length.

Outgoing PRP Packet
header byte 0 version (1) status (2) action

7 6 5 4 3 2 1 0

header byte 1 resource address
7 6 5 4 3 2 1 0

body byte 0…
7 6 5 4 3 2 1 0

PMD Resource Access Protocol (PRP)

14 C-Motion PRP Programming Reference

2

The table below shows the structure of PRP response packets for success and for failure:

The version field, as for the outgoing packet, must contain 1.

The bits marked reserved must have a value of zero.

The status field is used to indicate success or failure, a value of zero indicates success, and a message body may follow
as specified by the documentation for the particular action to which the PRP device is responding. A status value of 1
indicates that an error occurred processing the requested action, and a two byte (16 bit) message body follows
specifying the particular error that occurred. The table below summarizes some values that the error code may take.
(See the C-Motion PMDecode.h source file for all the possible values.) When used in the C language interface these
names should be prefixed by “PMD_ERR_RP_,” for example, “PMD_ERR_RP_InvalidAddress.”

2.6 Using PRP

In the next few sections we will provide examples of important PRP concepts including how to access resources, how
to use automatically assigned addresses, and more.

Beyond these examples here is a list of additional useful C-Motion PRP II resources contained in this manual:

• Section 3.7, Alphabetical C-Motion API Reference, provides detailed information on the C-Motion PRP
API, listed alphabetically

• Section 4.2, Action Table - Alphabetical Order, provides detailed information including packet format
for all PRP Actions, listed alphabetically

 PRP Success Response Packet
header byte 0 version (1) status (0) reserved

7 6 5 4 3 2 1 0

body byte 0…
7 6 5 4 3 2 1 0

PRP Failure Response Packet
header byte 0 version (1) status (1) reserved

7 6 5 4 3 2 1 0

error byte 0
7 6 5 4 3 2 1 0

error byte 1
7 6 5 4 3 2 1 0

Name Value Description
Reset 0x2001 The previous command reset the device; action was not pro-

cessed.
InvalidVersion 0x2002 The version field was incorrect.
InvalidResource 0x2003 No such resource type.
InvalidAddress 0x2004 The address for the specified resource type is not valid.
InvalidAction 0x2005 No such action, or resource not appropriate to specified action.
InvalidSubAction 0x2006 Sub-Action field not valid, or resource not appropriate for sub-

action.
InvalidCommand 0x2007 An enumerated option argument is not correct.
InvalidParameter 0x2008 An argument value is not legal, or not supplied.
InvalidPacket 0x2009 A PRP packet was corrupted
Checksum 0x200E Bad packet checksum value
Magellan error codes 1 – 35 Magellan Motion Processor error codes, documented in the

Magellan Motion Control IC User Guide.

PMD Resource Access Protocol (PRP)

C-Motion PRP Programming Reference 15

2

• Section 3.7, Alphabetical C-Motion API Reference, provides an alphabetically listed table of the C-
Motion PRP II API and its corresponding PRP Actions

• Section 4.1, Action Table - Code Order, provides the same information but in reverse, a table of PRP
Actions and the corresponding C-Motion PRP API

• Appendix A, PRP Transport, provides detailed information on the format and process for transporting
PRP on Serial, CAN, Ethernet, or SPI

2.6.1 Device Access Basics

Figure 2-1:

Host PC

Connected to

PRP Device via

Ethernet TCP

Accessing resources on PRP devices is straightforward using the C-Motion PRP system. To illustrate this we will begin
by showing the C-Motion commands used to achieve this. We will then illustrate how this same function is achieved
via PRP-formatted packets.

Example 1: A Host Controller is connected to a PRP device via Ethernet/TCP and sets the position of Axis
#3 of the PRP device’s onboard Magellan Motion Control IC to a value of 0x123456.

Example in C-Motion

The first step will be to create an Ethernet/TCP peripheral connection and associated C-language handle on the host
PC. Then we use this peripheral handle to create a handle to access the Ethernet-connected PRP device. Finally, using

this device handle we will open an Axis handle which is used to access all Magellan Motion Control IC commands.

*For clarity the content of these example C calls such as handles and other initialization information will not be shown. For complete C-
Motion coding examples refer to CMESDK\HostCode\Examples located on the C-Motion PRP SDK.

Note that once we have a handle set up we may use it to access the associated resource without re-opening that
resource. For example in the above sequence if we want to also set the motion control IC’s motion velocity, we would
just add a PMDSetVelocity() call to the above sequence using the same axis handle as was used to set the position.

Example in PRP

The above example in PRP format looks very different. There are two reasons for this, one of which is that the
mnemonic format for PRP packets is different than C language calls. The general PRP packet mnemonic format is:

<Resource ID> <Address> <Action ID> <Message content>

PMDPeriphOpenTCP()* // Open and get access handle for TCP Peripheral on Host PC
PMDRPDeviceOpen() // Open PRP-based device via this peripheral connection
PMDAxisOpen() // Get Magellan Axis handle at axis #3 using PRP device handle
PMDSetPosition() // Send SetPosition 0x123456 from PC to Magellan IC

Host Ethernet

Expansion
Network, CAN

Magellan
Motion Control IC

RAM
Expansion

Network SPIEthernet
Port

Host
PC

C-Motion
EnginePRP

Device

PMD Resource Access Protocol (PRP)

16 C-Motion PRP Programming Reference

2

The other reason is that none of the C-Motion initialization calls which create virtual resource access through handles
are relevant. So the PRP sequence is a single packet which is sent to the MotionProcessor resource, and has an action type
of Command.

From the table in Section 2.2, PRP Resources, through Section 2.4, PRP Addresses, to communicate with the onboard
Magellan Motion Control IC, a PRP message is sent to Resource ID 2 (corresponding to the MotionProcessor resource),
address 0 (corresponding to the PRP device’s onboard Magellan address), and with an action ID of 2 (corresponding
to the Command action). The message body is loaded with the Magellan packet corresponding to “Set Position, #3
0x123456,” which is the 3-word sequence 0x210, 0x0012, 0x3456.

In PRP mnemonics here is this command:

MotionProcessor, Addr 0, Command, 0x0210, 0x0012, 0x3456

Upon processing of this command by the device, the host would receive a PRP response message back. A zero in the
status field would indicate that no error occurred. If this is the case the message body will be empty. If an error did
occur, then the PRP status field would contain a 1, and the message body would contain the specific error code that
occurred.

Example 2: The same Host Controller wants to read the 32 bit word value of address 0x100 of the PRP
device’s RAM

Example in C-Motion

Here we will send a PMDMemoryRead() call to retrieve the memory. From the previous Example #1 sequence we

will assume the first two initializations have already been made and now execute the additional needed calls:

Example in PRP

The ID for a Memory resource type is 3, and the ID for a Read action is 7. The message body contains a sub-action of
0 specifying a 32 bit word read followed by a 0x100 which specifies the address of the desired memory read. Upon
successfully processing this command, the host would receive the 32 bit contents of memory location 0x100 in the
message body.

So in PRP mnemonics here is this outgoing command:

Memory, Addr 0, Read, 0, 0x100

Note that the PRP Command message sent to the Magellan Motion Control IC did not use a sub-action code in the
message body, while the Read command sent to the RAM did. Whether or not a sub-action is required, and what the
codes are for various sub-actions is action-specific, and sometimes resource-specific. Chapter 4, PRP Action Reference,
provides exact message body information for each PRP action and (if applicable) sub-action.

2.6.2 Automatically Assigned Addresses and
Peripherals

The above examples illustrate how C-Motion PRP is used to gain basic access to on-device resources. In these
examples the address of the resource being commanded or queried were local to the device, and therefore had a fixed
numerical value.

In the PRP system however there are instances where the device or resource address is not fixed and is assigned
dynamically. These occurs in particular when addressing the Peripheral resource.

PMDMemoryOpen32() // takes the device handle and creates a memory resource handle
PMDMemoryRead() // takes the memory resource handle and returns the requested data

PMD Resource Access Protocol (PRP)

C-Motion PRP Programming Reference 17

2

PRP devices support up to three different network connection types; Serial, CAN, and Ethernet. These
communication resources are represented in PRP by a construct called a peripheral connection. A peripheral is a
resource (resource ID: 4), and is used to send and receive messages to network connections.

Obtaining access to an on-device serial, CAN, Ethernet, or SPI port is accomplished via the PRP Open action. This
action opens a peripheral by specifying a sub-action of PeriphSerial, PeriphCAN, PeriphTCP, or PeriphUDP. The
corresponding C-Motion commands are PMDPeriphOpenCOM(), PMDPeriphOpenCAN(),
PMDPeriphOpenTCP(), and PMDPeriphOpenUDP().

The addresses of these Peripheral resources are not fixed. Each newly opened peripheral connection receives an
automatically assigned address within the PRP response message body. The device that requests the peripheral open
connection must record that provided address for future use, and it is this address that is used in subsequent PRP
messages to that peripheral connection.

Note that automatically assigned addresses generally increment by one each time they are assigned, however this
should not be assumed.

Opening a new peripheral opens a connection between a PRP device and a specific remote device. It does not open
the overall network port. For example if a PRP device has a CAN network with 4 attached devices (each at seperate
CAN network addresses), four separate open peripheral function calls must be made, each opening a one-to-one
connection between the PRP device and a specific network-attached device.

Figure 2-2:

Host PC

Connected to

PRP Device

connected to

Instruments via

CAN Network

Example 1

Figure 2-2 shows a network configuration. A Host PC is connected via Ethernet TCP to a PRP device, which
in turn is connected via a CANFD network to two scientific instruments. The host controller needs to
initiate, send and receive a message to/from the CAN-connected instrument.

Example in C-Motion

The first two steps provide general Ethernet access from the PC to the PRP device, and are the same as from our

previous examples.

Next we use the device handle created using the open PRP device call to access the Ethernet-connected PRP device
and open CANFD peripherals to each instrument. Using this peripheral handle we then send and receive a message:

PMDPeriphOpenTCP()* // Open TCP Peripheral connection on Host PC
PMDRPDeviceOpen() // Open PRP-based device connection

PMDPeriphOpenCAN() // Open CAN Peripheral connection #1
PMDPeriphOpenCAN() // Open CAN Peripheral connection #2
PMDPeriphSend() // Send a message to the #1 peripheral connection
PMDPeriphReceive() // Receive a message from #1
PMDPeriphSend() // Send a message to the #2 peripheral connection
PMDPeriphReceive() // Receive a message from #2

Host
Ethernet

Exp. CAN

RAM
Exp. SPI

Ethernet
Port

Host
PC

PRP
Device

Magellan
IC

CME

Instrument
#1

Instrument
#2

CANEthernet
TCP

PMD Resource Access Protocol (PRP)

18 C-Motion PRP Programming Reference

2

*For clarity the contents of the C calls such as handles and other initialization/parameter information is not shown.

Example in PRP

As in the examples from the previous section there are no PRP transactions to set up resource or peripheral access
handles. So the first step is to open a CANFD peripheral connection on the PRP Device.

Device, Addr 0, Open, PeriphCANFD, <CANFD Parameters for #1>
Device, Addr 0, Open, PeriphCANFD, <CANFD Parameters for #2>
Peripheral, <Assigned Address for #1>, Send, <Message>
Peripheral, <Assigned Address for #1>, Receive, <Message>
Peripheral, <Assigned Address for #2>, Send, <Message>
Peripheral, <Assigned Address for #2>, Receive, <Message>

In the return message body of the first transaction above the automatically assigned address of the opened CANFD
peripheral is provided, and this address is used for the subsequent Send and Receive actions. <CANFD Parameters>
here denotes that the message body of the outgoing communication contains formatted information indicating the
Node ID.

Upon processing the peripheral receive command the PRP device will wait for a CANFD message to be received. A
timeout value can be provided so that the length of this wait period can be limited. Once the message is received the
PRP response message contains the received CANFD message.

2.6.3 RS232 & RS485 Peripherals

Most PMD products support both RS232 and RS485 serial communications, although specifying that a serial port
should operate as a RS485 network reduces the number of serial ports available. For example PMD’s N-Series ION
Drive supports separate Serial1 and Serial2 point-to-point RS232 connections but just Serial1 when configured for
multidrop RS485 operation.

Opening a point-to-point serial connection is straightforward and uses the C-Motion call PMDPeriphOpenCOM().
In the argument list the port is specified (Serial1, Serial2, or Serial3) along with other parameters such as baud rate,
parity, etc.

In PRP protocol this is:

Device, Addr, Open PeriphSerial, <Serial Parameters>

Opening a multi drop RS485 connection however requires two calls, the first to open a serial peripheral connection,
and then separate calls for each RS485 connection that is to be created. This second peripheral open uses what is called
a multi drop peripheral type. Here is what this call sequence looks like via C-Motion, showing how devices at two
separate RS485 network addresses are connected to.

PMDPeriphOpenCOM() // open serial port peripheral, creating periph handle
PMDPeriphOpenMultiDrop() // open multi drop peripheral connection # 1 using

// above serial periph handle. Resultant peripheral handle
// now represents the RS485 connection to the device at the
// first RS485 address

PMDPeriphOpenMultiDrop() // open multi drop peripheral connection # 2 using
// original serial periph handle. Resultant peripheral handle
// now represents the RS485 connection to the device at the
// second RS485 address

PMD Resource Access Protocol (PRP)

C-Motion PRP Programming Reference 19

2

Here is the same sequence in PRP mnemonics:

Device, Addr, Open, PeriphSerial, <Serial Parameters>
Periph, <Assigned Addr>, Open PeriphMultiDrop, <RS485 connection parameters for node #1>
Periph, <Assigned Addr>, Open PeriphMultiDrop, <RS485 connection parameters for node #2>

After these sequences there are two multidrop peripherals which can then be used for communications to and from
each connection via standard peripheral Send or Receive commands.

2.6.4 Remote Attached Devices

Figure 2-3:

Host PC

Connected to

PRP Device

connected to

ION/CME and

ION 500 via

RS485

Network

Before closing our discussion of peripheral connections there is one more especially useful configuration to discuss.
In Figure 2-3 a host PC connects to a PRP device which in turns has additional devices connected to it via another
network. These additional devices, from the perspective of the PC, are referred to as remote attached devices. With
PRP, creating ‘bridged’ networks like this is not difficult, as this example shows.

Example

A Host PC is connected via CAN to a PRP device, which in turn is connected via RS485 to two devices; an
ION/CME 500 (#1) and an ION 500 (#2). The host controller needs to set a destination position, and send
a GetVersion command to both of the remote RS485 connected ION Drives.

Example in C-Motion

The first two steps provide general CAN access from the PC to the PRP device, and are similar to our previous
examples other than the switch from Ethernet to CAN.

Next we will open a serial peripheral connection so that we can create two RS485 connections, one to each device.

Next we will create device connections via each of these peripherals. This accomplished via either an OpenDevicePRP
call (for PRP protocol devices) or an OpenDeviceMP (for Magellan/Juno format devices). In this example the #1
device is an ION/CME and therefore a PRP device, while the #2 device is an ION 500 and therefore a Magellan/
Juno protocol device.

PMDPeriphOpenCAN() // Open CAN Peripheral connection on Host PC
PMDRPDeviceOpen() // Open PRP-based device connection

PMDPeriphOpenCOM() // Open Serial peripheral connection
PMDPeriphOpenMultiDrop() // Open multi drop peripheral connection # 1
PMDPeriphOpenMultiDrop() // Open multi drop peripheral connection # 2

PMDRPDeviceOpen() // Open PRP device connection for #1 ION (ION/CME 500)
PMDMPDeviceOpen() // Open Magellan device connection for #2 ION (ION 500)

Host CAN
RS485

RAM
CAN
Port

Host
PC

PRP
Device

Magellan
IC

CME

ION/CME
500

RS485
CAN

ION 500

PMD Resource Access Protocol (PRP)

20 C-Motion PRP Programming Reference

2

Finally we create access handles to the motion processor axes for each device and set the destination position
command and query the unit version.

Example in PRP

Since we don’t need commands to create handles to access the Host PC-attached device, the first step is to open a
serial peripheral connection, then we create two RS485 peripheral connections, first for device #1 and next for device
#2

Device, Addr 0, Open, PeriphSerial, <Serial parameters>
Device, <assigned Addr>, Open, PeriphMultiDrop, <RS485 parameters for #1>
Device, <assigned Addr>, Open, PeriphMultiDrop, <RS485 parameters foir #2>

Next we will create device connections via each of the just-created RS485 peripheral addresses.

Periph, <assigned Addr>, Open, DevicePRP, <Parameters for PRP Device>
Periph, <assigned Addr>, Open, DeviceMP, <Parameters for MP Device>

Finally we send the desired SetPosition and GetVersion commands to each motion control IC.

MotionProcessor, <device Addr #1>, Command, <SetPosition 0x123456>
MotionProcessor, <device Addr #2>, Command, <SetPosition 0x234567>
MotionProcessor, <device Addr #1>, Command, <GetVersion>
MotionProcessor, <device Addr #2>, Command, <GetVersion>

Note that in the above PRP messages the commands sent to the motion processor resource are not sent as ASCII
characters but rather in a packet protocol format. In the mnemonics they are shown in ASCII only for clarity. Magellan
IC packet formats are detailed in the C-Motion Magellan Programming Reference.

2.6.5 Other Peripheral Types

As it turns out there are some peripheral types that do not strictly function as communication ports, but are still
accessed as Peripheral resources. These peripheral types are listed in the table below. Note that some of these peripheral
types, rather than using Send and Receive commands, use Read and Write commands to access their contents.

PMDAxisOpen() // Using handle for device #1 get Magellan axis handle
PMDAxisOpen() // Using handle for device #2 get Magellan axis handle
PMDSetPosition() // Set position to 0x123456 to Axis on device #1
PMDSetPosition() // Set position to 0x234567 to Axis on device #2
PMDGetVersion() // Query version of Magellan on device #1
PMDGetVersion() // Query version of Magellan on device #2

Peripheral Type
(Sub Action
Name) Description
PeriphPRP PRP Peripherals allow general purpose application-specific communications to occur through

an already established PRP channel. This mechanism, often referred to as tunneling, can be con-
venient for “conversation constrained” network interfaces such as Serial or SPI.

PeriphPIO Each PRP Device has a single PIO Peripheral which gives access to various bit or word encoded
registers. These registers provide read or write access to the unit’s Digital I/O bits, analog
inputs, encoder-related settings, and more.

C-Motion PRP Programming Reference 21

3

3.PMD C-Motion API
Reference

In This Chapter
Naming Conventions
Data Types
Return Values
C-Motion Engine
Microsoft .NET Programming
PMD Library Procedures
Alphabetical C-Motion API Reference

3.1 Naming Conventions

Procedures and data type names in the CME library are prefixed with “PMD.” This prefix is omitted in the binary
protocol documentation below, but must be included in C programs. C-Motion is the PMD library for Magellan Motion
Processor control, and is a subset of the CME libraries. C-Motion procedures and data type names are also prefixed with
“PMD.”

3.2 Data Types

PRP resources are represented by opaque C types. “Opaque” means that reading and writing members of the data
structures without using the library procedures is not supported. All of these structures must be allocated by the calling
program, and are passed to library procedures by using a pointer argument. They must not be freed or otherwise written
to until explicitly closed.

These data types include:

• PMDDeviceHandle – There are two types of “device:” an RP device is a device that communicates using
the PRP protocol, that is, a Prodigy/CME card or an ION/CME module; an MP device is a device that
communicates using the Magellan/Juno protocol, that is, a non-CME ION module, non-CME Prodigy
card, or other “Magellan attached” device.

• PMDAxisHandle – A control axis of a Magellan Motion Control IC, which may be part of a Magellan
attached device or of a PRP device.

• PMDPeriphHandle – A connection to a peripheral device over a particular communication channel. The
peripheral data type specifies both the communication channel and any addressing information specific to
a remote device, for example a TCP/IP port number or a PC/104 ISA bus base address.

• PMDMemoryHandle – A memory resource on a PRP device or a non-CME Prodigy card.

PMD C-Motion API Reference

22 C-Motion PRP Programming Reference

3

The include file “PMDtypes.h” defines typedefs for specific integral types that will be used in the prototypes in this
manual:

• PMDuint32, PMDint32 – unsigned and signed 32 bit integers

• PMDuint16, PMDint16 – unsigned and signed 16 bit integers

• PMDuint8, PMDint8 – unsigned and signed 8 bit integers

Many bitmask and enumerated types are also defined in this file.

3.3 Return Values

Almost all of the PMD library procedures return an integer of type PMDresult, indicating success (zero) or failure
(nonzero). The error values of PMDresult are the same as the PRP error values documented in this manual, and are
all declared in the “PMDecode.h” file. A partial list of these error codes is in Section 2.5.2, PRP Response Packet, for
more information.

3.4 C-Motion Engine

The C-Motion Engine is a special purpose computer included in PMD’s CME line of products, and connected by a
high speed internal bus to the on-board Magellan Motion Processor, memory, and various communication devices.
The firmware libraries required for motion control and a framework for application support are already included in
the CME device, only the logic specific to a particular application need be programmed into the C-Motion Engine,
making development a much quicker task than it would be for a “ground-up” embedded application.

Most of the instruction cycles in the microprocessor hosting the C-Motion Engine are normally available for running
the user program, but processing of messages sent and received on communication peripherals is done by the same
processor. Heavy message traffic, particularly heavy Ethernet traffic, may therefore reduce the time available for
running the user program.

Dynamic memory allocation is supported using “malloc” and “free.” Because the dynamic heap is of limited size and
is unavoidably subject to fragmentation it is suggested that dynamic allocation be used sparingly, preferably only during
initialization. The heap in most CME devices is approximately 7 kilobytes. The heap in N-Series ION devices is
approximately 500k.

CME tasks can be aborted using PMDTaskAbort. Do not return from a CME task function.

3.4.1 C-Motion Engine Programming

In many ways the C-Motion engine environment is more restrictive than a PC host environment: code size, data size,
and stack size are all more limited (see the User’s Guide for your product). The processor running the C-Motion
Engine is slower than a typical PC processor, but because of the lack of competing processes it can be much more
predictable and quicker to respond.

C-Motion Engine programs are compiled with the GNU C compiler (GCC) provided with the CME SDK. Each
example contains a build.bat file that builds the appropriate example. The resulting binary file is then downloaded to
the CME device via Pro-Motion or the command-line utility StoreUserCode.exe.

PMD C-Motion API Reference

C-Motion PRP Programming Reference 23

3

3.4.2 Macros

A number of C preprocessor macros are required as part of a C-Motion Engine user code program. These macros are
defined in the “PMDsys.h” file.

USER_CODE_VERSION (MAJOR, MINOR)
USER_CODE_TASK (myProgram)

USER_CODE_VERSION encodes version information in a section of the binary that will be used by the C-Motion
Engine runtime code. It should be put once in the main source file at top level (outside of any function definition).

MAJOR and MINOR are user program version numbers, 16 bit constants that will be reported by Pro-Motion.
USER_CODE_VERSION must be present even if you don’t care to maintain a version number.

USER_CODE_TASK should be used to define the main function of the user code program, its argument is the name
of the function, which should accept no arguments and should never return. A user program skeleton follows:

3.5 Microsoft .NET Programming

3.5.1 Visual Basic Programming

The Visual Basic PMD Library is the interface from Microsoft Visual Basic .NET to the PMD C-Motion library for
control of Magellan Motion Control ICs, which is documented in the Magellan Motion Control IC Programming Reference.
The Visual Basic interface documented in that manual is similar to but not identical to that used for PRP devices. Basic
language programming is supported only for Microsoft Windows hosts, C-Motion Engine programming must be done
in the C language.

There are two parts to the Visual Basic interface code:

1 C-Motion.dll is a dynamically loadable library of all documented procedures in the PMD host libraries,
including all C-Motion procedures.

2 PMDLibrary.vb is Visual Basic source code containing definitions and declarations for DLL procedures,
enumerated types, and data structures supporting the use of C-Motion.dll from Visual Basic. PMDLibrary.vb
should be included in any Visual Basic project for PRP or Magellan device control.

Both debug and release versions of C-Motion.dll are provided in directories CMESDK\HostCode\Debug and
CMESDK\HostCode\Release, respectively. The library input file C-Motion.lib is also provided so that C-Motion.dll may

#include “C-Motion.h”
#include "PMDsys.h"

// this macro is required at the beginning of a CME user application
USER_CODE_VERSION (1,0)
// UserTCP is the name of the main task function
USER_CODE_TASK (myProgram)
{
…

 while (I) {
 // Handle task events
 }
 PMDTaskAbort(0);

}

PMD C-Motion API Reference

24 C-Motion PRP Programming Reference

3

be used with C/C++ language programs. When compiling C/C++ programs to be linked against the DLL the
preprocessor symbol PMD_IMPORTS must be defined.

C-Motion.dll must be in the executable path when using it, either from a C or a Visual Basic program. Frequently the
easiest and safest way of doing this is to put it in the same directory as the executable file.

PMDLibrary.vb is located in the directory CMESDK\HostCode\DotNet.

3.5.2 Visual Basic Classes

The file PMDLibrary.vb defines a Visual Basic class for each of the opaque data types used in the PMD library:
PMDPeripheral, PMDDevice, PMDAxis, and PMDMemory. PMDPeripheral is inherited by a set of derived classes
for each peripheral type: PMDPeripheralSerial, PMDPeripheralMultiDrop, PMDPeripheralPRP,
PMDPeripheralCAN, and PMDPeripheralTCP.

Each class takes care of allocating and freeing the memory used for the “handle” structures used in the C language
interface. The first pointer argument to, for example, a PMDPeriphHandle in a C language procedure call is not
needed because a method call for a particular PMDPeripheral object is used instead, and each object manages its own
PMDPeriphHandle.

The “Open” procedures used in the C language interface are replaced in Visual Basic with constructor methods that
take the same arguments in the same order, with the exception that the first pointer argument is not needed. “Close”
methods are provided that call the C language “Close” procedures, however these procedures may also be called
automatically as part of the finalization process when objects are garbage collected.

The following example demonstrates how to open a peripheral connection to a PRP device accessible by TCP/IP, and
to access the resources of that device.

Public Class Examples
 Public Sub Example1()

' Allocate and open a peripheral connection to a PRP device using TCP/IP.
' Note that the arguments for the PMDPeripheralTCP object are the same as for the
' C language call PMDDeviceOpenPeriphTCP, except that the first argument for the peripheral
' struct pointer and the second argument for the device are not used.
' The standard .NET class for IP addresses is used instead of a numeric IP address.
' DEFAULT_ETHERNET_PORT is a constant defined in PMDLibrary.vb for the default
' TCP port used for commands by the PRP device.
' 1000 is a timeout value in milliseconds.
Dim periph As New PMDPeripheralTCP(System.Net.IPAddress.Parse("192.168.0.27"), _
 DEFAULT_ETHERNET_PORT, _
 1000)

' Now allocate and connect a device object using the newly opened peripheral.
' Instead of using two different names the second argument specifies whether a
' PRP device or attached Magellan device is expected.
Dim DevCME As New PMDDevice(periph, PMDDeviceType.ResourceProtocol)

' Once the PRP device is open we can obtain an axis object, which may be used
' for any C-Motion commands. Notice that the enumerated value used to specify the axis is
' called "Axis1" instead of "PMDAxis1" because the enumeration name already includes
‘ the “PMD” prefix.
Dim axis1 As New PMDAxis(DevCME, PMDAxisNumber.Axis1)

' C-Motion procedures returning a single value become class properties, and may be
' retrieved or set by using an assignment. The "Get" or "Set" part of the name is dropped.
Dim pos As Int32
pos = axis1.ActualPosition

' The following line sets the actual position of the axis to zero.
axis1.ActualPosition = 0

' Properties may accept parameters, for example the CurrentLoop parameter is used to set
' control gains for the current loops, and takes two parameters. This example sets
' the proportional gain for phaseA to 1000
axis1.CurrentLoop(PMDCurrentLoopNumber.PhaseA, _
PMDCurrentLoopParameter.ProportionalGain) = 1000

PMD C-Motion API Reference

C-Motion PRP Programming Reference 25

3

' C-Motion procedures returning multiple values become Sub methods, and return their
' values using ByRef parameters. The "Get" and "Set" parts of the names are the same as
' in the C language binding.
Dim MPmajor, MPminor, NumberAxes, special, custom, family As UInt16
Dim MotorType As PMDMotorTypeVersion
axis1.GetVersion(family, MotorType, NumberAxes, special, custom, MPmajor, MPminor)

' If the objects opened here are not explicitly closed they will be closed by the
' garbage collector.
 End Sub
End Class

Several general points about the translation from C to Visual Basic are shown in the example:

• Argument type and order are the same, except that the initial “handle” pointer argument is not needed.
The null device pointer used to indicate that a peripheral is opened on the local device is also not needed.

• “Get/Set” procedures returning a single argument become object properties, with parameters if needed.
The property name does not contain “Get” or “Set”, or the “PMD” prefix.

• Procedures returning or setting multiple values are implemented as Sub methods, returning values via
ByRef parameters. “Get” or “Set” is retained in the names, but the “PMD” prefix is not.

• Enumerated value names do not use the “PMD” prefix, but the enumeration names do.

• Procedures reading or writing array data through C pointers instead take Visual Basic arrays of the
appropriate type.

3.5.3 C# Programming

The C# language is very similar to the VB language. A C# PMD program uses the PMDLibrary.dll created by the
ClassLibrary project located in CMESDK\HostCode\DotNet\ClassLibrary. An example C# PMD program can be
found in CMESDK\HostCode\DotNet\CSTestApp.

3.5.4 Error Handling

Almost all of the PMD C language library procedures return an error code to indicate success or failure. The Visual
Basic versions of these procedures instead throw an exception if the wrapped DLL procedures return an error code.
The exception message will contain the error number and a short description of the error. The Data member of the
exception will contain the error number as an enumeration of type PMDresult, associated with the key “PMDresult”,
so that structured exception handling may be used to appropriately handle errors.

The following example commands a PRP device to reset, and then ignores the expected error return on the next
command:

dev.Reset()
Try
 Dim major, minor As UInt32
 dev.Version(major, minor)
Catch ex As Exception When ex.Data("PMDresult").Equals(PMDresult.ERR_RP_Reset)
' Ignore the expected error
 End Try

Any errors that are not caught will cause the application to display a popup window displaying an error message,
including the error number and description, and a stack trace with file names and line numbers. The popup window
allows a user to continue, ignoring the error, or to abort the application.

PMD C-Motion API Reference

26 C-Motion PRP Programming Reference

3

While popup windows are useful for debugging, any application controlling motors should be designed to recover
gracefully and safely from any foreseeable error condition, and it is recommended to use Try blocks liberally to make
applications more robust.

3.6 PMD Library Procedures

This section documents the PMD C language interface to the library procedures for programming a CME PRP device,
both in hosted programs and C-Motion Engine user programs. Most procedure calls are syntactically the same in both
environments, but their implementation is of course quite different.

In many cases a PRP action corresponds closely to the action of a library procedure, but this is not invariable. One
procedure call may involve a PRP action, or none. Whether PRP is used may depend on whether the procedure call is
executed on the host or in a C-Motion Engine user program, and on whether it is directed at a remote device or the
device on which the program itself is running.

There are a few conventions common to many procedures:

• When opening a handle to some object a pointer to an uninitialized instance of the appropriate data type
is passed first, and the open procedure will write to it. The initialized data type should not be written to
as long as it is in use.

• Most procedures return an integer status code of type PMDresult. A zero indicates success, and a non-
zero value failure or error.

• Many procedures that accept a pointer to a PMDDeviceHandle as an argument should be passed a null
pointer to indicate the “local” device. For C-Motion Engine user programs the local device is the device
hosting the C-Motion Engine. For hosted programs, for example when opening a peripheral, the local
device is the host itself.

PMD C-Motion API Reference

C-Motion PRP Programming Reference 27

3

3.7 Alphabetical C-Motion API
Reference

PMD C-Motion API Reference

28 C-Motion PRP Programming Reference

3

This page intentionally left blank.

3

C-Motion PRP Programming Reference 29

Arguments:

C language
syntax:

PMDresult PMDAxisOpen(PMDAxisHandle *hAxis,
 PMDDeviceHandle *hDevice,
 PMDAxis axis_number);

Visual Basic
Syntax:

Dim axis As New(device, PMDAxisNumber.Axis)

Description: PMDAxisOpen is used to obtain a handle to a single control axis of a Magellan Motion Processor,
which will be used for all C-Motion procedures. The hAxis argument should point to an uninitialized
PMDAxisHandle struct, which should not be freed or written to as long as the handle is required.
The device argument should point to an open PMDDeviceHandle handle, which may represent
either a PMD device or a Magellan attached device. In a C-Motion engine user program, device
may be null, in which case the Magellan processor on the local device will be opened.

For example, to open the first axis on the local Magellan processor from a CME user program:

PMDAxisHandle axis1;
PMDresult result;

result = PMDAxisOpen(&axis1, 0, PMDAxis1);

And to open the second axis on a Magellan attached device accessible by CANBus:

PMDPeriphHandle periph;
PMDDeviceHandle dev;
PMDAxisHandle axis2;
PMDresult result;

// First open the peripheral connection, CAN_TX, CAN_RX, and CAN_EVENT
// depend on how the attached device is configured.
result = PMDPeriphOpenCAN(&periph, 0, CAN_TX, CAN_RX,
 CAN_EVENT);
// Now open an MP Device on the peripheral
if (PMD_NOERROR == result)
 status = PMDMPDeviceOpen(&dev, &periph);
// Now we’re ready to obtain the axis handle.
if (PMD_NOERROR == result)
 result = PMDAxisOpen(&axis2, &dev, PMDAxis2);

Related PRP
Actions:

Open Peripheral MotionProcessor

name type
hAxis pointer to PMDAxisHandle
hDevice pointer to PMDDeviceHandle
axis_number enumeration PMDAxis1 to PMDAxis4

PMDAxisOpen C-Motion Engine Host-Based

3

30 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDTaskGetState(PMDDeviceHandle *hDevice,
 PMDTaskState *state);

Visual Basic
Syntax:

Dim state As PMDTaskState
state = device.TaskStat

Description: The PMDTaskGetState procedure queries a C-Motion Engine for the state of any user program
that might be installed in it. The hDevice argument should be associated with an RP device that is
a device containing a C-Motion Engine. If hDevice is not appropriate then
PMD_ERR_NOT_SUPPORTED will be returned.

The value pointed to by the state argument will be written to indicate the result:

Related PRP
Actions:

Get CMotionEngine TaskState

name type
hDevice pointer to PMDDeviceHandle
state pointer to PMDTaskState enum

PMDTaskState instance encoding
No program installed 1
Program not started 2
Program running 3
Program aborted 4

PMDTaskGetState C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 31

Arguments:

C language
syntax:

PMDresult PMDTaskStart(PMDDeviceHandle *hDevice);

Visual Basic
Syntax:

device.TaskStart()

Description: PMDTaskStart is used to start a user program installed in the C-Motion Engine that is part of the
CME device associated with the hDevice argument. If hDevice is not a PRP device then
PMD_ERR_Not_Supported will be returned. If no runnable program is installed then
PMD_ERR_UC_NotProgrammed will be returned. If a program is already running, then
PMD_ERR_UC_TaskAlreadyRunning will be returned.

Related PRP
Actions:

Command CMotionEngine Task

name type
hDevice pointer to PMDDeviceHandle

PMDTaskStart C-Motion Engine Host-Based

3

32 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDTaskStop(PMDDeviceHandle *hDevice);

Visual Basic
Syntax:

device.TaskStop()

Description: PMDTaskStop is used to stop any user program currently running in the C-Motion Engine that is
part of the PRP device associated with the hDevice argument. If device is not a CME PRP device
then PMD_ERR_NOT_SUPPORTED will be returned. If no program is currently running, then
PMD_ERR_UC_TaskNotCreated will be returned. If no program is installed, then
PMD_ERR_UC_NotProgrammed will be returned.

It is the user’s responsibility to ensure safety when starting or stopping a user program that controls
motors. It is not possible to predict the state of the PRP device or of it's motion processor at the
instant that the user program is stopped. PMD strongly recommends that a task be stopped only
to correct unrecoverable errors and that the card and any devices that it controls be put immediately
into a known safe state using host commands. Because the card resources and the dynamic heap
are not in a known state it is not safe to restart a task after stopping it without first resetting the
entire device.

Related PRP
Actions:

Command CMotionEngine CommandTask TaskStop

name type
hDevice pointer to PMDDeviceHandle

PMDTaskStop C-Motion Engine

3

C-Motion PRP Programming Reference 33

Arguments:

C language
syntax:

PMDresult PMDDeviceClose(PMDDeviceHandle *hDevice);

Visual Basic
Syntax:

device.Close()

Description: PMDDeviceClose is used to free any resources used in maintaining the device handle passed as a
pointer argument. After closing the memory used for the PMDDeviceHandle type may be freed or
re-used for another device.

Related PRP
Actions:

Close Device

Close CMotionEngine

name type
hDevice pointer to PMDDeviceHandle

PMDDeviceClose C-Motion Engine Host-Based

3

34 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDDeviceGetDefault(PMDDeviceHandle *hDevice,
 PMDDefault defaultcode,
 void *value,
 unsigned valueSize);

Visual Basic
Syntax:

Dim value16 As UInt16
device.GetDefault(PMDDefault.code, value16)

Dim value32 As UInt32
device.GetDefault(PMDDefault.code, value32)

Description: PMDDeviceGetDefault is used to retrieve the value of a device default. Device defaults are various
non-volatile properties of the PRP device for example the IP address, or whether to run a user
program immediately after power up.

hDevice is a pointer to a handle associated with the d to retrieve the value of a device default. Device
defaults are various non-volatile properties of the PRP device being interrogated; in C-Motion
Engine user programs hDevice may be a null pointer, meaning the local device.

default is a numeric default code, please see the description of the Set DefaultDevice action in
section 2.6 for a table of supported default codes and their meaning.

value is a pointer to a data area in which to store the default code, and valueSize is the size, in bytes,
of the area. The size of a default depends on the particular data type, and is encoded in the upper
byte of the default code – a value of zero means one byte, one means two bytes, and n means n – 1
bytes. valueSize is required in order to prevent buffer overruns, an error code will be returned if
valueSize is not large enough to contain the default value.

Two byte default values are generally 16-bit integers, and four byte values 32-bit integers. The value
pointer must be properly aligned to hold these values. It is safe in all cases to require value to be
double-word aligned, one way of accomplishing this is to use a C union type to receive the default
value:
union defaultValue {
 PMDuint16 as_word;
 PMDuint32 as_dword;
 char as_string[32];
}

Related PRP
Actions:

Get Device Default

name type
hDevice pointer to open RP device handle
defaultcode enumerated default code
value pointer to memory area to receive

default value
valueSize maximum size of value area

PMDDeviceGetDefault C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 35

Arguments:

C language
syntax:

PMDresult PMDDeviceReset(PMDDeviceHandle *hDevice);

Visual Basic
Syntax:

device.Reset()

Description: PMDDeviceReset is used to reset the device. If it is not possible to hard reset the device then
PMD_ERR_NOT_SUPPORTED will be returned. For example, Magellan attached devices
controlled using CANBus, or a serial line may not be hard reset.

Related PRP
Actions:

Reset Device

Reset CMotionEngine

name type
hDevice pointer to PMDDeviceHandle

PMDDeviceReset C-Motion Engine Host-Based

3

36 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDDeviceSetDefault(PMDDeviceHandle *hDevice,
 PMDDefault defaultcode,
 void *value,
 unsigned valueSize);

Visual Basic
Syntax:

Dim value16 As UInt16
device.SetDefault(PMDDefault.code, value16)

Dim value32 As UInt32
device.SetDefault(PMDDefault.code, value32)

Description: PMDDeviceSetDefault is used to change the value of a device default. Device defaults are various
non-volatile properties of the PRP device, for example the IP address, or whether to run a user
program immediately after power up.

hDevice is a pointer to a handle associated with the PRP device being interrogated; in C-Motion
Engine user programs hDevice may be a null pointer, meaning the local device.

default is a numeric default code, please see the description of the Set DefaultDevice action in
section 2.6 for a table of supported default codes and their meaning.

value is a pointer to a data area in which to store the default code, and valueSize is the size, in bytes,
of the area. The size of a default depends on the particular data type, and is encoded in the upper
byte of the default code – a value of zero means one byte, one means two bytes, and n means n – 1
bytes. valueSize is required as a sanity check, an error code will be returned if valueSize is not large
enough to contain the default value.

Two byte default values are generally 16-bit integers, and four byte values 32-bit integers. The value
pointer must be properly aligned to hold these values. It is safe in all cases to make value to be
double-word aligned.

Related PRP
Actions:

Set Device Default

name type
hDevice pointer to open RP device handle
defaultcode enumerated default code
value pointer to new default value
valueSize size of default value

PMDDeviceSetDefault C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 37

Arguments:

C language
syntax:

PMDresult PMDDeviceGetVersion(PMDDeviceHandle *hDevice,
 PMDuint32 *major,
 PMDuint32 *minor);

Visual Basic
Syntax:

Dim major, minor As UInteger
device.GetVersion(major, minor)

Description: PMDDeviceGetVersion is used to retrieve version information for a PRP device. If hDevice is a
handle to a Magellan attached device then PMD_ERR_NOT_SUPPORTED will be returned, and
the version information not written. hDevice may be null for calls made by C-Motion Engine user
programs needing the version number of the device on which they are running.

Related PRP
Actions:

Get Device Version

name type
hDevice pointer to PMDDeviceHandle
major unsigned version number
minor unsigned version number

PMDDeviceGetVersion C-Motion Engine Host-Based

3

38 C-Motion PRP Programming Reference

C language
syntax:

unsigned PMDTaskGetAbortCode();

Description: PMDTaskGetAbortCode is used to retrieve the code left by a previous call to PMDTaskAbort,
and may be used for communication from one instance of a C-Motion Engine user program to the
next. The abort code is not non-volatile, and does not survive a reset or power cycle. After reading
the abort code is cleared, and subsequent reads will return zero. Zero is also returned if
PMDTaskAbort was not called by the previous program.

PMDTaskGetAbortCode is only available to CME user programs.

Related PRP
Actions:

none

PMDTaskGetAbortCode C-Motion Engine

3

C-Motion PRP Programming Reference 39

C language
syntax:

PMDuint32 PMDDeviceGetTickCount();

Description: PMDDeviceGetTickCount returns the number of milliseconds from the time the C-Motion
Engine from which it is called has been running. The count is maintained with a granularity of 8

milliseconds, and will overflow to zero after 232 milliseconds.

PMDDeviceGetTickCount is only available to CME user programs

Related PRP
Actions:

none

PMDDeviceGetTickCount C-Motion Engine Host-Based

3

40 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDMPDeviceOpen(PMDDeviceHandle *hDevice,
 PMDPeriphHandle *hPeriph);

Visual Basic
Syntax:

Dim device As New PMDDevice(peripheral,
PMDDeviceType.MotionProcessor)

Description: PMDMPDeviceOpen is used to obtain a handle to a Magellan attached device, for example a non-
CME ION module, or a non-CME prodigy card. A Magellan attached device communicates using
the Magellan protocol, and not PRP. The device argument should point to an uninitialized
PMDDeviceHandle data type, which may not be freed or written to as long as the device handle
is in use.

hPeriph should point to an open peripheral connection to the Magellan attached device.

The device handle obtained using this procedure is useful for opening motion processor axis
handles, using the PMDAxisOpen procedure.

Related PRP
Actions:

Open Periph MotionProcessor

name type
hDevice pointer to uninitialized

PMDDeviceHandle
hPeriph pointer to PMDPeriphHandle

PMDMPDeviceOpen C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 41

Arguments:

C language
syntax:

PMDresult PMDMemoryClose(PMDMemoryHandle *hMemory);

Visual Basic
Syntax:

memory.Close()

Description: PMDMemoryClose is used to free any resources used in maintaining a handle to a memory
resource such as dual-ported RAM. After closing the memory used for the PMDMemoryHandle
data type may be freed or re-used.

Related PRP
Actions:

Close Memory

name type
hMemory pointer to open PMDMemoryHandle

PMDMemoryClose C-Motion Engine Host-Based

3

42 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDMemoryOpen32(PMDMemoryHandle *hMemory,
 PMDDeviceHandle *hDevice,
 PMDDataSize datasize,

 PMDMemoryType memorytype);

Visual Basic
Syntax:

Dim mem As New PMDMemory(RPDevice, PMDDataSize.Size32Bit)

Description: PMDMemoryOpen is used to obtain a handle to a memory resource such as dual-ported RAM on
a Prodigy/CME or non-CME Prodigy card. hDevice specifies the device containing the memory,
and may have been opened using PMDMPDeviceOpen (for non-CME cards), or
PMDRPDeviceOpen (for CME cards). In the case of C-Motion Engine user programs needing to
read or write the local memory, hDevice should be a null pointer.

The width argument indicates the size of the data that are read or written to the memory device. All
currently supported memory devices support only 32 bit access, so width must be
PMD_DataSize_32bit. All accesses to the memory must use addresses dword-aligned, ie divisible
by four, and use buffer lengths that are also divisble by four.

For all current products memorytype is one of:

PMD memoryType DPRAM
PMD memoryType DVRAM

Related PRP
Actions:

Open Device Memory

name type
hMemory pointer to uninitialized

PMDMemoryHandle
hDevice pointer to PMDDeviceHandle
datasize PMDDataType
memorytype PMDMemoryType

PMDMemoryOpen C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 43

Arguments:

C language
syntax:

PMDresult PMDMemoryRead(PMDMemoryHandle *hMemory,
 void *data,
 PMDuint32 index,
 PMDuint32 length);

Visual Basic
Syntax:

Dim offset, length As UInt32
Dim values(0 To MaxLength)
memory.Read(values, offset, length)

Description: PMDMemoryRead is used to read a sequence of bytes from the memory object indicated by the
hMemory argument. The data argument is a pointer to a data buffer for the values read. The offset
argument is the memory address at which to start reading. The length argument is the number of
bytes to read.

Each memory device has a data width, for example memory handles opened with A DATASIZE
OF pmd dATAsIZE 32bIT have a data width of 4 bytes, or 32 words. If the data, offset, or length
arguments are not aligned to the memory data width then a PMD_ERR_ALIGNMENT error code
will be returned. Currently Prodigy/CME supports only dword-addressable dual-ported RAMs,
and word addressable NVRAM.

Related PRP
Actions:

Read Memory Dword

name type
hMemory pointer to open PMDMemoryHandle
data pointer to data read
offset memory byte address
length memory byte length

PMDMemoryRead C-Motion Engine Host-Based

3

44 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDMemoryWrite(PMDMemoryHandle *hMemory,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

Visual Basic
Syntax:

Dim offset, length As UInt32
Dim values(0 To MaxLength)
memory.Write(values, offset, length)

Description: PMDMemoryWrite is used to write a sequence of consecutive of bytes to the dual-ported RAM
indicated by the ram argument. The data argument is a pointer to the data to write. The offset
argument is the memory address at which to start writing. The length argument is the number of
data units to write depending on the data size.

Each memory device has a data width. For example, memory handles opened with a datasize of
PMD_DataSize_32Bit have a data width of 4 bytes, or 32 words. If the data, offset, or length
arguments are not aligned to the memory data width then a PMD_ERR_ALIGNMENT error code
will be returned. Prodigy/CME supports only dword-addressable dual-ported RAMs and word
addressable NVRAM.

Related PRP
Actions:

Write Memory Dword

name type
ram pointer to open PMDMemoryHandle
data pointer to data to write
offset memory byte address
length number of bytes to write

PMDMemoryWrite C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 45

Arguments:

C language
syntax:

PMDresult PMDPeriphClose(PMDPeriphHandle *hPeriph);

Visual Basic
Syntax:

peripheral.Close()

Description: PMDPeriphClose is used to free resources associated with an open peripheral handle.

The communication channel will be closed, and no input will be accepted on it. Memory used for
the peripheral handle may be freed or used for another purpose.

Related PRP
Actions:

Close Peripheral

name type
hPeriph pointer to open PMDPeriphHandle

PMDPeriphClose C-Motion Engine Host-Based

3

46 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDPeriphOpenCAN(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint32 addressTX,
 PMDuint32 addressRX,
 PMDuint32 eventRX);

Description: PMDPeriphOpenCAN is used to open a peripheral connection to a device on a CANBus that uses
two or three CAN identifiers for communication, for example a Magellan attached device or a
Prodigy/CME card. hPeriph should point to an uninitialized PMDPeriphHandle data structure.
hDevice should point to an open device handle corresponding to a PRP device, hDevice may be a
null pointer, which means the local device, either the host or, for C-Motion Engine user programs,
the local PRP device.

addressTX is a CAN identifier that will be used for sending outgoing packets. addressRX is a CAN
identifier that will be used to listen for incoming packets. Currently only 11 bit CAN identifiers are
supported.

eventRX is an optional CAN identifier used for receiving asynchronous event notification packets
from a PRP device or a Magellan attached device. If no such event notification is needed then zero
eventRX should be zero.

Related PRP
Actions:

Open Device CAN

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
hDevice pointer to open device handle
addressTx CAN identifier for transmit
addressRx CAN identifier for receive
eventRX CAN identifier for event notification

receive

PMDPeriphOpenCAN C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 47

Arguments:

C language
syntax:

PMDresult PMDPeriphOpenCME(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice);

Description: PMDPeriphOpenCME is used to open a connection to a virtual peripheral using PRP user packets.
User packets may contain data for user application control and monitoring in any format, but are
limited in size to USER_PACKET_LENGTH (250) bytes. User packets are sent as discrete units,
they do not constitute a stream.

User packets are transported in PRP packets, that is, they are “tunneled” through PRP, and are a
very simple way to establish communication between host programs and C-Motion engine user
programs because they do not require opening a separate communication channel, nor
implementing a low-level protocol over it.

PMDPeriphOpenCME is used to open both sides of the user packet channel: On the host side an
opened device handle associated with a PRP device must be passed using the hDevice argument.
On the C-Motion engine side a user program should pass a null pointer as hDevice.

The peripheral handle opened by PMDPeriphOpenCME may be used in the same way as other
peripheral handles, using PMDPeriphSend, PMDPeriphReceive, and PMDPeriphClose.

When considering the timeout parameter for peripheral send and receive commands for user
packets, it is useful to know that the C-Motion Engine can buffer one user packet on the incoming
side, and one on the outgoing side. The timeout period is not determined by when something
actually reads a user packet, but rather by when it is copied into the appropriate buffer. There are
four cases to consider:
1. A host sending user packets to a CME can always send one packet without a timeout, but the

second packet will time out if a CME user program has not read the first packet in the specified
time.

2. A host receiving user packets from a CME will time out if a CME user program has not written
a packet to the outgoing buffer by the specified time.

3. A CME sending user packets to a host can always send one packet without a timeout, but the
second packet will time out if a host program has not read the first packet in the specified time.

4. A CME receiving user packets will time out if a host program has not written a user packet to
the incoming buffer in the specified time.

While it is possible for multiple host processes or multiple hosts to read and write user packets to
the same PRP device, but it is not a good idea. There is no way to determine which host sent a given
packet, nor any way to “unread” or “peek” at an incoming user packet.

Related PRP
Actions:

Open Device CMotionEngine

Send CMotionEngine

Receive CMotionEngine

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
hDevice pointer to open RP device handle

PMDPeriphOpenCME C-Motion Engine Host-Based

3

48 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDPeriphOpenCOM(PMDPeriphHandle *periph,
 PMDDeviceHandle *device,
 PMDSerialPort port,
 PMDSerialBaud baud,
 PMDSerialParity parity,
 PMDSerialStopBits stopbits);

Visual Basic
Syntax:

Dim periph As New PMDPeripheralCOM(portnum, PMDSerialBaud.baud, _
 PMDSerialParity.parity, PMDSerialStopBits.bits)

Description: PMDPeriphOpenCOM is used to open a peripheral handle representing an open serial line.
hPeriph should point to an uninitialized PMDPeriphHandle data structure. hDevice is a device
handle which should be associated with a PRP device, hDevice may be a null pointer, in which case
it means the local device, either the host or, for a C-Motion Engine user program, the local PRP
device.

port is the serial port to use, one of PMDSerialPort1 or PMDSerialPort2.

baud is the serial port speed to set, one of PMDSerialBaud1200, PMDSerialBaud2400,
PMDSerialBaud9600, PMDSerialBaud19200, PMDSerialBaud57600, PMDSerialBaud115200,
PMDSerialBaud230400, or PMDSerialBaud460800.

parity is the parity to use, one of PMDSerialParityNone, PMDSerialParityOdd, or
PMDSerialParityEven.

stopbits is the number of stopbits to use, either PMDSerialStopBits1 or PMDSerialStopBits2.

Eight data bits are always used.

In order to open a PMD serial protocol multi-drop peripheral, PMDPeriphOpenMultiDrop should
be applied to the peripheral handle opened by PMDPeriphOpenCOM.

Related PRP
Actions:

Open Device COM

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
hDevice pointer to RP device handle
port enumerated serial port
baud enumerated baud rate
parity enumerated parity
stopbits enumerated number of stop bits

PMDPeriphOpenCOM C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 49

Arguments:

C language
syntax:

PMDresult PMDPeriphOpenISA(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint16 address,
 PMDuint8 eventIRQ,
 PMDDataSize width);

Description: PMDPeriphOpenISA is used to open a peripheral representing a device on the PC-104

ISA bus at a specified base address. hPeriph should point to an uninitialized PMDPeriphHandle,
and hDevice should be a pointer to an open RP device handle, that is, a PRP device. If called from
a C-Motion Engine user program then hDevice may be a null pointer, meaning the local device.

The PMDPeriphReadBytes and PMDPeriphWriteBytes procedures may be used to read or write
to the ISA bus at specified offsets from the base address.

In case the peripheral is connected to a non-CME Prodigy card then eventIRQ may be used to
specify the interrupt used for asynchronous event notification.

The width argument specifies the size of the data that are read or written to the peripheral. Non-
CME Prodigy-ISA cards require 16-bit data access, so width should be PMD_DataSize_16bits
when opening such a device. ISA devices requiring 8-bit access are also supported, and use the value
PMD_DataSize_8bits for width.

All reads or writes to a 16-bit ISA peripheral must be properly aligned, that is, all address values data
lengths must be even.

Related PRP
Actions:

Open Device ISA

name type
hPeriph pointer to uninitialized peripheral handle
hDevice pointer to open RP device handle
address ISA base address
eventIRQ ISA interrupt line
width enumerated data size

PMDPeriphOpenISA C-Motion Engine Host-Based

3

50 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDPeriphOpenMultiDrop(PMDPeriphHandle *periph,
 PMDPeriphHandle *parent,
 unsigned address);

Visual Basic
Syntax:

Dim parent As PMDPeripheralCOM
Dim address As UInt32
Dim periph As New PMDPeripheralMultiDrop(parent, address)

Description: PMDPeriphOpenMultiDrop is used to open a peripheral representing a connection on a serial line
to a device using the PMD multi-drop serial protocol, either a Magellan attached device or a PRP
device. hParent must be a pointer to a previously opened peripheral representing the serial line, and
address is the multi-drop address.

Related PRP
Actions:

Open Peripheral MultiDrop

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
hParent pointer to open handle to serial port

peripheral
address 5 bit PMD multi-drop address

PMDPeriphOpenMultiDrop C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 51

Arguments:

C language
syntax:

PMDresult PMDPeriphOpenPCI(PMDPeriphHandle *hPeriph,
 int cardNo

Visual Basic
Syntax:

Dim boardnum As UInt32
Dim periph As New PMDPeripheralPCI(boardnum)

Description: PMDPeriphOpenPCI is used on a host PC to open a peripheral connection to a Prodigy/CME-
PCI card installed in the host computer. Because Prodigy/CME-PCI does not support bus
mastering there is no way of opening an outgoing PCI bus peripheral on the Prodigy/CME.
cardNo is a small integer denoting the particular Prodigy/CME card to connect to. If only one
Prodigy/CME card is present, then cardNo is always zero. Mutiple cards are numbered sequentially
in an order that must be determined by experiment.

Related PRP
Actions:

none, this procedure is supported only on a PC host.

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
cardNo integer

PMDPeriphOpenPCI Host-Based

3

52 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDPeriphOpenPIO(
 PMDPeriphHandle* hPeriph,

PMDDeviceHandle *hDevice,
WORD address,
BYTE EventIRQ,
PMDDataSize datasize);

Description: PMDPeriphOpenPIO is used to open a peripheral handle representing a parallel channel on the
indicated device. The nature of the parallel channel is specific to the device being addressed.
Currently ION/CME supports parallel channels used for digital input and output and for analog
input.

The address argument indicates the specific parallel channel to be opened, and is device-specific.
The datasize argument indicates the data width of the peripheral to be opened, that is, the number
of 8 bit bytes read or written with each operation. Only one data width is normally supported for
each type of parallel channel. The EventIRQ argument indicates the interrupt used for parallel
communication, and is device-specific.

Currently only the ION/CME digital drive supports parallel peripherals, which are used for digital
input/output and for analog input. Consult the ION/CME Digital Drive User’s Manual for details.

Related PRP
Actions:

Open Device PAR

name type
hPeriph pointer to uninitialized peripheral

handle
hDevice pointer to a valid device handle
address 16 bit address indicating peripheral

channel to open
EventIRQ Device-specific interrupt channel
datasize Data width of the peripheral in bytes

PMDPeriphOpenPIO C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 53

Arguments:

C language
syntax:

PMDresult PMDPeriphOpenTCP(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint32 IPAddress,
 PMDuint16 port);

Visual Basic
Syntax:

Dim address As System.Net.IPAddress
Dim portnum, timeout As UInt32
Dim periph As New PMDPeripheralTCP(address, portnum, timeout)

Description: PMDPeriphOpenTCP is used to open a TCP/IP peripheral on the PRP device indicated by
hDevice. If hDevice is a null pointer then the local device, either the host or the PRP device on
which a CME user program is running.

If IPAddress is nonzero then it is the IP address of a remote Ethernet device to which a connection
should be opened. If IPAddress is nonzero then the device will listen on the indicated TCP port
for incoming connections from any device, handle one connection at a time, and resume listening
after a remote device closes the connection. In either case, a connection may be closed using
PMDPeriphClose.

IPAddress must be numeric, PRP devices do not support any kind of name service. An IP address
in the familiar dotted quad notation A.B.C.D is equivalent to the 32 bit number (A<<24) +
(B<<16) + (C<<8) + D, this conversion may be done using the macro PMD_IP4_ADDR, for
example the numeric value of the IP address 192.168.13.42 could be obtained by writing
PMD_IP4_ADDR(192, 168, 13, 42).

port is the TCP port number to use for sending or receiving. TCP ports are divided into three
ranges:
1. The well-known ports from 0 to 1023 are used for standard services, which are not likely to be

hosted by user C-Motion Engine applications.
2. The registered ports from 1024 to 49151 are used ad hoc, and are most likely to be used for user

motion control applications,

3. The dynamic ports from 49152 to 65535 are used for temporary applications, and may be use-
ful for user applications that dynamically assign UDP ports.

Related PRP
Actions:

Open Device TCP

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
hDevice pointer to open PMDDeviceHandle
IPAddress 32 bit IP address
port 16 bit TCP/IP port

PMDPeriphOpenTCP C-Motion Engine Host-Based

3

54 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDPeriphOpenUDP(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint32 IPAddress,
 PMDuint16 port);

Description: PMDPeriphOpenUDP is used to open a UDP/IP peripheral on the PRP device indicated by
hDevice. If hDevice is a null pointer then the local device, either the host or the PRP device on
which a CME user program is running.

If IPAddress is nonzero then it is the IP address of a remote Ethernet device to which packets will
be sent; the peripheral will be write-only. If IPAddress is zero then a UDP port will be opened for
listening; the peripheral will be read-only. IPAddress must be numeric, PRP devices do not support
any kind of name service. An IP address in the familiar dotted quad notation A.B.C.D is equivalent
to the 32 bit number (A<<24) + (B<<16) + (C<<8) + D, this conversion may be done using the
macro PMD_IP4_ADDR, for example the numeric value of the IP address 192.168.13.42 could be
obtained by writing PMD_IP4_ADDR(192, 168, 13, 42).

port is the UDP port number to use for sending or receiving. UDP ports are divided into three
ranges:
1. The well-known ports from 0 to 1023 are used for standard services, which are not likely to be

hosted by user C-Motion Engine applications.
2. The registered ports from 1024 to 49151 are used ad hoc, and are most likely to be used for user

motion control applications,

3. The dynamic ports from 49152 to 65535 are used for temporary applications, and may be use-
ful for user applications that dynamically assign UDP ports.

Related PRP
Actions:

Open Device UDP

name type
hPeriph pointer to uninitialized

PMDPeriphHandle
hDevice pointer to open PMDDeviceHandle
IPAddress 32 bit IP address
port 16 bit UDP port

PMDPeriphOpenUDP C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 55

Arguments:

C language
syntax:

PMDresult PMDPeriphRead (PMDPeriphHandle *hPeriph,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

Visual Basic
Syntax:

Dim data16(0 To MaxLength) As UInt16
Dim data8(0 To MaxLength) As Byte
Dim offset, length As UInt32
periph.read(data16, offset, length)
periph.read(data8, offset, length)

Description: PMDPeriphRead is used to read a stream of bytes from a peripheral with a specified base address,
specifically PC-104 ISA bus and PCI bus peripherals. hPeriph should point to an open handle to
such a peripheral, for peripherals without an address concept an error code of
PMD_ERR_NOT_SUPPORTED will be returned.

data is a pointer to a buffer for incoming data, offset is an increment to add to the base address to
give the address to read from, and length is the number of bytes to read.

Related PRP
Actions:

Read Periph Byte

name type
hPeriph pointer to open PMDPeriphHandle
data buffer for incoming data
offset byte offset from base address
length number of data units to read

PMDPeriphRead C-Motion Engine Host-Based

3

56 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDPeriphReceive(PMDPeriphHandle *periph,
 void *buffer,
 PMDuint32 *nReceived,
 PMDuint32 nExpected,
 PMDuint32 timeout);

Visual Basic
Syntax:

Dim data8(0 To MaxLength) As Byte
Dim nReceived, nExpected, timeout As UInt32
periph.receive(data8, nReceived, nExpected, timeout)

Description: PMDPeriphReceive is used to read bytes from a peripheral. hPeriph should be a pointer to an open
peripheral handle, data a pointer to a memory buffer for incoming data, and nExpected the
maximum number of bytes to accept, typically the size of the data buffer.

For peripherals that receive data in packets, such as CANBus, TCP/IP, and UDP/IP,
PMDPeriphReceive will return after receiving one packet, writing to the data buffer, and writing
the actual number of bytes received to *nReceived. Note that the number of bytes received may be
greater than nExpected, but at most nExpected bytes will be written in the buffer.

For peripherals that do not receive data in packets, such as serial ports, PMDPeriphReceive will
return after receiving exactly nExpected bytes.

PMDPeriphReceive will return PMD_RP_Timeout if timeout milliseconds elapsed waiting for
data. Some ports may timeout before receiving nExpected bytes. The nReceived parameter will
contain the number of bytes received before the timeout. A timeout value of
PMD_WAITFOREVER (0xffff) disables the time out.

If the peripheral connection has been closed by some external action, for example a TCP
connection that has been closed by a peer, then PMD_ERR_NotConnected will be returned. After
such an error the peripheral handle must be closed using PMDPeriphClose. In the case of a TCP
connection, after closing the unconnected peripheral a new peripheral with the same TCP port may
be opened using PMDPeriphOpenTCP.

 The following example shows how to implement a TCP server that handles a single connection at
a time, and reads data until the connection is closed by the peer.

 PMDresult status;
 PMDPeriphHandle hPeriphTCP;
 PMDuint32 nReceived;
 unsigned char buffer[PACKETSIZE];
 int open;

 while (!0) {
 status = PMDPeriphOpenTCP(&hPeriphTCP, NULL, 0, TCPPORT, timeout);
 open = 1;

name type
hPeriph pointer to open PMDPeriphHandle
data pointer to incoming data buffer
nReceived pointer to actual bytes received
nExpected maximum bytes to receive
timeout milliseconds, less than 0xffff

PMDPeriphReceive C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 57

 while (open) {
 status = PMDPeriphReceive(&hPeriphTCP, buffer, &nReceived, sizeof(buffer),
timeout);
 // As a simple example we just read data. For a more complicated protocol each send and
 // receive operation should include a check of the return value as shown.
 switch (status) {
 default:
 Handle the error;
 case PMD_ERR_NotConnected:
 // The peripheral handle must be closed. It will be re-opened in the outer loop.
 PMDPeriphClose(&hPeriphTCP);
 open = 0;
 break;
 case PMD_ERR_OK:
 Do something useful with the data;
 break;
 }
 }
 }

Related PRP
Actions:

Receive Peripheral

PMDPeriphReceive (cont.) C-Motion Engine Host-Based

3

58 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

PMDresult PMDPeriphSend(PMDPeriphHandle *hPeriph,
 void *data,
 PMDuint32 nCount,
 PMDuint32 timeout);

Visual Basic
Syntax:

Dim data8(0 To MaxLength) As Byte
Dim nCount, timeout As UInt32
periph.receive(data8, nCount, timeout)

Description: PMDPeriphSend is used to send bytes to a peripheral, indicated by the hPeriph argument.

nCount bytes are sent from the buffer data. If the data may not be sent in timeout milliseconds
then PMDPeriphSend will stop trying and return PMD_ERR_Timeout. A timeout value of
PMD_WAITFOREVER (0xffff) means never stop trying.

If the peripheral connection has been closed by some external action, for example a TCP
connection that has been closed by a peer, then PMD_ERR_NotConnected will be returned. After
such an error the peripheral handle must be closed using PMDPeriphClose. In the case of a TCP
connection, after closing the unconnected peripheral a new peripheral with the same TCP port may
be opened using PMDPeriphOpenTCP. See PMDPeriphReceive (p. 55) for example code.

Related PRP
Actions:

Send Peripheral

name type
hPeriph pointer to open PMDPeriphHandle
data pointer to data to send
nCount number of bytes to send
timeout milliseconds to wait, less than 0xffff

PMDPeriphSend C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 59

Arguments:

C language
syntax:

PMDresult PMDPeriphWrite(PMDPeriphHandle *hPeriph,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

Visual Basic
Syntax:

Dim data16(0 To MaxLength) As UInt16
Dim data8(0 To MaxLength) As Byte
Dim offset, length As UInt32
periph.read(data16, offset, length)
periph.read(data8, offset, length)

Description: PMDPeriphWrite is used to write a stream of bytes to a peripheral with a specified base address,
specifically PC-104 ISA bus and PCI bus peripherals. hPeriph should point to an open handle to
such a peripheral, for peripherals without an address concept an error code of
PMD_ERR_NOT_SUPPORTED will be returned.

data is a pointer to a buffer containing the data to write, offset is an increment to add to the base
address to give the address for writing, and length is the number of bytes to write.

Related PRP
Actions:

Write Periph Byte

name type
hPeriph pointer to an open peripheral handle
data pointer to data to write
offset offset from base address
length number of data units to write

PMDPeriphWrite C-Motion Engine Host-Based

3

60 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

int PMDprintf(const char *fmt, …);

Description: PMDprintf is the primary procedure used for console output, a feature used for progress reporting
during development and debugging. The console may be attached to any of the available
communication devices at startup using the default settings Default_DebugIntfType,
Default_DebugIntfAddr, and Default_DebugIntfPort. The console may be changed at run time to
a specified peripheral by using the PRP action Set Console. Pro-Motion can also be used
conveniently to set the current or default console.

The arguments to PMDprintf are the same as to the C standard library printf, and the return value
is the number of characters printed. Because there is only one console and no file system there is
no equivalent to fprintf. In order to send formatted data through a peripheral sprintf should be used
to format to a user-supplied buffer, and the buffer sent.

PMDprintf does not correctly format floating point arguments. In order to print floating point
numbers it is necessary to format them using sprintf, and then to print the formatted string using
PMDprintf or PMDputs.

Related PRP
Actions:

Set Console

Set Device Default Default_DebugIntfType

Set Device Default Default_DebugIntfAddr

Set Device Default Default_DebugIntfPort

name type
fmt string
… arguments to format

PMDprintf C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 61

Arguments:

C language
syntax:

void PMD_putch(int ch);

Description: PMDputch is used to print a single character to the console. See also PMDprintf (p. 59) for more
description of the console.

Related PRP
Actions:

Set Console

Set Device Default Default_DebugIntfType

Set Device Default Default_DebugIntfAddr

Set Device Default Default_DebugIntfPort

name type
ch 8 bit integer

PMDputch C-Motion Engine Host-Based

3

62 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

void PMDputs(const char *str);

Description: PMDputs is used to print a constant string to the console. See also PMDprintf (p. 59) for more
description of the console.

Related PRP
Actions:

Set Console

Set Device Default Default_DebugIntfType

Set Device Default Default_DebugIntfAddr

Set Device Default Default_DebugIntfPort

name type
str string

PMDputs C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 63

Arguments:

C language
syntax:

PMDresult PMDRPDeviceOpen(PMDDeviceHandle *hDevice,
 PMDPeriphHandle *hPeriph);

Visual Basic
Syntax:

Dim dev As New PMDDevice(periph, PMDDeviceType.ResourceProtocol)

Description: PMDRPDeviceOpen is used to open a handle to a device that communicates using PRP, that is, a
Prodigy/CME card or PRP ION module. hPeriph should be a handle to an open peripheral that is
physically connected to a PRP device.

The device handle opened by this procedure may be used for opening motion processor axes, (see
PMDAxisOpen (p. 29)), or dual-ported RAM devices (see PMDMemoryOpen32 (p. 42)),
peripherals on the device (see PMDPeriphOpenCOM (p. 48), PMDPeriphOpenTCP (p. 53),
PMDPeriphOpenUDP (p. 53), PMDPeriphOpenISA (p. 49), and PMDPeriphOpenCAN (p. 46)) .

The device handle is also used to access the C-Motion Engine on the device, for example using
PMDTaskStart or PMDTaskStop.

Related PRP
Actions:

Open Peripheral Device

name type
hDevice pointer to uninitialized

PMDDeviceHandle
hPeriph pointer to open PMDPeriphHandle

PMDRPDeviceOpen C-Motion Engine Host-Based

3

64 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

void PMDTaskAbort(int UserAbortCode);

Description: PMDTaskAbort is used to halt user code execution in case of a fatal error, it does not return. The
argument is a nonzero code that can be used to communicate the cause of failure to the next
invocation of the user program, and should be checked using PMDTaskGetAbortCode at the
beginning of the user program.

PMDTaskAbort does not perform any cleanup actions, nor does it perform a reset. Any cleanup
required to put the device in a safe state must be done by the user program before calling
PMDTaskAbort.

Related PRP
Actions:

none. This procedure may be called only from a C-Motion Engine user program.

name type
UserAbortCode 8 bit integer

PMDTaskAbort C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 65

Arguments:

C language
syntax:

void PMDTaskWait(PMDuint32 msec);

Description: The PMDTaskWait procedure is used to delay execution of a C-Motion Engine user program for
a specified number of milliseconds. The delay is relative to the time the procedure is called, and has
a granularity of 8 milliseconds.

For a way to arrange a periodic task, see PMDTaskWaitUntil (p. 63).

Related PRP
Actions:

none

name type
msec milliseconds

PMDTaskWait C-Motion Engine Host-Based

3

66 C-Motion PRP Programming Reference

Arguments:

C language
syntax:

void PMDTaskWaitUntil(PMDuint32 *pPreviousTime, PMDuint32 incrms);

Description: The PMDTaskWaitUntil procedure is used to wait until a particular specified time and may be used
to arrange a periodic task loop. The argument pPreviousTime should point to a timer count
previously returned by PMDDeviceGetTickCount or modified by PMDTaskWaitUntil.
PMDTaskWaitUntil will return after the timer tick computed by adding incrms to the tick value in
*pPreviousTime. The value in *pPreviousTime will be updated to the current time.

If the time computed by adding incrms to *pPreviousTime is in the past then

PMDTaskWaitUntil will return immediately and will not update *pPreviousTime. If this case is
likely, it must be checked explicitly using PMDDeviceGetTickCount.

For example:

PMDuint32 lastTime, thisTime;
PMDuint32 incrTime = 32;

lastTime = PMDDeviceGetTickCount();
while (!0) {

 Do some useful job

 thisTime = PMDDeviceGetTickCount();
 if ((lastTime + incrTime < thisTime) &&
 (lastTime + incrTime > lastTime)) {
 Report a time budget overrun
 lastTime = thisTime;
 }
 PMDTaskWaitUntil(*lastTime, incrTime); // wait for up to 32 milliseconds

Related PRP
Actions:

none

name type
pPreviousTime pointer to time in milliseconds
incrms increment in milliseconds

PMDTaskWaitUntil C-Motion Engine Host-Based

3

C-Motion PRP Programming Reference 67

Arguments:

C language
syntax:

PMDresult PMDWaitForEvent(PMDDeviceHandle *hDevice,
 PMDEvent *hEvent,
 PMDuint32 timeout);

Visual Basic
Syntax:

Dim EventStruct As PMDEvent
Dim timeout As UInt32
device.WaitForEvent(EventStruct, timeout)
Dim axis As PMDAxis
Dim EventMask As UInt16
axis = EventStruct.axis
EventMask = EventStruct.EventMask

Description: PMDWaitForEvent is used to check for any reported asynchronous events raised by the device
indicated by hDevice. The device must be a Magellan attached device.

If an asynchronous event notification is received for any of the Magellan axes of the motion
processor attached to the device then the function returns and the axis and event status register are
written to members of the hEvent struct. This struct has at least these members:
PMDAxis axis;
PMDuint16 eventStatus;

which indicate the axis and events responsible for the notification. If no event notifications have
been received within timeout milliseconds, then PMD_ERR_TIMEOUT is returned, and hEvent is
not written. A timeout value of PMD_WAITFOREVER (ffff) disables the time out.

Asynchronous event notification is an optional Magellan feature described in the Magellan Motion
Control IC User Guide. The conditions causing an event notification are programmable, using
commands described in the C-Motion Magellan Programming Reference. The PMDWaitForEvent
function handles all the necessary function calls to deal with the event except for the
PMDClearInterrupt function. Not all peripheral types support event notification, in particular
serial communication does not. All peripherals in the chain used to communicate with a given
motion processor must have been opened with the appropriate event channel data in order for
event notification to work.

Related PRP
Actions:

none

name type
hDevice pointer to PMDDeviceHandle
hEvent pointer to event struct
timeout milliseconds, up to 0xfffe

PMDWaitForEvent C-Motion Engine Host-Based

3

68 C-Motion PRP Programming Reference

This page intentionally left blank

C-Motion PRP Programming Reference 69

4

4.PRP Action Reference

In This Chapter
Action Table - Code Order
Action Table - Alphabetical Order

This section describes each action and sub-action, with the binary encoding of all arguments. The following tables
summarize the available actions and, where applicable, related C language procedures. The first table is arranged in
alphabetical order; the second table is arranged in action code order.

Some aspects of action processing are common to all commands:

• Many PRP actions require a sub-action in addition to the action and resource, this is an 8-bit unsigned
quantity that immediately follows the PRP outgoing header. Not all actions use a sub-action.

• The status field of a response packet is zero in case of successful command processing, and has the value
1 (Error) otherwise. In the error case the described returned data are not sent, instead a single 16 bit error
code is sent in the response body. The reserved bits of a PRP response packet header may have any value,
they are not guaranteed to be zero.

• The address field of a command header should hold a valid PRP address for the resource type sent. The
address field of the response header will have the same value.

• A resource field that may have any of several values is indicated by the word resource, and the legal values
specified in the resources section.

• All multi-byte argument values are encoded in little endian order: The least significant byte is sent first, and
the most significant last. A 32 bit quantity is sent as bytes 0, 1, 2, and then 3, the most significant byte.

• Signed arguments are sent as twos-complement integers.

PRP Action Reference

70 C-Motion PRP Programming Reference

4

4.1 Action Table - Code Order
Action Resource Sub-action C Procedure
NOP any

Reset

Device PMDDeviceReset
MotionProcessor PMDDeviceReset

Command

CMotionEngine

Flash
Task

PMDTaskStart
PMDTaskStop

MotionProcessor Any C-Motion Commands

Open Device MotionProcessor PMDAxisOpen
CMotionEngine PMDRPDeviceOpen
Memory32 PMDMemoryOpen32

PIO PMDPeriphOpenPIO
ISA PMDPeriphOpenISA
COM PMDPeriphOpenCOM
CAN PMDPeriphOpenCAN
TCP PMDPeriphOpenTCP
UDP PMDPeriphOpenUDP

Peripheral

Device PMDRPDeviceOpen

MotionProcessor PMDMPDeviceOpen

MultiDrop PMDPeriphOpenMultiDrop

Close

Peripheral PMDPeriphClose
Device PMDDeviceClose
MotionProcessor PMDDeviceClose
CMotionEngine PMDDeviceClose
Memory PMDMemoryClose

Send

CMotionEngine PMDPeriphSend
Peripheral PMDPeriphSend

Receive

CMotionEngine PMDPeriphReceive
Peripheral PMDPeriphReceive

Write

Memory Dword PMDMemoryWrite
Peripheral Byte PMDPeriphWrite

Word PMDPeriphWrite

Read

Memory Dword PMDMemoryRead
Peripheral Byte PMDPeriphRead

Word PMDPeriphRead

Set

CMotionEngine Console
Device Default PMDSetDefault

Get

CMotionEngine

Console
TaskState PMDGetTaskState

Device

Default PMDGetDefault
ResetCause PMDMBGetResetCause
Version PMDDeviceGetVersion

PRP Action Reference

C-Motion PRP Programming Reference 71

4

4.2 Action Table - Alphabetical Order
Action Resource Sub-action C Procedure
Close CMotionEngine PMDDeviceClose

Device PMDDeviceClose
Memory PMDMemoryClose
MotionProcessor PMDDeviceClose
Peripheral PMDPeriphClose

Command CMotionEngine Flash

Task PMDTaskStart
PMDTaskStop

MotionProcessor Any C-Motion Commands

Get CMotionEngine Console
TaskState PMDGetTaskState

Device Default PMDDeviceGetDefault
ResetCause PMDMBGetResetCause
Version PMDDeviceGetVersion

NOP any

Open Device CAN PMDPeriphOpenCAN
CMotionEngine PMDRPDeviceOpen
ISA PMDPeriphOpenISA
Memory32 PMDMemoryOpen32
MotionProcessor PMDAxisOpen
COM PMDPeriphOpenCOM
PIO PMDPeriphOpenPIO
TCP PMDPeriphOpenTCP
UDP PMDPeriphOpenUDP

Peripheral Device PMDRPDeviceOpen
MotionProcessor PMDMPDeviceOpen
MultiDrop PMDPeriphOpenMultiDrop

Read Memory Dword PMDMemoryRead
Peripheral Byte PMDPeriphRead

Word PMDPeriphRead

Receive CMotionEngine PMDPeriphReceive
Peripheral PMDPeriphReceive

Reset Device PMDDeviceReset
MotionProcessor PMDDeviceReset

Send CMotionEngine PMDPeriphSend
Peripheral PMDPeriphSend

Set CMotionEngine Console
Device Default PMDDeviceSetDefault

Write Memory Dword PMDMemoryWrite
Peripheral Byte PMDPeriphWrite

Word PMDPeriphWrite

PRP Action Reference

72 C-Motion PRP Programming Reference

4

This page intentionally left blank.

4

C-Motion PRP Programming Reference 73

Coding:

Arguments: none

Return Data: none

Packet
Structure:

Description: The Close action may be used to free any resource that was originally returned by an Open action.
After closing, such a resource no longer exists and will signal an error if an action is addressed to it.

Close will close an open TCP connection if applied to a TCP peripheral. For reasonably sized
networks that are static it may never be necessary to use Close. It is an error to send a Close action
to a resource that was not returned by Open.

C language
syntax:

PMDresult PMDPeriphClose(PMDPeriph *hPeriph);
PMDresult PMDDeviceClose(PMDDevice *hDevice);
PMDresult PMDMemoryClose(PMDMemory *hMemory);

action sub-action resource
4 - various

write 1 2 4
7 6 5 4 3 2 1 0

write resource address
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

Close various

4

74 C-Motion PRP Programming Reference

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Command Flash CMotionEngine action is used to install a user program in a C-Motion Engine.
The flash process proceeds in three steps, each with a separate value of the FlashCmd argument. In
addition to FlashCmd, this action may include many bytes of message body, depending on the step.

If any step of the flash procedure gives an error response then the procedure must be restarted
from the beginning. No actions may be sent between flash procedure actions. The steps, in order
of execution, are:

1. FlashStart: The body bytes are a four byte length of the flash image, least significant byte first.
If this step is successful the user program flash is erased. The length may be specified as zero,
in which case no new user program is installed, and no further steps need be taken.

2. FlashData: The body bytes are sequential parts of the entire flash image, in order.

3. FlashEnd: There are no body bytes. This action verifies the checksum of the program image
received. If it finishes successfully then a new user program has been installed and may be run
using the Command Task CMotionEngine action.

C language
syntax:

The PMD C library does not support this operation. Pro-Motion may be used to flash user code
images.

action sub-action resource
2 2 1

name instance encoding
FlashCmd FlashStart 1

FlashData 2
FlashEnd 3

write 1 2 2
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write FlashCmd
7 6 5 4 3 2 1 0

write body byte 0
7 6 5 4 3 2 1 0

write body byte 1 …
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

CommandFlash CMotionEngine

4

C-Motion PRP Programming Reference 75

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Command Task CMotionEngine action is used to start or stop a C-Motion Engine user program.
The two cases are distinguished by the argument option.

If option is start, then if a user program is currently running or if no user program is installed this
action will return an error code.

If option is stop, then any running user program will be stopped. If no user program is currently
running in the C-Motion Engine then this action will return an error code.

It is the user’s responsibility to ensure safety when starting or stopping a user program that controls
motors. It is not possible to predict the state of the PRP device or of its motion processor at the
instant that the user program is stopped. PMD strongly recommends that a task be stopped only
to correct unrecoverable errors and that the PRP device and any devices that it controls be put
immediately into a known safe state using host commands. Because the card resources and the
dynamic heap are not in a known state it is not safe to restart a task after stopping it without first
resetting the entire device.

C language
syntax:

PMDresult PMDTaskStart(PMDDeviceHandle *pDevice);
PMDresult PMDTaskStop(PMDDeviceHandle *pDevice);

action sub-action resource
2 1 1

name instance encoding
option 1 start

2 stop

write 1 2 2
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 1
7 6 5 4 3 2 1 0

write option
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

CommandTask CMotionEngine

4

76 C-Motion PRP Programming Reference

Coding:

Arguments: Magellan command and arguments
rxCount, 2 bit count of words returned.

Return Data: Magellan return data

Packet
Structure:

Description: The Command action directed to a MotionProcessor resource sends a Magellan protocol command
to the motion processor indicated by the address field. A sub-action field is not used, instead a
Magellan protocol command packet follows the header immediately.

Magellan commands are documented in the C-Motion Magellan Programming Reference, with the
addition of the rxCount parameter. A Magellan protocol packet consists of at least one 16- bit
command word, followed by zero to three argument words. The first byte of the command word
is an opcode for the Magellan command. The second byte comprises two fields, bits 6 and 7 are the
rxCount field, the number of words that are expected as returned values from the command. The
remaining bits 0 – 5 are the Magellan axis addressed. Each command takes a fixed number of
arguments and returns a fixed number of return data. The arguments and data are encoded as big-
endian quantities, in contrast to other PRP multi-byte arguments and data: 16-bit words are sent
most significant byte first, followed by least significant byte, 32-bit words are sent in order of
significance, starting with the most significant byte, and ending with the least significant.

If the status field of the return packet PRP header is zero then the return data of the Magellan
command follow. If the Magellan motion processor reports an error then the status field of the
return header will be 1 (error), and the Magellan error code will follow. Magellan error codes are
documented in the C-Motion Magellan Programming Reference, and do not overlap with any PRP or
PMD C library error codes. The error code will not be encoded as a big-endian value.

C language
syntax:

All C-Motion command procedures use this action. See the Magellan Motion Processor Programmer’s
Guide for documentation of C-Motion commands and C language syntax.

action sub-action resource
2 none 2

write 1 2 2
7 6 5 4 3 2 1 0

write 2 address
7 6 5 4 3 2 1 0

write Magellan command code
7 6 5 4 3 2 1 0

write rxCount Magellan axis
7 6 5 4 3 2 1 0

write Magellan arguments …
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read Magellan data …
7 6 5 4 3 2 1 0

Command MotionProcessor

4

C-Motion PRP Programming Reference 77

Coding:

Arguments: none

Returned Data:

Packet
Structure:

Description: The Get Console CMotionEngine action retrieves a peripheral address corresponding to a
communications channel used for output of debugging and diagnostic messages by C-Motion user
programs. The result of this action may not be meaningful if the console output was initially Set
from a different device than the Get is issued from.

C language
syntax:

None, this action is not supported by the C library.

action sub-action resource
10 4 1

name type meaning
Console unsigned 8 bit Peripheral address for console output

write 1 2 10
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 4
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read Console
7 6 5 4 3 2 1 0

GetConsole CMotionEngine

4

78 C-Motion PRP Programming Reference

Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Get Default Device action is used to retrieve the value of a device default. Device defaults are
various non-volatile properties of the PRP device, for example the IP address, or whether to run a
user program immediately after power up. The length of DefaultValue depends on the particular
data type, and is encoded in the upper byte of DefaultCode. A length value of zero means two bytes,
one means four bytes. Please see the description of Set Default Device on page 109 for a ta‘ble of
supported default codes and their meaning.

C language
syntax:

PMDresult PMDDeviceGetDefault(PMDDeviceHandle *hDevice,
 PMDDefault defaultcode,
 void *value,
 unsigned valueSize);

Note: At most value Size bytes will be written to the location pointed to by value.

action sub-action resource
10 2 0

name type meaning
DefaultCode unsigned 32 bit default identifier

name type meaning
DefaultValue varies varies – see Set ValueDefault

write 1 2 10
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write DefaultCode byte 0
7 6 5 4 3 2 1 0

write DefaultCode byte 1
7 6 5 4 3 2 1 0

write DefaultCode byte 2
7 6 5 4 3 2 1 0

write DefaultCode byte 3
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read DefaultValue byte 0
7 6 5 4 3 2 1 0

read DefaultValue byte 1 …
7 6 5 4 3 2 1 0

GetDefault Device

4

C-Motion PRP Programming Reference 79

Coding:

Arguments: none

Returned Data:

Packet
Structure:

Description: The Get ResetCause Device action retrieves the cause of the last device reset.

C language
syntax:

PMDuint16 PMDMBGetResetCause(PMDAxisHandle* axis_handle,
 PMDuint16* resetcause)

see Please see the C-Motion Magellan Programming Reference for procedure documentation.

action sub-action resource
10 3 0

name type instance encoding
ResetCause unsigned 16 bit 0x0800 System Watchdog

0x1000 hard reset
0x2000 under voltage
0x4000 external
0x8000 watchdog

write 1 2 10
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 3
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read ResetCause byte 0
7 6 5 4 3 2 1 0

read ResetCause byte 1
7 6 5 4 3 2 1 0

GetResetCause Device

4

80 C-Motion PRP Programming Reference

Coding:

Arguments: none

Returned Data:

Packet
Structure:

Description: The Get TaskState CMotionEngine action retrieves the current state of the user program in the C-
Motion Engine addressed. Task states may be changed by using the Command Task CMotionEngine
action.

C language
syntax:

PMDresult PMDGetTaskState(PMDDeviceHandle *pDevice,
PMDuint32 *state);

action sub-action resource
10 5 1

name type instance encoding
TaskState unsigned 8 bit 0 no program

1 not started
2 running

write 1 2 10
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 5
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read TaskState
7 6 5 4 3 2 1 0

GetTaskState CMotionEngine

4

C-Motion PRP Programming Reference 81

Coding:

Arguments: none

Returned Data:

Packet
Structure:

Description: The Get Version Device action retrieves version information for the PRP device addressed.

C language
syntax:

PMDresult PMDDeviceGetVersion(PMDDeviceHandle *hDevice,
 PMDuint16 *major,
 PMDuint16 *minor);

action sub-action resource
10 1 0

name type range
MajorVersion unsigned 16 bit 0-0xffff
MinorVersion unsigned 16 bit 0-0xffff

write 1 2 10
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 1
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read MinorVersion byte 0
7 6 5 4 3 2 1 0

read MinorVersion byte 1
7 6 5 4 3 2 1 0

read MajorVersion byte 0
7 6 5 4 3 2 1 0

read MajorVersion byte 1
7 6 5 4 3 2 1 0

GetVersion Device

4

82 C-Motion PRP Programming Reference

Coding:

Arguments: none

Return Data: none

Packet
Structure:

Description: The NOP action does not result in any action on the part of the resource addressed, but may be
used to verify that a resource with the given address exists. If the status field of the reply header is
nonzero then an error of InvalidAddress indicates that no resource with the supplied address exists.

C language
syntax:

None, but C language libraries may use the NOP action internally.

action sub-action resource
0 none any

write 1 2 0
7 6 5 4 3 2 1 0

write resource address
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

NOP any

4

C-Motion PRP Programming Reference 83

Coding:

Arguments:

Returned Data:

Packet
Structure:

action sub-action resource
3 21 0

name type range
CANController unsigned 8 bit 0
TransmitIdentifier unsigned 32 bit 0-2047
ReceiveIdentifier unsigned 32 bit 0-2047
EventIdentifier unsigned 32 bit 0-2047

name type range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 21
7 6 5 4 3 2 1 0

write CANController
7 6 5 4 3 2 1 0

write TransmitIdentifier least significant byte
7 6 5 4 3 2 1 0

write TransmitIdentifier byte 1
7 6 5 4 3 2 1 0

write TransmitIdentifier byte 2
7 6 5 4 3 2 1 0

write TransmitIdentifier byte 3
7 6 5 4 3 2 1 0

write ReceiveIdentifier least significant byte
7 6 5 4 3 2 1 0

write ReceiveIdentifier byte 1
7 6 5 4 3 2 1 0

write ReceiveIdentifier byte 2
7 6 5 4 3 2 1 0

write ReceiveIdentifier byte 3
7 6 5 4 3 2 1 0

write EventIdentifier byte 0
7 6 5 4 3 2 1 0

OpenCAN Device

4

84 C-Motion PRP Programming Reference

Description: The Open CAN Device action is a request to a PRP device to return a PRP peripheral address
associated with a CAN controller and two CAN identifiers on the device. CANController is the local
physical CAN controller; for all current PRP devices there is at most one CAN controller, so this
argument should be zero. TransmitIdentifier and ReceiveIdentifier are CAN identifiers used for
sending and receiving messages. The point of view is the device, so TransmitIdentifier is used for
sending messages from the PRP device to the peripheral CAN device, and ReceiveIdentifier should
be used by the peripheral device to send messages to the PRP device. If either TransmitIdentifier or
ReceiveIdentifier is zero than it will be ignored, and either transmit or receive disabled for the
resulting peripheral.

The return value, PeriphAddress, is a PRP address that may be used with the resource type
Peripheral for addressing the newly opened CAN peripheral until it is closed.

C language
interface:

PMDresult PMDPeriphOpenCAN(PMDPeriph *periph,
 PMDDevice *device,
 PMDuint32 TransmitIdentifier,
 PMDuint32 ReceiveIdentifier,
 PMDuint32 EventIdentifier);

write Reserved
7 6 5 4 3 2 1 0

write Reserved
7 6 5 4 3 2 1 0

write Reserved
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read PeriphAddress
7 6 5 4 3 2 1 0

OpenCAN Device (cont.)

4

C-Motion PRP Programming Reference 85

Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open CMotionEngine Device action is used to request a connection to a C-Motion Engine on a
remote PRP device. The CMEAddress argument indicates which CMotionEngine resource on the
remote device is to be used, for current PRP devices there is only one, so its address is always zero.

The returned RemoteAddress may be used as the address for, for example CommandStartTask
actions to start a user program, Send and Receive actions to read and write user packets to a user
program, and so forth.

It is not necessary to use OpenCMotionEngine to gain access to a C-Motion Engine on a local PRP
device, that is, one that is directly connected to a host. For a local device one should simply use PRP
address zero to address the C-Motion Engine.

C language
syntax:

This call is performed as needed when opening a PRP device using the PMDRPDeviceOpen call.
In the C interface separate handles to CMotionEngine resources are not required.

action sub-action resource
3 3 0

name type range
CMEAddress unsigned 8 bit 0

name type range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 3
7 6 5 4 3 2 1 0

write CMEAddress
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0

OpenCMotionEngine Device

4

86 C-Motion PRP Programming Reference

Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open ISA Device action is a request to a Prodigy/CME device to return a PRP address for a
peripheral for input and output to the ISA bus using the base address ISAAdress. The Write and
Read actions may be used for output and input using addresses offset from the base address of the
newly returned peripheral, or Send and Receive may be used for output and input at the base
address.

EventIRQ is used to specify the interrupt channel used for signaling Magellan or Prodigy/CME
asynchronous events. EventIRQ is not meaningful for peripherals that are not connected to a
Magellan or Prodigy/CME device, and if not used should be set to zero.

C language
syntax:

PMDresult PMDPeriphOpenISA(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint16 boardAddress,
 PMDuint16 eventIRQ);

action sub-action resource
3 19 0

name type range
ISAAddress unsigned 16 bit 0-0xfff
EventIRQ unsigned 8 bit 1-15

name type range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 19
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write ISAAddress Byte 0
7 6 5 4 3 2 1 0

write ISAAddress Byte 1
7 6 5 4 3 2 1 0

write EventIRQ
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read PeriphAddress
7 6 5 4 3 2 1 0

OpenISA Device

4

C-Motion PRP Programming Reference 87

Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open Memory32 Device action is used to request a connection to a Memory resource for 32-
bit wide access on a remote PRP device. For current PRP devices the only Memory resource is the
dual-ported RAM. The MemoryAddress argument indicates which Memory resource on the remote
device is to be used, for current PRP devices there is only one, so its address is always zero.

The returned RemoteAddress may be used as the address when accessing the rersource, for example
Read and Write actions to read and write values from a remote dual-ported RAM.

It is not necessary to use Open Memory32 to gain access to a dual-ported RAM on a local PRP
device, that is, one that is directly connected to a host. For a local device one may simply use PRP
address zero to address the memory. Open Memory32 will, however, return the correct address for
a local device.

C language
syntax:

PMDresult PMDMemoryOpen32(PMDMemoryHandle *hMemory,
 PMDDeviceHandle *hDevice,
 PMDDataSize datasize,
 PMDMemoryAddress memoryaddress);

action sub-action resource
3 2 0

name type range
MemoryAddress unsigned 8 bit 0-31

name type range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write MemoryAddress
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0

OpenMemory32 Device

4

88 C-Motion PRP Programming Reference

Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open MotionProcessor Device action is used to request a connection to a Magellan Motion
Processor that is part of a remote PRP device, that is, a device that is accessible only through
another PRP device, and not directly via a TCP connection or other communication channel.

To access a motion processor on a local PRP device it is sufficient to use the local PRP address of
the motion processor. Since all current PRP cards have one on-card motion processor that address
is always zero.

LocalAddress is the local PRP address of the motion processor, as discussed above, this address is
always zero for current PRP devices. The returned value RemoteAddress is a PRP address that may
be used to send commands to the newly contacted motion processor. Once opened, the motion
processor may be commanded in exactly the same way as a motion processor on a local device.

C language
syntax:

PMDresult PMDAxisOpen(PMDAxisHandle *hAxis,
 PMDDeviceHandle *hDevice,
 PMDAxis axisNumber);

axisNumber is the motion processor axis to associate with the axis handle, LocalAddress in the C
library case is always zero.

action sub-action resource
3 0 0

name type range
LocalAddress unsigned 8 bit 0-31

name type range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write LocalAddress
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0

OpenMotionProcessor Device

4

C-Motion PRP Programming Reference 89

Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open COM Device action is a request to a PRP device to return a PRP peripheral address
associated with a serial port on the device. SerialPort is the local physical serial port on the device
itself: 0 for COM1, and 1 for COM2. SerialMode is a 16 bit word encoding serial parameters as
shown in the table below. The return value, PeriphAddress, is a PRP address that may be used with
the resource type Peripheral for addressing the newly opened serial peripheral until it is closed.

In order to open a peripheral that uses the PRP multi-drop serial protocol it is necessary to first
open a COM peripheral using the Open Device OpenCOM action, and then to use the Open
Peripheral OpenMultiDrop action.

action sub-action resource
3 20 0

name type range
SerialPort unsigned 8 bit 0-1
SerialMode unsigned 16 bit see below

name type range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 20
7 6 5 4 3 2 1 0

write SerialPort
7 6 5 4 3 2 1 0

write multidrop address 0 protocol
7 6 5 4 3 2 1 0

write protocol stop bits parity transmission rate
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read PeriphAddress
7 6 5 4 3 2 1 0

SerialMode Encoding
Bit Number Name Instance Encoding

0-3 transmission rate 1200 baud 0
2400 baud 1
9600 baud 2
19200 baud 3
57600 baud 4
115200 baud 5
230400 baud 6
460800 baud 7

OpenCOM Device

4

90 C-Motion PRP Programming Reference

C language
syntax:

PMDresult PMDPeriphOpenCOM(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDSerialPort port,
 PMDSerialBaud baud,
 PMDSerialParity parity,
 PMDSerialStopBits stopbits);

4-5 parity none 0
odd 1
even 2

6 stop bits 1 0
2 1

7-8 protocol point-to-point 0
multi-drop 3

9-10 reserved 0

10-15 multi-drop
address

0 0

-
63 63

SerialMode Encoding
Bit Number Name Instance Encoding

OpenCOM Device (cont.)

4

C-Motion PRP Programming Reference 91

Coding

Arguments:

Returned Data:

Packet
Structure:

Description: The Open PIO Device action is a request to open a connection to a parallel peripheral channel on
a PRP device. Once such a peripheral is open the peripheral read or write actions may be used with
it. Address is used to specify the channel to open; MemoryWidth to specify the size in bytes of data
transfers, and EventIRQ to specify the interrupt in connection with the channel.

The return value RemoteAddress is a PRP address that may be used with resource type Peripheral
for addressing the opened channel.

Currently only the ION/CME digital drive supports parallel peripherals, which are used for digital
input/output and for analog input. Consult the ION/CME Digital Drive User’s Manual for details.

C language
interface:

PMDresult PMDPeriphOpenPIO(
 PMDPeriphHandle*hPeriph
 PMDDeviceHandle*hDevice,
 WORD address,

BYTE EventIRQ,
PMDDataSize datasize);

action sub-action resource
3 18 0

name type range
Address unsigned 16 bit 0-0xffff
EventIRQ unsigned 8 bit 0-0xff
MemoryWidth unsigned 8 bit 1,2,4

name type range
PeriphAddress unsigned 8 bit 0-0xff

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 18
7 6 5 4 3 2 1 0

write Address low byte
7 6 5 4 3 2 1 0

write Address high byte
7 6 5 4 3 2 1 0

write EventIRQ
7 6 5 4 3 2 1 0

write MemoryWidth
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0

OpenPIO Device

4

92 C-Motion PRP Programming Reference

Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open TCP action is a request to a PRP device to return a PRP peripheral address associated
with an Ethernet TCP connection. EthernetInterface is the local physical Ethernet interface; for all
current PRP devices there is one Ethernet interface, so this argument should be zero.

IPAddress is the remote address to which a connection should be opened. If IPAddress is zero, then
the a port will be opened that will accept incoming connections, one incoming connection at a time
may be handled by such a port. TCPPort is the TCP port to connect to or to listen on.

The return value, PeriphAddress, is a PRP address that may be used with the resource type
Peripheral for addressing the newly opened Ethernet peripheral until it is closed.

action sub-action resource
3 22 0

name type range
EthernetInterface unsigned 8 bit 0
IPAddress unsigned 32 bit 0-0xffffffff
TCPPort unsigned 16 bit 0-0xffff

name type range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 22
7 6 5 4 3 2 1 0

write EthernetInterface
7 6 5 4 3 2 1 0

write IPAddress least significant byte
7 6 5 4 3 2 1 0

write IPAddress byte 1
7 6 5 4 3 2 1 0

write IPAddress byte 2
7 6 5 4 3 2 1 0

write IPAddress byte 3
7 6 5 4 3 2 1 0

write TCPPort byte 0
7 6 5 4 3 2 1 0

write TCPPort byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read PeriphAddress
7 6 5 4 3 2 1 0

OpenTCP Device

4

C-Motion PRP Programming Reference 93

C language
interface:

PMDresult PMDPeriphOpenTCP(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint32 IPAddress,
 PMDuint16 TCPPort);

OpenTCP Device (cont.)

4

94 C-Motion PRP Programming Reference

Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open UDP Device action is a request to a PRP device to return a PRP peripheral address
associated with an Ethernet UDP port and remote IP address. EthernetInterface is the local physical
Ethernet interface; for all current PRP devices there is one Ethernet interface, so this argument
should be zero.

IPAddress is the remote address to which UDP packets should be sent. If IPAddress is zero then the
a port will be opened that will accept incoming UDP packets. UDPPort is the UDP port to connect
to or to listen on.

action sub-action resource
3 23 0

name type range
EthernetInterface unsigned 8 bit 0
IPAddress unsigned 32 bit 0-0xffffffff
UDPPort unsigned 16 bit 0-0xffff

name type range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 23
7 6 5 4 3 2 1 0

write EthernetInterface
7 6 5 4 3 2 1 0

write IPAddress least significant byte
7 6 5 4 3 2 1 0

write IPAddress byte 1
7 6 5 4 3 2 1 0

write IPAddress byte 2
7 6 5 4 3 2 1 0

write IPAddress byte 3
7 6 5 4 3 2 1 0

write UDPPort least significant byte
7 6 5 4 3 2 1 0

write UDPPort byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read PeriphAddress
7 6 5 4 3 2 1 0

OpenUDP Device

4

C-Motion PRP Programming Reference 95

The return value, PeriphAddress, is a PRP address that may be used with the resource type
Peripheral for addressing the newly opened Ethernet peripheral until it is closed.

C language
interface:

PMDresult PMDPeriphOpenUDP(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint32 IPAddress,
 PMDuint16 UDPPort);

Open UDP Device (cont.)

4

96 C-Motion PRP Programming Reference

Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open Device Peripheral action is used to allocate a PRP address for a Device resource that may
be used to communicate with a PRP device accessible using an existing peripheral connection, for
example a TCP or serial connection. The RemoteAddress returned may be used for any PRP action
that may be addressed to a Device resource; it is typically used to obtain addresses for remote
motion processors, dual-ported RAM, and C-Motion engines.

C language
syntax:

PMDresult PMDRPDeviceOpen(PMDDeviceHandle *hDevice,
 PMDPeriphHandle *hPeriph);

action sub-action resource
3 1 4

name type range
PeripheralAddress unsigned 8 bit 0-31

name type range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 1
7 6 5 4 3 2 1 0

write PeriphAddress
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0

OpenDevice Peripheral

4

C-Motion PRP Programming Reference 97

Coding:

Arguments: none

Returned Data:

Packet
Structure:

Description: The Open MotionProcessor Peripheral action is used to allocate a PRP address to a Magellan Motion
Processor that is accessible using an existing PRP peripheral resource, using a serial port, CAN bus,
or PC-104 ISA bus. The PRP RemoteAddress returned may be used to command the motion
processor using the Command action. The PRP device to which this action is directed will perform
the translation from the PRP protocol for Magellan motion processor commands to the native
Magellan protocol.

For example, to use a Prodigy/CME card to control an ION module on a CAN bus, one would:

1. Open a CAN peripheral with the CAN identifiers used by the module for command send and
receive, using OpenCAN directed to the Prodigy/CME Device.

2. Use Open MotionProcessor to get an address for the remote ION using the peripherals opened
in step 1.

3. Send commands to the remote ION using the MotionProcessor address returned in step 2.

C language
syntax:

PMDresult PMDMPDeviceOpen(PMDDeviceHandle *hDevice,
 PMDPeriph *hPeriph);

action sub-action resource
3 0 4

name type range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0

OpenMotionProcessor Peripheral

4

98 C-Motion PRP Programming Reference

Coding:

Arguments:

Returned Data:

Packet
Structure:

Description: The Open MultiDrop Peripheral action is used to obtain a peripheral that uses the PMD multi-drop
serial protocol used for communicating with Magellan attached devices, such as non-CME ION
modules, or with other PRP devices. The peripheral resource to which this action is directed must
have been obtained using the Open COM Device action; the “parent” peripheral must not be closed
before the multi-drop peripheral returned by Open MultiDrop, but should not be used for
transmitting data on the serial line. The RemoteAddress returned by the Open MultiDrop action
will typically be used as a target for Open MotionProcessor or Open Device.

For more information on the multi-drop protocol, see Chapter 2, PMD Resource Access Protocol (PRP)
Tutorial and the Magellan Motion Control IC User Guide.

C language
syntax:

PMDresult PMDPeriphOpenMultiDrop(PMDPeriphHandle *hPeriph,
 PMDPeriphHandle *hParent,
 unsigned MultiDropAddress);

action sub-action resource
3 25 4

name type range
MultiDropAddress unsigned 8 bit 0-31

name type range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 25
7 6 5 4 3 2 1 0

write MultiDropAddress
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0

OpenMultiDrop Peripheral

4

C-Motion PRP Programming Reference 99

Coding:

Arguments:

Returned Data: data bytes

Packet
Structure:

Description: The Read Byte Peripheral action is used to read a sequence of data bytes from a peripheral associated
with a PC-104 ISA bus. The Offset argument is an offset from the base address that was specified
when the peripheral was opened. The Length argument specifies the number of bytes to read; all
bytes are read from the same addresses.

The data read is returned as the message body of the response packet.

This action is not applicable to other types of peripheral, and an InvalidResource error will be
returned if another peripheral type is specified.

C language
syntax:

PMDresult PMDPeriphRead(PMDPeriphHandle *hPeriph,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

action sub-action resource
8 1 4

name type range units
Offset unsigned 32 bit 0-0xffffffff bytes
Length unsigned 16 bit 0-0xffff bytes

write 1 2 8
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 1
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write Length byte 0
7 6 5 4 3 2 1 0

write Length byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read data byte 0 …
7 6 5 4 3 2 1 0

ReadByte Peripheral

4

100 C-Motion PRP Programming Reference

Coding:

Arguments:

Returned Data: data bytes

Packet
Structure:

Description: The Read DWord Memory action is used to read a sequence of 32 bit double words from a random
access memory. The Offset argument is an address in the memory, typically an address in a dual-
ported RAM. Offset should be divisble by four, the results of reading from a non-aligned address
are unpredictable. The Length argument is the number of double words to read, exactly this number
of double words are returned as the message body of the response packet.

 C language
syntax:

PMDresult PMDMemoryRead (PMDMemoryHandle *hMemory,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

action sub-action resource
8 4 3

name type range units
Offset unsigned 32 bit 0-0xffffffff bytes
Length unsigned 16 bit 0-0xffff double words

write 1 2 8
7 6 5 4 3 2 1 0

write 3 address
7 6 5 4 3 2 1 0

write 4
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write Length byte 0
7 6 5 4 3 2 1 0

write Length byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read data word 0 byte 0
7 6 5 4 3 2 1 0

read data word 0 byte 1 …
7 6 5 4 3 2 1 0

ReadDword Memory

4

C-Motion PRP Programming Reference 101

Coding:

Arguments:

Returned Data: data bytes

Packet
Structure:

Description: The Read Word Peripheral action is used to read a sequence of 16 bit data words from a peripheral
associated with a PC-104 ISA bus. The Offset argument is an offset from the base address that was
specified when the peripheral was opened; Offset must be even. The Length argument specifies the
number of bytes to read; Length must also be even. The data read is returned as the message body
of the response packet.

The data read is returned as the message body of the response packet.

This action is not applicable to other types of peripheral, and an InvalidResource error will be
returned if another peripheral type is specified.

C language
syntax:

PMDresult PMDPeriphRead(PMDPeriphHandle *hPeriph,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

action sub-action resource
8 1 4

name type range units
Offset unsigned 32 bit 0-0xffffffff bytes
Length unsigned 16 bit 0-0xffff bytes

write 1 2 8
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write Length byte 0
7 6 5 4 3 2 1 0

write Length byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read data byte 0 …
7 6 5 4 3 2 1 0

Read Word Peripheral

4

102 C-Motion PRP Programming Reference

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Receive CMotionEngine action is used to receive user packet data sent by a user program
running on a C-Motion Engine. See the description of Send CMotionEngine (p. 107) for a
description of the user packet mechanism. C-Motion user programs send user packets by calling
PMDPeriphSend using a peripheral opened with the PMDPeriphOpenCME procedure.

The timeout argument specifies the maximum number of milliseconds to wait for data before
failing with a PRP timeout error. A timeout value of 65535 (0xffff) means no time limit. In case of a
timeout no bytes will be returned.

The C-Motion Engine buffers only one outgoing user packet at a time, so if no host is waiting to
receive a user packet it may be overwritten by a newer user packet.

The size of the message received is given implicitly by the size of the return packet. How the size
of the return packet is determined depends on the transport mechanism in use.

C language
syntax:

PMDresult PMDPeriphOpenCME(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice);

PMDresult PMDPeriphReceive(PMDPeriphHandle *hPeriph,
 void *buffer,
 PMDuint32 *nReceived,
 PMDuint32 nExpected,
 PMDuint32 timeout);

action sub-action resource
6 - 1

name type range units
timeout unsigned 16 bit 0-0xffff msec
nExpected unsigned 16 bit 0-0xffff bytes

write 1 2 6
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write timeout byte 0
7 6 5 4 3 2 1 0

write timeout byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read received data byte 0
7 6 5 4 3 2 1 0

read received data byte 1 …
7 6 5 4 3 2 1 0

Receive CMotionEngine

4

C-Motion PRP Programming Reference 103

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Receive Peripheral action is used to receive data from some remote device using the
communication channel specified by the Peripheral resource to which it is addressed.

The timeout argument specifies the maximum number of milliseconds to wait for data before failing
with a PRP timeout error. A timeout value of 65535 (0xffff) means no time limit. In case of a time
out no bytes will be returned.

The nExpected argument specifies the maximum number of bytes to receive. For data that are
naturally arranged in packets, for example TCP and UDP, only one packet will be received so the
actual number of bytes returned may be less than nExpected. For data that are not arranged in
packets, for example data received on a serial port peripheral, exactly nExpected bytes must be
received or a timeout results and no data are returned.

The number of bytes of data actually returned is encoded in the size of the packet, how that size is
transmitted depends on the transport mechanism.

If the peripheral connection has been closed by some external action, for example a TCP
connection that has been closed by a peer, then a status of PMD_ERR_NotConnected will be
returned. Such a peripheral must be closed using the Close action. In the case of a TCP connection,
after closing the unconnected peripheral a new peripheral with the same TCP port may be opened
using the OpenTCP action.

action sub-action resource
6 - 4

name type range units
timeout unsigned 16 bit 0-0xffff msec
nExpected unsigned 16 bit 0-0xffff bytes

write 1 2 6
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write timeout byte 0
7 6 5 4 3 2 1 0

write timeout byte 1
7 6 5 4 3 2 1 0

write nExpected byte 0
7 6 5 4 3 2 1 0

write nExpected byte 1
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

read received data byte 0
7 6 5 4 3 2 1 0

read received data byte 1 …
7 6 5 4 3 2 1 0

Receive Peripheral

4

104 C-Motion PRP Programming Reference

C language
syntax:

PMDresult PMDPeriphReceive(PMDPeriphHandle *hPeriph,
 void *buffer,
 PMDuint32 *nReceived,
 PMDuint32 nExpected,
 PMDuint32 timeout);

Receive Peripheral (cont.)

4

C-Motion PRP Programming Reference 105

Coding:

Arguments: none

Return Data: none

Packet
Structure:

Description: The Reset Device action may be used to soft reset a PRP device. No return packet will be sent after
this command. The return packet for the next action will be a Reset error (0x8001) error reply,
regardless of the action requested. A Reset error in reply to an action indicates that the command
was not processed, and should be re-sent.

C language
syntax:

PMDresult PMDDeviceReset(PMDDeviceHandle *hDevice);

action sub-action resource
1 - 0

write 1 2 1
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

Reset Device

4

106 C-Motion PRP Programming Reference

Coding:

Arguments: none

Return Data: none

Packet
Structure:

Description: The Reset MotionProcessor action may be used to hard reset a Magellan Motion Processor that is
part of a PRP device. In order to soft reset a motion processor the Command action with a Magellan
reset command may be used. It is an error to direct this action to a motion processor that is not
part of a PRP device, for example an ION module.

C language
syntax:

PMDresult PMDDeviceReset(PMDDeviceHandle *hDevice);

action sub-action resource
1 - 2

write 1 2 1
7 6 5 4 3 2 1 0

write 2 address
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

Reset MotionProcessor

4

C-Motion PRP Programming Reference 107

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Send CMotionEngine action is used to send a user packet to a user program running on a C-
Motion Engine, which may read them using the PMDPeriphReceive procedure applied to a
peripheral opened with PMDPeriphOpenCME. The user packet mechanism allows arbitrary user
data to be sent to or received from user programs without opening dedicated peripheral channels
– the packets are encapsulated in PRP packets. User packets are sent as discrete units, and only one
packet may be buffered before being read by a user program.

The timeout argument specifies how many milliseconds to wait for the user program to read the
user packet. A timeout value of 65535 (0xffff) means no time limit.

The user packet mechanism is the simplest way to exchange data with running C-Motion Engine
user programs, and has the advantage of working the same way regardless of the transport
mechanism used to send packets, but it is limited in performance and flexibility. If user packets are
not sufficient then peripheral channels specific to the user application should be opened and used.

The maximum size of a user packet is 250 bytes, as given by USER_PACKET in the file
PMDPeriph.h. The actual size of the user packet sent is implicitly given by the size of the outgoing
PRP packet. How the PRP packet size is determined depends on the transport mechanism in use.

C language
syntax:

PMDresult PMDPeriphOpenCME(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice);

PMDresult PMDPeriphSend(PMDPeriphHandle *hPeriph,
 void *buffer,
 PMDuint32 nCount,
 PMDuint32 timeout);

action sub-action resource
5 - 1

name type range units
timeout unsigned 16 bit 0-0xffff msec

write 1 2 5
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write timeout byte 0
7 6 5 4 3 2 1 0

write timeout byte 1
7 6 5 4 3 2 1 0

write send data byte 0
7 6 5 4 3 2 1 0

write send data byte 1 …
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

Send CMotionEngine

4

108 C-Motion PRP Programming Reference

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Send Peripheral action is used to transmit data to some remote device using the communication
channel specified by the Peripheral resource to which it is addressed. The peripheral might be a
TCP Ethernet connection, a serial port, pair of CAN bus identifiers, or any other peripheral type.
The number of bytes to send is implicit in the size of the PRP packet, how this is determined
depends on the transport mechanism in use.

If all of the data cannot be sent within timeout milliseconds then a PRP timeout error will be
returned. In which case some of the data may have been sent, it is not possible to tell. A timeout
value of 65535 (0xffff) means no time limit.

If the peripheral connection has been closed by some external action, for example a TCP
connection that has been closed by a peer, then a status of PMD_ERR_NotConnected will be
returned. Such a peripheral must be closed using the Close action. In the case of a TCP connection,
after closing the unconnected peripheral a new peripheral with the same TCP port may be opened
using the OpenTCP action.

C language
syntax:

PMDresult PMDPeriphSend(PMDPeriphHandle *hPeriph,
 void *buffer,
 PMDuint32 nCount,
 PMDuint32 timeout);

action sub-action resource
5 - 4

name type range units
timeout unsigned 16 bit 0-0xffff msec

write 1 2 5
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write timeout byte 0
7 6 5 4 3 2 1 0

write timeout byte 1
7 6 5 4 3 2 1 0

write send data byte 0
7 6 5 4 3 2 1 0

write send data byte 1 …
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

Send Peripheral

4

C-Motion PRP Programming Reference 109

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Set Console CMotionEngine action is used to change the destination of console messages from
a user program running in the C-Motion Engine to which the action is addressed. User programs
can emit console messages using the C library procedure PMDprintf. Console messages are
primarily intended for debugging and routine progress monitoring.

The Console argument is the address of a peripheral to be used for console output. If Console is
zero, then all console output will be suppressed. If Console is nonzero it must be the address of a
peripheral that was opened on the same device as the C-Motion engine being addressed – if it is an
inappropriate peripheral address then an error will be returned.

C language
syntax:

PMDResult PMDDeviceSetConsole(PMDDeviceHandle *hDevice,
 PMDPeriphHandle *hPeriph);

action sub-action resource
9 4 3

name type meaning
Console unsigned 8 bit peripheral address

write 1 2 9
7 6 5 4 3 2 1 0

write 3 address
7 6 5 4 3 2 1 0

write 4
7 6 5 4 3 2 1 0

write Console
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

SetConsole CMotionEngine

4

110 C-Motion PRP Programming Reference

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Set Default Device action is used to change various non-volatile properties of a PRP device, for
example the IP address, or whether to run a user program immediately after power up. The length
of DefaultValue depends on the particular data type, and is encoded in the upper byte of
DefaultCode. The length in bytes is the field value minus one; a length value of zero means one
byte, one means two bytes. Most default values are either two or four bytes long, but some are
longer.

The table below summarizes the set of default values and their codes:

action sub-action resource
9 2 0

name type meaning
DefaultCode unsigned 32 bit default identifier
DefaultValue varies

write 1 2 9
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write DefaultCode byte 0
7 6 5 4 3 2 1 0

write DefaultCode byte 1
7 6 5 4 3 2 1 0

write DefaultCode byte 2
7 6 5 4 3 2 1 0

write DefaultCode byte 3
7 6 5 4 3 2 1 0

write DefaultValue byte 0
7 6 5 4 3 2 1 0

write DefaultValue byte 1 …
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

Prodigy/CME Defaults

name code
length
(bytes) factory default

DefaultCPMotorType 0x0102 2 0x7777 (All axes set to brushed)
DefaultIPAddress 0x0303 4 0xC0A80202 (192.168.2.2)
DefaultNetMask 0x0304 4 0xFFFFFF00 (255.255.255.0)

SetDefault Device

4

C-Motion PRP Programming Reference 111

DefaultIPAddress is the IP address of the Ethernet controller. It is typically necessary to set this
default using the serial interface to suit the network in which a PRP device is to be installed. The
default value is chosen to be part of a reserved IP class, and is not routable on the Internet.

Note that IP addresses are typically written in “dotted quad” notation, where each byte is written
in decimal, separated by a dot. In order to convert from dotted quad notation to hexadecimal write
convert each dot-separated field to hexadecimal and concatenate.

DefaultNetMask is a bitmask defining which IP addresses are directly accessible in the local subnet,
the default is for a class C network, and must typically be changed to suit the network in which the
PRP device is installed.

DefaultGateway is the IP address of the router to be used for all non-local IP addresses. PRP devices
does not support more general routing tables because it is expected that they will usually deal with
hosts on the local network. DefaultGateway must be changed to enable routing to any non-local IP
addresses, but that such routing may not be necessary for many applications.

DefaultTCPPort is the base TCP port used for accepting host commands. In most cases there is no
reason to change the default value of 40100.

DefaultCOM1Mode and DefaultCOM2Mode are serial port modes with the same meaning as
SerialMode in the OpenSerial action, and are applied to the two serial ports immediately after
coming out of reset. Serial port modes may be changed later by using the OpenSerial action.

DefaultRS485Duplex controls whether duplex mode is used in case serial port COM1 is configured
as for RS-485. One means full-duplex, zero means half-duplex.

DefaultCANMode is an encoding of CAN bus parameters similar to that used by Magellan, as
described in the Magellan Motion Processor Programmer’s Command Reference, and are summarized below.
The CAN mode cannot be changed except by using DefaultCANMode, it cannot be changed “on
the fly.”

DefaultGateway 0x0305 4 0x00000000 (0.0.0.0)
DefaultTCPPort 0x0106 2 40100
DefaultCOM1Mode 0x010E 2 0x0004 (57600,n,8,1)
DefaultCOM2Mode 0x010F 2 0x0005 (115200,n,8,1)
DefaultRS485Duplex 0x0110 2 0 (Full duplex)
DefaultCANMode 0x0111 2 0x0000 (1000 kbs)
DefaultAutoStartMode 0x0114 2 0
DefaultConsoleIntfType 0x0118 2 4 (Serial)
DefaultConsoleIntfAddr 0x0119 2 1 (PMDSerialPort2)
DefaultConsoleIntfPort 0x011A 2 5 (PMDSerialBaud115200)

All other values reserved.

DefaultCANMode fields

Bits Name Instance Encoding
0-6 CAN NodeID Node0 0

Node1 … 1

Node127 127

7-12 reserved 0

Prodigy/CME Defaults

name code
length
(bytes) factory default

SetDefault Device (cont.

4

112 C-Motion PRP Programming Reference

All CAN devices on the same bus must use the same transmission rate in order to communicate
properly. The CAN NodeID encodes a set of CAN identifiers to be used for accepting host
commands and returning responses, and uses the same scheme as do Magellan Motion Processors.
All PRP devices and all Magellan Motion Processors on the same CAN bus must have distinct
NodeIDs. Messages with a CAN identifier of 0x600 + NodeID will be accepted as PRP host
commands, and will be responded to using CAN identifier 0x580 + NodeID. Asynchronous event
notification messages will be sent using CAN identifier 0x180 + NodeID.

DefaultAutoStartMode controls whether a user program in the C-Motion Engine will be run
automatically after coming out of reset. A value of one means that any user program present will
be automatically run, zero means that a user program will not be run until a CommandTaskStart
action is received. Automatic starting of user programs will be inhibited if a user program has
caused a previous reset, for example by causing an exception.

DefaultConsoleIntfType, DefaultConsoleIntfAddr, and DefaultConsoleIntfPort determine the
communications channel that will be used for console (user program output) messages. The
channel used may be changed at run time by using the Set ValueConsole action. The encoding of
these default values is explained in the table below.

C language
syntax:

PMDresult PMDSetDefault(PMDDeviceHandle *hDevice,
 PMDDefault default,
 void *value,
 unsigned valueSize);

13-15 Transmission Rate 1,000,000 baud 0

 800,000 baud 1

 500,000 baud 2

 250,000 baud 3

 125,000 baud 4

 50,000 baud 5

 20,000 baud 6

 10,000 baud 7

Console Output Defaults

DefaultConsoleIntfType
value

peripheral
type

DefaultConsoleIntfAddr
meaning

DefaultConsoleIntfPort
meaning

0 none ignored ignored
1 reserved

2 PCI ignored ignored
3 reserved

4 serial 0 – COM1, 1 – COM2 port settings
5 reserved

6 reserved

7 UDP IP address UDP port
8 reserved

9 PRP
>9 reserved

DefaultCANMode fields

Bits Name Instance Encoding

SetDefault Device (cont.)

4

C-Motion PRP Programming Reference 113

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Write DWord Memory action is used to write a sequence of four byte (32 bit) double
words to a random access memory. The Offset argument is an index or address into the mem-
ory, typically an address in a dual-ported RAM. Offset should be divisible by four, the result of
a non-aligned write is not predictable. As many double words as are supplied in the packet are
written to memory, if the number of bytes supplied is not divisible by four the results are
unpredictable.

C language
syntax:

PMDresult PMDMemoryWrite(PMDMemoryHandle *hRam,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

Coding:

action sub-action resource
7 4 3

name type range units
Offset unsigned 32 bit 0-0xffffffff bytes

write 1 2 7
7 6 5 4 3 2 1 0

write 3 address
7 6 5 4 3 2 1 0

write 4
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write data dword 0 byte 0
7 6 5 4 3 2 1 0

write data dword 0 byte 1
7 6 5 4 3 2 1 0

write data dword 0 byte 2
7 6 5 4 3 2 1 0

write data dword 0 byte 3 …
7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

WriteDWord Memory

4

114 C-Motion PRP Programming Reference

Coding:

Arguments:

Returned Data: none

Packet
Structure:

Description: The Write Byte Peripheral action is used to write a sequence of data bytes to a peripheral associated
with a PC-104 ISA bus. The Offset argument is an offset from the base address that was specified
when the peripheral was opened. As many bytes as are supplied in the packet are written to the
ISA bus from the address given by the base address plus Offset.

This action is not applicable to other types of peripheral, and an InvalidResource error will be
returned if another peripheral type is specified.

C language
syntax:

PMDresult PMDPeriphWrite (PMDPeriphHandle *hPeriph,
 void *data,
 PMDuint32 address,
 PMDuint32 length);

action sub-action resource
7 1 4

name type range units
Offset unsigned 32 bit 0-0xffffffff bytes

write 1 2 7
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 1
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offfset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write data byte 0...

7 6 5 4 3 2 1 0

read 2 status reserved
7 6 5 4 3 2 1 0

WriteByte Peripheral

C-Motion PRP Programming Reference 115

A

Appendix A. PRP Transport

In This Appendix
PRP Transport Over Serial
PRP Transport Over TCP/IP
PRP Transport Over CAN

PRP may be transported using a serial, TCP/IP, CAN, or SPI communication channel. This section discusses these
communication channel-specific aspects of PRP message transport and processing.

A.1 PRP Transport Over Serial

To transport PRP packets over serial a header is used to specify the length of the PRP packet and to detect most cases
of packet corruption.

There are two cases of the serial protocol:

1 Point-to-point serial communication using either RS232 or RS485: only one PRP device and one host may
be connected to the serial line.

2 Multi-drop serial communication using RS485: multiple PRP devices may share the same serial bus, but
each must be configured to use a separate multi-drop address.

The figures below illustrate the packet formats for the two cases:

Point-to-Point Serial Packet

checksum
7 6 5 4 3 2 1 0

length
7 6 5 4 3 2 1 0

PRP packet byte 0
7 6 5 4 3 2 1 0

PRP packet byte 1 …
7 6 5 4 3 2 1 0

Multi-Drop Serial Packet

MultiDropAddress
7 6 5 4 3 2 1 0

checksum
7 6 5 4 3 2 1 0

length
7 6 5 4 3 2 1 0

PRP packet byte 0

116 C-Motion PRP Programming Reference

A

The MultiDropAddress field is used to address a particular serial device, and each device must be configured to use a
different address.

The length field is the unsigned number of bytes in the PRP packet bytes. For example if there are 2 PRP packet bytes
to be transported the length field value is 2.

The checksum field is a simple additive checksum modulo 256, over just the bytes in the PRP packet. For example if
there are 2 PRP packet bytes to be transported then the checksum is calculated over these 2 bytes.

Both outgoing and response packets are formatted in the same way.

An error-free Serial/PRP communication sequence from the host controller to the PRP device consists of a full
outgoing packet transmission with the correct checksum and specified number of bytes, and a full packet response
with correct checksum and length received at the host controller. The return message must be received within a fixed
amount of time determined by the host controller. Correctly setting this 'timeout window' may depend on factors such
as baud rate, but 100 milliseconds is a typical safe value.

If the host controller receives a response packet with an incorrect checksum, or does not receive a complete packet
(communications timeout), then the original message should be resent.

If a PRP device receives a packet with an incorrect checksum, then it will respond with a PRP error response packet
with an error code of PMD_ERR_RP_Checksum. See Section 2.5.2, PRP Response Packet for a list of PRP response
packet error codes.

If the PRP device does not receive the specified number of bytes within 100 milliseconds of beginning of packet
reception, the incoming message is ignored and no message is sent to the host controller.

A.2 PRP Transport Over TCP/IP

PRP packets are realized as TCP/IP packets. Three padding bytes are added to the beginning of the response packet
and can be ignored. For example if the PRP response packet is two bytes in length, the 1st, 2nd, and 3rd bytes of the
TCP/IP response packet would hold zero, and the 4th and 5th bytes would hold the PRP response packet.

The length of each PRP packet is determined from the IP header.

In order to initiate a PRP connection, a host should establish a TCP connection to a PRP device using the port
specified by the device default DefaultTCPPort. The factory default for this port is 40100, but it may be changed using
Set Device SetDefault.

A.3 PRP Transport Over CAN

PRP over CAN uses the concept of a node identifier, a concept borrowed from CANOpen. The node identifier is a user-
chosen integer between 1 and 127, inclusive, and is the least significant seven bits of any CAN identifier used for PRP
communication. As long as their node identifiers are different, PRP devices should coexist (but not communicate) with
CANOpen devices on the same CANbus.

PRP uses three CAN identifiers for communication:

• 0x600 + NodeIdentifier is used for sending messages from the host to a PRP device. This identifier is used
by default for SDO transmit by CANOpen devices.

7 6 5 4 3 2 1 0

PRP packet byte 1 …
7 6 5 4 3 2 1 0

C-Motion PRP Programming Reference 117

A

• 0x580 + NodeIdentifier is used for sending responses from a PRP device to a host. This identifier is used
by default for SDO receive by CANOpen devices.

CAN messages are limited to eight bytes of data, which means that some PRP packets may require several CAN mes-
sages for complete transport. In order to support this a segment/de-segment protocol is used. The protocol that is
used by the PRP devices to accomplish this is very similar to the Service Data Object (SDO) protocol of the
CANopen standard.

A header byte added as the first byte of each CAN message is used for segment identification. All of the remaining
(up to 7) bytes are used for the PRP packet content. Each CAN message used for PRP is either an initial message, or
a continued message. An initial message is the first message and is followed by zero or more continued messages,
which complete the PRP packet content.

The header byte of the initial message has the form:

NContinued is the number of continued messages that will follow, and may be zero.

Each continued header byte has this form:

The first continued message has a Sequence value of one, and each subsequent message has a Sequence value one
greater than that of the previous message. The final message has a Sequence value of NContinued.

If a message is received with an unexpected Sequence value, or an Initial message is received when expecting a
Continued message, then the receiver will immediately send a PRP error packet with the error code
PMD_ERR_RP_InvalidPacket. Each continued message must be sent within 100ms otherwise the PRP packet processing
state machine will be reset.

The exact length of a PRP packet may not be determined after reading just the initial message with a nonzero
NContinued value, because the length of the last message is not known. The length is at least 7 * NContinued + 1 and
at most 7 * (NContinued + 1).

No PRP packet checksum is required because the integrity of each CAN message is protected by a CRC including the
segment header bytes. Reception of the expected sequence numbers is very good evidence that a packet has been
correctly received.

Example

To send the 17 byte PRP packet 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 the message-by-message CAN
content is:

1st CAN message (all values in hex):

82, 01, 02, 03, 04, 05, 06, 07

2nd CAN message:

01, 08, 09, 0A, 0B, 0C, 0D, 0E

3rd CAN message:

02, 0F, 10, 11

1 NContinued
7 6 5 4 3 2 1 0

0 Sequence
7 6 5 4 3 2 1 0

118 C-Motion PRP Programming Reference

A

This page intentionally left blank.

C-Motion PRP Programming Reference 119

Index
A
action table, code order 70
actions 12
addresses 12, 16
alphabetical C-Motion API reference 27

C
C# programming 25
CANbus transport 116
C-Motion

code execution 8
Engine macros 22
PRP 8

code order, action table 70
communication networks 9

D
data types 21
device access 15

E
engine programming 22
error handling 25

M
macros 23
Microsoft .NET programming 23

N
naming conventions 21

O
outgoing PRP packet 13

P
packet

outgoing PRP 13
response 13
structure 13

peripherals 16
RS232 18
RS485 18

PMD library procedures 26

PRP
action reference 69
actions 12
addresses 12
CANbus transport 116
outgoing packet 13
packet structure 13
resources 11
response packets 13
serial transport 115
sub-actions 12
TCP/IP transport 116
using 14

R
remote attached devices 19
resource

access 8
addressing 11
PRP 11

response packets 13
return value 22
RS232 peripherals 18
RS485 peripherals 18

S
serial transport 115
sub-actions 12

T
TCP/IP transport 116

V
vbmotion error 25
Visual Basic

classes 24
programming 23

120 C-Motion PRP Programming Reference

This page intentionally left blank.

C-Motion PRP Programming Reference 121

For additional information, or for technical assistance,
please contact PMD at (978) 266-1210.

You may also e-mail your request to support@pmdcorp.com

Visit our website at https://www.pmdcorp.com

Performance Motion Devices
80 Central Street

Boxborough, MA 01719

	Table of Contents
	1. Introduction
	1.1 Introduction
	1.2 PMD Products and C-Motion Version
	1.3 Overview of C-Motion PRP
	1.3.1 Resource Access Virtualization
	1.3.2 C-Motion Code Execution
	1.3.3 Communication Networks

	2. PMD Resource Access Protocol (PRP)
	2.1 Introduction
	2.2 PRP Resources
	2.3 PRP Actions and Sub-Actions
	2.4 PRP Addresses
	2.5 PRP Packet Structure
	2.5.1 Outgoing PRP Packet
	2.5.2 PRP Response Packet

	2.6 Using PRP
	2.6.1 Device Access Basics
	2.6.2 Automatically Assigned Addresses and Peripherals
	2.6.3 RS232 & RS485 Peripherals
	2.6.4 Remote Attached Devices
	2.6.5 Other Peripheral Types

	3. PMD C-Motion API Reference
	3.1 Naming Conventions
	3.2 Data Types
	3.3 Return Values
	3.4 C-Motion Engine
	3.4.1 C-Motion Engine Programming
	3.4.2 Macros

	3.5 Microsoft .NET Programming
	3.5.1 Visual Basic Programming
	3.5.2 Visual Basic Classes
	3.5.3 C# Programming
	3.5.4 Error Handling

	3.6 PMD Library Procedures
	3.7 Alphabetical C-Motion API Reference
	PMDAxisOpen
	PMDTaskGetState
	PMDTaskStart
	PMDTaskStop
	PMDDeviceClose
	PMDDeviceGetDefault
	PMDDeviceReset
	PMDDeviceSetDefault
	PMDDeviceGetVersion
	PMDTaskGetAbortCode
	PMDDeviceGetTickCount
	PMDMPDeviceOpen
	PMDMemoryClose
	PMDMemoryOpen
	PMDMemoryRead
	PMDMemoryWrite
	PMDPeriphClose
	PMDPeriphOpenCAN
	PMDPeriphOpenCME
	PMDPeriphOpenCOM
	PMDPeriphOpenISA
	PMDPeriphOpenMultiDrop
	PMDPeriphOpenPCI
	PMDPeriphOpenPIO
	PMDPeriphOpenTCP
	PMDPeriphOpenUDP
	PMDPeriphRead
	PMDPeriphReceive
	PMDPeriphReceive (cont.)
	PMDPeriphSend
	PMDPeriphWrite
	PMDprintf
	PMDputch
	PMDputs
	PMDRPDeviceOpen

	4. PRP Action Reference
	4.1 Action Table - Code Order
	4.2 Action Table - Alphabetical Order
	Close various
	CommandFlash CMotionEngine
	CommandTask CMotionEngine
	Command MotionProcessor
	GetConsole CMotionEngine
	GetDefault Device
	GetResetCause Device
	GetTaskState CMotionEngine
	GetVersion Device
	NOP any
	OpenCAN Device
	OpenCAN Device (cont.)
	OpenCMotionEngine Device
	OpenISA Device
	OpenMemory32 Device
	OpenMotionProcessor Device
	OpenCOM Device
	OpenCOM Device (cont.)
	OpenPIO Device
	OpenTCP Device
	OpenTCP Device (cont.)
	OpenUDP Device
	Open UDP Device (cont.)
	OpenDevice Peripheral
	OpenMotionProcessor Peripheral
	OpenMultiDrop Peripheral
	ReadByte Peripheral
	ReadDword Memory
	Receive CMotionEngine
	Receive Peripheral
	Receive Peripheral (cont.)
	Reset Device
	Reset MotionProcessor
	Send CMotionEngine
	Send Peripheral
	SetConsole CMotionEngine
	SetDefault Device
	SetDefault Device (cont.
	SetDefault Device (cont.)
	WriteDWord Memory
	WriteByte Peripheral

	Appendix A. PRP Transport
	A.1 PRP Transport Over Serial
	A.2 PRP Transport Over TCP/IP
	A.3 PRP Transport Over CAN

	Index

