
Revision 1.1/ July 2023

Performance Motion Devices, Inc.

80 Central Street, Boxborough, MA 01719

www.pmdcorp.com

C-Motion PRP II

Programming Reference

ii C-Motion PRP II Programming Reference

NOTICE

This document contains proprietary and confidential information of Performance Motion Devices, Inc., and is protected
by federal copyright law. The contents of this document may not be disclosed to third parties, translated, copied, or du-
plicated in any form, in whole or in part, without the express written permission of PMD.

The information contained in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form, by any means, electronic or mechanical, for any purpose, without the express
written permission of PMD.

Copyright 1998–2023 by Performance Motion Devices, Inc.

Juno, Atlas, Magellan, ION, Prodigy, Pro-Motion, C-Motion and VB-Motion are trademarks of Performance Motion
Devices, Inc.

C-Motion PRP II Programming Reference iii

Warranty

Performance Motion Devices, Inc. warrants that its products shall substantially comply with the specifications applicable
at the time of sale, provided that this warranty does not extend to any use of any Performance Motion Devices, Inc.
product in an Unauthorized Application (as defined below). Except as specifically provided in this paragraph, each
Performance Motion Devices, Inc. product is provided “as is” and without warranty of any type, including without
limitation implied warranties of merchantability and fitness for any particular purpose.

Performance Motion Devices, Inc. reserves the right to modify its products, and to discontinue any product or service,
without notice and advises customers to obtain the latest version of relevant information (including without limitation
product specifications) before placing orders to verify the performance capabilities of the products being purchased. All
products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including
those pertaining to warranty, patent infringement and limitation of liability.

Unauthorized Applications

Performance Motion Devices, Inc. products are not designed, approved or warranted for use in any application where
failure of the Performance Motion Devices, Inc. product could result in death, personal injury or significant property or
environmental damage (each, an “Unauthorized Application”). By way of example and not limitation, a life support
system, an aircraft control system and a motor vehicle control system would all be considered “Unauthorized
Applications” and use of a Performance Motion Devices, Inc. product in such a system would not be warranted or
approved by Performance Motion Devices, Inc.

By using any Performance Motion Devices, Inc. product in connection with an Unauthorized Application, the customer
agrees to defend, indemnify and hold harmless Performance Motion Devices, Inc., its officers, directors, employees and
agents, from and against any and all claims, losses, liabilities, damages, costs and expenses, including without limitation
reasonable attorneys’ fees, (collectively, “Damages”) arising out of or relating to such use, including without limitation
any Damages arising out of the failure of the Performance Motion Devices, Inc. product to conform to specifications.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must
be provided by the customer to minimize inherent procedural hazards.

Disclaimer

Performance Motion Devices, Inc. assumes no liability for applications assistance or customer product design.
Performance Motion Devices, Inc. does not warrant or represent that any license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property right of Performance Motion Devices,
Inc. covering or relating to any combination, machine, or process in which such products or services might be or are
used. Performance Motion Devices, Inc.’s publication of information regarding any third party’s products or services
does not constitute Performance Motion Devices, Inc.’s approval, warranty or endorsement thereof.

Patents

Performance Motion Devices, Inc. may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials
and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents,
trademarks, copyrights, or other intellectual property rights.

Patents and/or pending patent applications of Performance Motion Devices, Inc. are listed at
https://www.pmdcorp.com/company/patents.

https://www.pmdcorp.com/company/patents

iv C-Motion PRP II Programming Reference

Related Documents

Magellan Motion Control IC User Guide

Complete description of the Magellan Motion Control IC features and functions with detailed theory of its
operation.

C-Motion Magellan Programming Reference

Descriptions of all C-Motion Magellan Motion Control IC commands, with coding syntax and examples, listed
alphabetically for quick reference.

C-Motion Engine Development Tools Manual

Describes the C-Motion Engine Development Tools that allow user application code to be created and
compiled on a host PC, then downloaded, executed and monitored on a CME device C-Motion Engine
module.

ION/CME N-Series Digital Drive User Manual

Complete description of the ION/CME N-Series Digital Drive including getting started section, operational
overview, detailed connector information, and complete electrical and mechanical specifications..

Table of Contents

Chapter 1. Introduction . 7
1.1 Introduction. 7
1.2 PMD Products and C-Motion Version . 7
1.3 Overview of C-Motion PRP II . 8

Chapter 2. PMD Resource Access Protocol (PRP) . 11
2.1 Introduction. 11
2.2 PRP Resources. 11
2.3 PRP Actions and Sub-Actions . 12
2.4 PRP Addresses. 12
2.5 PRP Packet Structure . 13
2.6 Using PRP . 14

Chapter 3. PMD C-Motion API Reference . 21
3.1 Naming Conventions . 21
3.2 Data Types . 21
3.3 Return Values . 21
3.4 C-Motion Engine . 22
3.5 Microsoft .NET Programming . 23
3.6 PMD Library Procedures . 25
3.7 C-Motion to API PRP Table . 26
3.8 Alphabetical C-Motion API Reference . 28

Chapter 4. PRP Action Reference. 91
4.1 Action Table. 91
4.2 Alphabetical PRP Action Reference. 93

Appendix A. PRP Transport . 151
A.1 PRP Transport Over Serial . 151
A.2 PRP Transport Over TCP/IP . 152
A.3 PRP Transport Over CAN . 152
A.4 PRP Transport over SPI. 153

Appendix B. Summary List of C-Motion API . 157

Index . 159
C-Motion PRP II Programming Reference v

1

This page intentionally left blank.
vi C-Motion PRP II Programming Reference

1

1.Introduction

1.1 Introduction

This manual documents C-Motion PRP II, which is a software library used to control and monitor various PMD motion
control products. PRP stands for PMD Resource Access Protocol, which is the protocol used to communicate with
these devices.

There are two other C-Motion versions; C-Motion Magellan and C-Motion PRP. All of these software systems are
available in separate SDKs as detailed below:

• C-Motion Magellan SDK – an SDK (Software Developer Kit) for creating motion applications using the
C/C++ programming language for PMD products that utilize a direct Magellan or Juno formatted
protocol.

• C-Motion PRP SDK – an SDK for creating PC and downloadable user code for systems utilizing either
a PRP (PMD Resource Access Protocol) protocol device or a Magellan/Juno protocol device. C-Motion
PRP is also used in motion applications that will use the .NET (C#, VB) programming languages.

• C-Motion PRP II SDK – This SDK is similar to C-Motion PRP but is used with ION/CME N-Series
ION Digital Drives. Compared to standard C-Motion PRP, C-Motion PRP II supports additional features
such as multi-tasking, mailboxes, mutexes, and enhanced event management.

For detailed information on Magellan/Juno protocol C-Motion refer to the C-Motion Magellan Programming Reference. For
detailed information on C-Motion PRP refer to the C-Motion PRP Programming Reference.

1.2 PMD Products and C-Motion
Version

The following table shows the C-Motion versions that can be used with each PMD product family:

*C-Motion PRP typically only used for .NET support, or if a mix of Magellan/Juno protocol and PRP protocol devices
are attached.

Product Family Compatible C-Motion Versions
Magellan ICs C-Motion Magellan, C-Motion PRP*
Juno ICs C-Motion Magellan, C-Motion PRP*
ION/CME N-Series C-Motion PRP II
ION 500 C-Motion Magellan, C-Motion PRP*
ION/CME 500 C-Motion PRP
ION 3000 C-Motion Magellan, C-Motion PRP*
Prodigy PC/104 C-Motion Magellan, C-Motion PRP*
Prodigy/CME PC/104 C-Motion PRP
Prodigy/CME Stand-Alone C-Motion PRP
Prodigy/CME Machine-Controller C-Motion PRP
C-Motion PRP II Programming Reference 7

Introduction1
1.3 Overview of C-Motion PRP II

C-Motion is PMD’s C-language based motion control programming system. It is provided in source code form for
easy integration on a wide variety of platforms. Its primary purpose is to provide a C-language API to interface with,
and access the resources of, PMD’s motion control products.

All PMD products utilize packet-based protocols for communication, so a primary purpose of C-Motion is to translate
the information contained in C-language function calls to the proper packet format. This allows C-Motion application
developers to avoid having to learn the low level communication formats required by each PMD product.

Within the full PMD product set there are two different packet protocols used. A protocol known as the Magellan/
Juno protocol is used when directly interfacing with PMD Magellan ICs or Juno ICs. PRP (PMD Resource Access
Protocol) is the protocol used with products such as ION/CME Digital Drives and Prodigy/CME boards.

Not all C-Motion function calls are translated into packets that will be sent, or received, by a PMD product. Especially
for C-Motion PRP or C-Motion PRP II libraries, many function calls are used to manage application execution,
memory resources, tasks, or to access resources located within the same device executing the C-Motion engine user
code.

1.3.1 Resource Access Virtualization

In addition to handling the details of packet protocol conversion, another important feature of C-Motion is its support
for virtualization of resource access.

Whether accessing a Magellan Motion Control IC, a memory block, a digital I/O port, or a CANbus peripheral port,
C-Motion calls accept a handle which provides access to that resource independent of its location on a network or
even PMD product type.

To instantiate a particular resource handle C-Motion calls are used to establish needed access information. It is this
handle that is then provided to downstream C-Motion calls which command, or query, that resource. We will discuss
the specifics of initializing access information in more detail later, but what is important about access virtualization is
that it makes it easy to re-use previously written code for new machine control projects, or to transport code from
prototyping setups to custom-designed production boards.

1.3.2 C-Motion Code Execution

A special and unique capability of the C-Motion PRP system is that it allows application code sequences to be run
either from an external host (such as a PC) or from the C-Motion Engine on the device. This is convenient for code
development, which is often easier and faster when located on the PC.

When operating on a host PC the C-Motion PRP system converts C-Motion calls to PRP protocol packets and sends
them through the network interface to the device. This same C-Motion application code, when re-compiled for
operation on the target device’s C-Motion Engine (sometimes called CME for short) no longer sends packets in PRP
format but instead makes the conversions needed to access the on-device resources from the CME, using the device’s
internal high speed communication bus.

1.3.3 Communication Networks

Another unique and powerful feature of the C-Motion PRP system is that it allows layered networks to be created. For
example if a host PC talks directly to a Prodigy/CME Machine-Controller board via an Ethernet connection this board
can in turn have a network of ION/CME units attached through its CAN network interface.

PRP allows both the resources on the Prodigy board and the ‘sub network’ ION/CME resources to be seamlessly
addressed from the PC. Built into the PRP resource accessing scheme is the capability for devices to act as network
8 C-Motion PRP II Programming Reference

Introduction 1
gateways, directly processing messages intended for local resources, and passing on messages intended for resources
connected by network to the local device.

From the perspective of the C-Motion user code running on the PC access to all resources is automatic. To achieve
this, as before, once the location of the devices and resources of the PRP network is established through C-Motion
initialization calls, subsequent calls use just a C-language handle, whether the resources is directly-connected, or
connected through a network.

In the next chapter we will expand on all of these concepts and give examples of how C-Motion PRP II is used to
achieve various common control functions.
C-Motion PRP II Programming Reference 9

Introduction1
This page intentionally left blank.
10 C-Motion PRP II Programming Reference

2

2.PMD Resource Access
Protocol (PRP)
In This Chapter
Resource Addressing
Accessing the Communications Ports
Accessing On-Card Resources
Accessing Magellan-Attached Devices
PRP Communication Formats

2.1 Introduction

Access to Prodigy/CME boards, ION/CME Drives, and Ethernet-capable ION drives is provided by a protocol called
PMD Resource Access Protocol (PRP). PRP may be transmitted via serial, CAN, Ethernet TCP/IP, or SPI (Serial
Peripheral Interface). PRP is both a protocol which can be transmitted across various connection interfaces and an
architecture for how resources on PRP devices are accessed. A complete understanding of C-Motion PRP II therefore
requires an understanding of PRP.

PRP device functions are organized into resources; resources process actions sent to them. Actions can send information,
request information, or command specific events to occur. Addresses allow access to a specific resource on the device or
connected to the device.

A basic communication to a PRP device consists of a 16 bit PRP header and for some communications a message body.
The message body, if present, contains data associated with the specified PRP action. The header contains various
information used to process the PRP messages including identifiers for the resource type, action type, and resource
address. After a PRP communication is sent to a device, a return communication is sent by the PRP device which
consists of a response header and an optional return message body. The return message body may contain information
associated with the requested PRP action, or it may contain error information if there was a problem processing the
requested action.

PRP is a master/slave system. The host functions as the master and initiates communication sequences which the
connected device must respond to. The connected device can not initiate messages on its own within the PRP protocol.
Note however that some PRP-supported networks, in particular CAN and Ethernet, allow one or more non-PRP
protocol connections to be established to support asynchronous communication from the attached device to the host.

In the sections below more information is provided on each of these PRP constructs.

2.2 PRP Resources

There are five different resource types supported by PRP devices. The Device resource indicates functionality that is
addressed to the entire board or digital drive, the MotionProcessor resource indicates a Magellan Motion Control IC,
the CMotionEngine resource indicates the C-Motion Engine, the Memory resource indicates RAM or non-volatile
RAM (Random Access Memory), and the Peripheral resource indicates a communications connection.
C-Motion PRP II Programming Reference 11

PMD Resource Access Protocol (PRP)2
The following table summarizes the various resource types and their numeric codes as specified in the header.

2.3 PRP Actions and Sub-Actions

There are ten different PRP actions including Command, which is used to send commands to resources such as the
Magellan Motion Processor, Send and Receive, which are used to communicate using serial, CAN, Ethernet, or SPI, Read
and Write, which are used to access memory-type devices, and Set and Get, which are used to load or read parameters.

The behavior of an action depends on the resource type to which it is addressed. The same action may take a different
set of arguments, return different data, and have different effects depending on its resource type. Many, but not all,
actions are only fully specified by adding a sub-action, an 8 bit code qualifying the action to take. Finally, a few commands
also accept a sub command, another 8 bit qualifier of the action to take.

The following table summarizes the various Action types and their numeric codes.

2.4 PRP Addresses

Every resource accessible via PRP is identified by a numeric address. Addresses for Memory, Motion Processor, and
C-Motion Engine resources local to a PRP device are fixed numbers. Refer to the user manual for the C-Motion
PRP II-based product you are using for a detailed list. Addresses for Peripheral resources and resources on remote
PRP devices, that is devices not directly connected to the host, are obtained by PRP actions and are automatically
assigned. For more information on automatically assigned see Section 2.6.2, Automatically Assigned Addresses and
Peripherals

While these automatically assigned addresses may in practice be predictable, it is important not to assume their values,
which may change depending on the state of the device assigning them.

Name Code Description
Device 0 A Prodigy/CME card or ION/CME module
CMotionEngine 1 A C-Motion Engine
MotionProcessor 2 A Magellan Motion Processor
Memory 3 A random access memory
Peripheral 4 A connection to a remote device over a communications channel.

Name Value Meaning
NOP 0 No operation
Reset 1 Perform a reset
Command 2 Motion Processor and miscellaneous actions
Open 3 Open an addressable resource
Close 4 Close a remote resource
Send 5 Send data to a stream-like resource
Receive 6 Receive data from a stream-like resource
Write 7 Write data to an indexed resource
Read 8 Read data from an indexed resource
Set 9 Change a setting or operating state
Get 10 Get a setting or operating state
Clear 11 Erases the memory resources
12 C-Motion PRP II Programming Reference

PMD Resource Access Protocol (PRP) 2
2.5 PRP Packet Structure

2.5.1 Outgoing PRP Packet

The core of the PMD Resource Access Protocol is a header that accompanies all PRP communications. The figure
below shows the format of the resource access protocol header. The PRP header is a single 16 bit word divided into
five fields. Normally, the PRP header is immediately followed by a message body, but there are certain communications
that do not require a message body.

The table below shows the structure of an outgoing PRP packet:

PRP outgoing packet header descriptions:

Version - This two bit field encodes the version of PRP being used. The value of this field for all PRP devices should
always be 1 (binary 01) unless documentation included with your PRP device indicates otherwise.

Status code - For PRP communications being sent out by the host, this 2 bit field should contain the value 2.

Action - This 4 bit field contains an action identifier that is used to process PRP messages. See Section 2.3, PRP
Actions and Sub-Actions, for a summary of the PRP actions supported by PRP.

Resource - This 3 bit field encodes the specific resource type being addressed. See the table in Section 2.2, PRP
Resources, for the summary of resources supported by PRP.

Address - This 5 bit field encodes the address of the particular resource being communicated to. Fixed addresses are
used for resources that are local to the PRP device. Automatically assigned addresses are used to access attached
devices, and are also used to create peripheral connections, which are communication ‘conversations’ between the PRP
device and another device.

2.5.2 PRP Response Packet

When an outgoing PRP packet is received by the device it responds with a response packet, which consists of at least
a one byte (8 bit) header, followed by a message body. The length of the message body depends on the particular action
- in some cases no body is required, in some cases a fixed length body is required, and in some cases a variable length
body is used. In the case of a variable length body, information on packet length external to PRP is used to determine
the length.

The table below shows the structure of PRP response packets for success and for failure:

Outgoing PRP Packet
header byte 0 version (1) status (2) action

7 6 5 4 3 2 1 0

header byte 1 resource address
7 6 5 4 3 2 1 0

body byte 0…
7 6 5 4 3 2 1 0

 PRP Success Response Packet
header byte 0 version (1) status (0) reserved

7 6 5 4 3 2 1 0

body byte 0…
7 6 5 4 3 2 1 0

PRP Failure Response Packet
header byte 0 version (1) status (1) reserved

7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 13

PMD Resource Access Protocol (PRP)2
The version field, as for the outgoing packet, must contain 1.

The bits marked reserved must have a value of zero.

The status field is used to indicate success or failure, a value of zero indicates success, and a message body may follow
as specified by the documentation for the particular action to which the PRP device is responding. A status value of 1
indicates that an error occurred processing the requested action, and a two byte (16 bit) message body follows
specifying the particular error that occurred. The table below summarizes some values that the error code may take.
(See the C-Motion PMDecode.h source file for all the possible values.) When used in the C language interface these
names should be prefixed by “PMD_ERR_RP_,” for example, “PMD_ERR_RP_InvalidAddress.”

2.6 Using PRP

In the next few sections we will provide examples of important PRP concepts including how to access resources, how
to use automatically assigned addresses, and more.

Beyond these examples here is a list of additional useful C-Motion PRP II resources contained in this manual:

• Section 3.8, Alphabetical C-Motion API Reference, provides detailed information on the C-Motion PRP
II API, listed alphabetically

• Section 4.2, Alphabetical PRP Action Reference, provides detailed information including packet format
for all PRP Actions, listed alphabetically

• Section 3.7, C-Motion to API PRP Table, provides an alphabetically listed table of the C-Motion PRP II
API and its corresponding PRP Actions

• Section 4.1, Action Table, provides the same information but in reverse, a table of PRP Actions and the
corresponding C-Motion PRP II API

• Appendix A, PRP Transport, provides detailed information on the format and process for transporting
PRP on Serial, CAN, Ethernet, or SPI

error byte 0
7 6 5 4 3 2 1 0

error byte 1
7 6 5 4 3 2 1 0

Name Value Description
Reset 0x2001 The previous command reset the device; action was not pro-

cessed.
InvalidVersion 0x2002 The version field was incorrect.
InvalidResource 0x2003 No such resource type.
InvalidAddress 0x2004 The address for the specified resource type is not valid.
InvalidAction 0x2005 No such action, or resource not appropriate to specified action.
InvalidSubAction 0x2006 Sub-Action field not valid, or resource not appropriate for sub-

action.
InvalidCommand 0x2007 An enumerated option argument is not correct.
InvalidParameter 0x2008 An argument value is not legal, or not supplied.
InvalidPacket 0x2009 A PRP packet was corrupted
Checksum 0x200E Bad packet checksum value
Magellan error codes 1 – 35 Magellan Motion Processor error codes, documented in the Magel-

lan Motion Control IC User Guide.
14 C-Motion PRP II Programming Reference

PMD Resource Access Protocol (PRP) 2
2.6.1 Device Access Basics

Figure 2-1:

Host PC

Connected to

PRP Device via

Ethernet TCP

Accessing resources on PRP devices is straightforward using the C-Motion PRP system. To illustrate this we will begin
by showing the C-Motion commands used to achieve this. We will then illustrate how this same function is achieved
via PRP-formatted packets.

Example 1: A Host Controller is connected to a PRP device via Ethernet/TCP and sets the position of Axis
#3 of the PRP device’s onboard Magellan Motion Control IC to a value of 0x123456.

Example in C-Motion

The first step will be to create an Ethernet/TCP peripheral connection and associated C-language handle on the host
PC. Then we use this peripheral handle to create a handle to access the Ethernet-connected PRP device. Finally, using

this device handle we will open an Axis handle which is used to access all Magellan Motion Control IC commands.

*For clarity the content of these example C calls such as handles and other initialization information will not be shown. For complete C-
Motion coding examples refer to CMESDK\HostCode\Examples located on the C-Motion PRP II SDK.

Note that once we have a handle set up we may use it to access the associated resource without re-opening that
resource. For example in the above sequence if we want to also set the motion control IC’s motion velocity, we would
just add a PMDSetVelocity() call to the above sequence using the same axis handle as was used to set the position.

Example in PRP

The above example in PRP format looks very different. There are two reasons for this, one of which is that the
mnemonic format for PRP packets is different than C language calls. The general PRP packet mnemonic format is:

<Resource ID> <Address> <Action ID> <Message content>

The other reason is that none of the C-Motion initialization calls which create virtual resource access through handles
are relevant. So the PRP sequence is a single packet which is sent to the MotionProcessor resource, and has an action type
of Command.

From the table in Section 2.2, PRP Resources, through Section 2.4, PRP Addresses, to communicate with the onboard
Magellan Motion Control IC, a PRP message is sent to Resource ID 2 (corresponding to the MotionProcessor resource),
address 0 (corresponding to the PRP device’s onboard Magellan address), and with an action ID of 2 (corresponding
to the Command action). The message body is loaded with the Magellan packet corresponding to “Set Position, #3
0x123456,” which is the 3-word sequence 0x210, 0x0012, 0x3456.

PMDDeviceOpenPeriphTCP()* // Open and get access handle for TCP Peripheral on Host PC
PMDDeviceOpenPeriphDevicePRP() // Open PRP-based device via this peripheral connection
PMDDeviceOpenAxis() // Get Magellan Axis handle at axis #3 using PRP device handle
PMDSetPosition() // Send SetPosition 0x123456 from PC to Magellan IC

Host Ethernet

Expansion
Network, CAN

Magellan
Motion Control IC

RAM
Expansion

Network SPIEthernet
Port

Host
PC

C-Motion
EnginePRP

Device
C-Motion PRP II Programming Reference 15

PMD Resource Access Protocol (PRP)2
In PRP mnemonics here is this command:

MotionProcessor, Addr 0, Command, 0x0210, 0x0012, 0x3456

Upon processing of this command by the device, the host would receive a PRP response message back. A zero in the
status field would indicate that no error occurred. If this is the case the message body will be empty. If an error did
occur, then the PRP status field would contain a 1, and the message body would contain the specific error code that
occurred.

Example 2: The same Host Controller wants to read the 32 bit word value of address 0x100 of the PRP
device’s RAM

Example in C-Motion

Here we will send a PMDMemoryRead() call to retrieve the memory. From the previous Example #1 sequence we

will assume the first two initializations have already been made and now execute the additional needed calls:

Example in PRP

The ID for a Memory resource type is 3, and the ID for a Read action is 7. The message body contains a sub-action of
0 specifying a 32 bit word read followed by a 0x100 which specifies the address of the desired memory read. Upon
successfully processing this command, the host would receive the 32 bit contents of memory location 0x100 in the
message body.

So in PRP mnemonics here is this outgoing command:

Memory, Addr 0, Read, 0, 0x100

Note that the PRP Command message sent to the Magellan Motion Control IC did not use a sub-action code in the
message body, while the Read command sent to the RAM did. Whether or not a sub-action is required, and what the
codes are for various sub-actions is action-specific, and sometimes resource-specific. Chapter 4, PRP Action Reference,
provides exact message body information for each PRP action and (if applicable) sub-action.

2.6.2 Automatically Assigned Addresses and
Peripherals

The above examples illustrate how C-Motion PRP II is used to gain basic access to on-device resources. In these
examples the address of the resource being commanded or queried were local to the device, and therefore had a fixed
numerical value.

In the PRP system however there are instances where the device or resource address is not fixed and is assigned
dynamically. These occurs in particular when addressing the Peripheral resource.

PRP devices support up to four different network connection types; Serial, CAN, Ethernet, and SPI. These
communication resources are represented in PRP by a construct called a peripheral connection. A peripheral is a
resource (resource ID: 4), and is used to send and receive messages to network connections.

Obtaining access to an on-device serial, CAN, Ethernet, or SPI port is accomplished via the PRP Open action. This
action opens a peripheral by specifying a sub-action of PeriphSerial, PeriphCANFD, PeriphTCP, PeriphUDP, or PeriphSPI.
The corresponding C-Motion commands are PMDDeviceOpenPeriphSerial(),
PMDDeviceOpenPeriphCANFD(), PMDDeviceOpenPeriphTCP(), PMDDeviceOpenPeriphUDP(), and
PMDDeviceOpenPeriphSPI().

The addresses of these Peripheral resources are not fixed. Each newly opened peripheral connection receives an
automatically assigned address within the PRP response message body. The device that requests the peripheral open

PMDDeviceOpenMemory() // takes the device handle and creates a memory resource handle
PMDMemoryRead() // takes the memory resource handle and returns the requested data
16 C-Motion PRP II Programming Reference

PMD Resource Access Protocol (PRP)
 2

connection must record that provided address for future use, and it is this address that is used in subsequent PRP
messages to that peripheral connection.

Note that automatically assigned addresses generally increment by one each time they are assigned, however this
should not be assumed.

Opening a new peripheral opens a connection between a PRP device and a specific remote device. It does not open
the overall network port. For example if a PRP device has a CAN network with 4 attached devices (each at seperate
CAN network addresses), four separate open peripheral function calls must be made, each opening a one-to-one
connection between the PRP device and a specific network-attached device.

Figure 2-2:

Host PC

Connected to

PRP Device

connected to

Instruments via

CAN Network

Example 1

Figure 2-2 shows a network configuration. A Host PC is connected via Ethernet TCP to a PRP device, which
in turn is connected via a CANFD network to two scientific instruments. The host controller needs to
initiate, send and receive a message to/from the CAN-connected instrument.

Example in C-Motion

The first two steps provide general Ethernet access from the PC to the PRP device, and are the same as from our

previous examples.

Next we use the device handle created using the open PRP device call to access the Ethernet-connected PRP device
and open CANFD peripherals to each instrument. Using this peripheral handle we then send and receive a message:

*For clarity the contents of the C calls such as handles and other initialization/parameter information is not shown.

Example in PRP

As in the examples from the previous section there are no PRP transactions to set up resource or peripheral access
handles. So the first step is to open a CANFD peripheral connection on the PRP Device.

Device, Addr 0, Open, PeriphCANFD, <CANFD Parameters for #1>
Device, Addr 0, Open, PeriphCANFD, <CANFD Parameters for #2>
Peripheral, <Assigned Address for #1>, Send, <Message>
Peripheral, <Assigned Address for #1>, Receive, <Message>

PMDDeviceOpenPeriphTCP()* // Open TCP Peripheral connection on Host PC
PMDDeviceOpenPeriphDevicePRP() // Open PRP-based device connection

PMDDeviceOpenPeriphCANFD() // Open CANFD Peripheral connection #1
PMDDeviceOpenPeriphCANFD() // Open CANFD Peripheral connection #2
PMDPeriphSend() // Send a message to the #1 peripheral connection
PMDPeriphReceive() // Receive a message from #1
PMDPeriphSend() // Send a message to the #2 peripheral connection
PMDPeriphReceive() // Receive a message from #2

Host
Ethernet

Exp. CAN

RAM
Exp. SPI

Ethernet
Port

Host
PC

PRP
Device

Magellan
IC

CME

Instrument
#1

Instrument
#2

CANEthernet
TCP
C-Motion PRP II Programming Reference 17

PMD Resource Access Protocol (PRP)2
Peripheral, <Assigned Address for #2>, Send, <Message>
Peripheral, <Assigned Address for #2>, Receive, <Message>

In the return message body of the first transaction above the automatically assigned address of the opened CANFD
peripheral is provided, and this address is used for the subsequent Send and Receive actions. <CANFD Parameters>
here denotes that the message body of the outgoing communication contains formatted information indicating the
Node ID.

Upon processing the peripheral receive command the PRP device will wait for a CANFD message to be received. A
timeout value can be provided so that the length of this wait period can be limited. Once the message is received the
PRP response message contains the received CANFD message.

2.6.3 RS232 & RS485 Peripherals

Most PMD products support both RS232 and RS485 serial communications, although specifying that a serial port
should operate as a RS485 network reduces the number of serial ports available. For example PMD’s N-Series ION
Drive supports separate Serial1 and Serial2 point-to-point RS232 connections but just Serial1 when configured for
multidrop RS485 operation.

Opening a point-to-point serial connection is straightforward and uses the C-Motion call
PMDDeviceOpenPeriphSerial(). In the argument list the port is specified (Serial1, Serial2, or Serial3) along with
other parameters such as baud rate, parity, etc.

In PRP protocol this is:

Device, Addr, Open PeriphSerial, <Serial Parameters>

Opening a multi drop RS485 connection however requires two calls, the first to open a serial peripheral connection,
and then separate calls for each RS485 connection that is to be created. This second peripheral open uses what is called
a multi drop peripheral type. Here is what this call sequence looks like via C-Motion, showing how devices at two
separate RS485 network addresses are connected to.

Here is the same sequence in PRP mnemonics:

Device, Addr, Open, PeriphSerial, <Serial Parameters>
Periph, <Assigned Addr>, Open PeriphMultiDrop, <RS485 connection parameters for node #1>
Periph, <Assigned Addr>, Open PeriphMultiDrop, <RS485 connection parameters for node #2>

After these sequences there are two multidrop peripherals which can then be used for communications to and from
each connection via standard peripheral Send or Receive commands.

PMDDeviceOpenPeriphSerial() // open serial port peripheral, creating periph handle
PMDPeriphOpenPeriphMultiDrop() // open multi drop peripheral connection # 1 using

// above serial periph handle. Resultant peripheral handle
// now represents the RS485 connection to the device at the
// first RS485 address

PMDPeriphOpenPeriphMultiDrop() // open multi drop peripheral connection # 2 using
// original serial periph handle. Resultant peripheral handle
// now represents the RS485 connection to the device at the
// second RS485 address
18 C-Motion PRP II Programming Reference

PMD Resource Access Protocol (PRP) 2
2.6.4 Remote Attached Devices

Figure 2-3:

Host PC

Connected to

PRP Device

connected to

ION/CME and

ION 500 via

RS485

Network

Before closing our discussion of peripheral connections there is one more especially useful configuration to discuss.
In Figure 2-3 a host PC connects to a PRP device which in turns has additional devices connected to it via another
network. These additional devices, from the perspective of the PC, are referred to as remote attached devices. With
PRP, creating ‘bridged’ networks like this is not difficult, as this example shows.

Example

A Host PC is connected via CAN to a PRP device, which in turn is connected via RS485 to two devices; an
ION/CME 500 (#1) and an ION 500 (#2). The host controller needs to set a destination position, and send
a GetVersion command to both of the remote RS485 connected ION Drives.

Example in C-Motion

The first two steps provide general CAN access from the PC to the PRP device, and are similar to our previous
examples other than the switch from Ethernet to CAN.

Next we will open a serial peripheral connection so that we can create two RS485 connections, one to each device.

Next we will create device connections via each of these peripherals. This accomplished via either an OpenDevicePRP
call (for PRP protocol devices) or an OpenDeviceMP (for Magellan/Juno format devices). In this example the #1
device is an ION/CME and therefore a PRP device, while the #2 device is an ION 500 and therefore a Magellan/
Juno protocol device.

Finally we create access handles to the motion processor axes for each device and set the destination position
command and query the unit version.

PMDDeviceOpenPeriphCANFD() // Open CANFD Peripheral connection on Host PC
PMDDeviceOpenPeriphDevicePRP() // Open PRP-based device connection

PMDDeviceOpenPeriphSerial() // Open Serial peripheral connection
PMDPeriphOpenPeriphMultiDrop() // Open multi drop peripheral connection # 1
PMDPeriphOpenPeriphMultiDrop() // Open multi drop peripheral connection # 2

PMDDeviceOpenPeriphDevicePRP() // Open PRP device connection for #1 ION (ION/CME 500)
PMDPeriphOpenDeviceMP() // Open Magellan device connection for #2 ION (ION 500)

PMDDeviceOpenAxis() // Using handle for device #1 get Magellan axis handle
PMDDeviceOpenAxis() // Using handle for device #2 get Magellan axis handle
PMDSetPosition() // Set position to 0x123456 to Axis on device #1
PMDSetPosition() // Set position to 0x234567 to Axis on device #2
PMDGetVersion() // Query version of Magellan on device #1
PMDGetVersion() // Query version of Magellan on device #2

Host CAN
RS485

RAM
CAN
Port

Host
PC

PRP
Device

Magellan
IC

CME

ION/CME
500

RS485
CAN

ION 500
C-Motion PRP II Programming Reference 19

PMD Resource Access Protocol (PRP)2
Example in PRP

Since we don’t need commands to create handles to access the Host PC-attached device, the first step is to open a
serial peripheral connection, then we create two RS485 peripheral connections, first for device #1 and next for device
#2

Device, Addr 0, Open, PeriphSerial, <Serial parameters>
Device, <assigned Addr>, Open, PeriphMultiDrop, <RS485 parameters for #1>
Device, <assigned Addr>, Open, PeriphMultiDrop, <RS485 parameters foir #2>

Next we will create device connections via each of the just-created RS485 peripheral addresses.

Periph, <assigned Addr>, Open, DevicePRP, <Parameters for PRP Device>
Periph, <assigned Addr>, Open, DeviceMP, <Parameters for MP Device>

Finally we send the desired SetPosition and GetVersion commands to each motion control IC.

MotionProcessor, <device Addr #1>, Command, <SetPosition 0x123456>
MotionProcessor, <device Addr #2>, Command, <SetPosition 0x234567>
MotionProcessor, <device Addr #1>, Command, <GetVersion>
MotionProcessor, <device Addr #2>, Command, <GetVersion>

Note that in the above PRP messages the commands sent to the motion processor resource are not sent as ASCII
characters but rather in a packet protocol format. In the mnemonics they are shown in ASCII only for clarity. Magellan
IC packet formats are detailed in the C-Motion Magellan Programming Reference.

2.6.5 Other Peripheral Types

As it turns out there are some peripheral types that do not strictly function as communication ports, but are still
accessed as Peripheral resources. These peripheral types are listed in the table below. Note that some of these peripheral
types, rather than using Send and Receive commands, use Read and Write commands to access their contents.

Peripheral Type
(Sub Action
Name) Description
PeriphPRP PRP Peripherals allow general purpose application-specific communications to occur through

an already established PRP channel. This mechanism, often referred to as tunneling, can be con-
venient for “conversation constrained” network interfaces such as Serial or SPI.

PeriphPIO Each PRP Device has a single PIO Peripheral which gives access to various bit or word encoded
registers. These registers provide read or write access to the unit’s Digital I/O bits, analog
inputs, encoder-related settings, and more.
20 C-Motion PRP II Programming Reference

3

3.PMD C-Motion API
Reference
3.1 Naming Conventions

Procedures and data type names in the CME library are prefixed with “PMD.” This prefix is omitted in the binary
protocol documentation below, but must be included in C programs. C-Motion is the PMD library for Magellan Motion
Processor control, and is a subset of the CME libraries. C-Motion procedures and data type names are also prefixed with
“PMD.”

3.2 Data Types

PRP resources are represented by opaque C types. “Opaque” means that reading and writing members of the data
structures without using the library procedures is not supported. All of these structures must be allocated by the calling
program, and are passed to library procedures by using a pointer argument. They must not be freed or otherwise written
to until explicitly closed.

These data types include:

• PMDDeviceHandle – There are two types of “device:” an RP device is a device that communicates using
the PRP protocol, that is, a Prodigy/CME card or an ION/CME module; an MP device is a device that
communicates using the Magellan/Juno protocol, that is, a non-CME ION module, non-CME Prodigy
card, or other “Magellan attached” device.

• PMDAxisHandle – A control axis of a Magellan Motion Control IC, which may be part of a Magellan
attached device or of a PRP device.

• PMDPeriphHandle – A connection to a peripheral device over a particular communication channel. The
peripheral data type specifies both the communication channel and any addressing information specific to
a remote device, for example a TCP/IP port number or a PC/104 ISA bus base address.

• PMDMemoryHandle – A memory resource on a PRP device or a non-CME Prodigy card.

The include file “PMDtypes.h” defines typedefs for specific integral types that will be used in the prototypes in this
manual:

• PMDuint32, PMDint32 – unsigned and signed 32 bit integers

• PMDuint16, PMDint16 – unsigned and signed 16 bit integers

• PMDuint8, PMDint8 – unsigned and signed 8 bit integers

Many bitmask and enumerated types are also defined in this file.

3.3 Return Values

Almost all of the PMD library procedures return an integer of type PMDresult, indicating success (zero) or failure
(nonzero). The error values of PMDresult are the same as the PRP error values documented in this manual, and are all
C-Motion PRP II Programming Reference 21

PMD C-Motion API Reference3
declared in the “PMDecode.h” file. A partial list of these error codes is in Section 2.5.2, PRP Response Packet, for
more information.

3.4 C-Motion Engine

The C-Motion Engine is a special purpose computer included in PMD’s CME line of products, and connected by a
high speed internal bus to the on-board Magellan Motion Processor, memory, and various communication devices.
The firmware libraries required for motion control and a framework for application support are already included in
the CME device, only the logic specific to a particular application need be programmed into the C-Motion Engine,
making development a much quicker task than it would be for a “ground-up” embedded application.

Most of the instruction cycles in the microprocessor hosting the C-Motion Engine are normally available for running
the user program, but processing of messages sent and received on communication peripherals is done by the same
processor. Heavy message traffic, particularly heavy Ethernet traffic, may therefore reduce the time available for
running the user program.

Dynamic memory allocation is supported using “malloc” and “free.” Because the dynamic heap is of limited size and
is unavoidably subject to fragmentation it is suggested that dynamic allocation be used sparingly, preferably only during
initialization. The heap in most CME devices is approximately 7 kilobytes. The heap in N-Series ION devices is
approximately 500k.

CME tasks can be aborted using PMDTaskAbort. Do not return from a CME task function.

3.4.1 C-Motion Engine Programming

In many ways the C-Motion engine environment is more restrictive than a PC host environment: code size, data size,
and stack size are all more limited (see the User’s Guide for your product). The processor running the C-Motion
Engine is slower than a typical PC processor, but because of the lack of competing processes it can be much more
predictable and quicker to respond.

C-Motion Engine programs are compiled with the GNU C compiler (GCC) provided with the CME SDK. Each
example contains a build.bat file that builds the appropriate example. The resulting binary file is then downloaded to
the CME device via Pro-Motion or the command-line utility StoreUserCode.exe.

3.4.2 Macros

A number of C preprocessor macros are required as part of a C-Motion Engine user code program. These macros are
defined in the “PMDsys.h” file.

USER_CODE_VERSION (MAJOR, MINOR)
USER_CODE_TASK (myProgram)

USER_CODE_VERSION encodes version information in a section of the binary that will be used by the C-Motion
Engine runtime code. It should be put once in the main source file at top level (outside of any function definition).

MAJOR and MINOR are user program version numbers, 16 bit constants that will be reported by Pro-Motion.
USER_CODE_VERSION must be present even if you don’t care to maintain a version number.
22 C-Motion PRP II Programming Reference

PMD C-Motion API Reference 3
USER_CODE_TASK should be used to define the main function of the user code program, its argument is the name
of the function, which should accept no arguments and should never return. A user program skeleton follows:

3.5 Microsoft .NET Programming

3.5.1 Visual Basic Programming

The Visual Basic PMD Library is the interface from Microsoft Visual Basic .NET to the PMD C-Motion library for
control of Magellan Motion Control ICs, which is documented in the Magellan Motion Control IC Programming Reference.
The Visual Basic interface documented in that manual is similar to but not identical to that used for PRP devices. Basic
language programming is supported only for Microsoft Windows hosts, C-Motion Engine programming must be done
in the C language.

There are two parts to the Visual Basic interface code:

1 C-Motion.dll is a dynamically loadable library of all documented procedures in the PMD host libraries,
including all C-Motion procedures.

2 PMDLibrary.vb is Visual Basic source code containing definitions and declarations for DLL procedures,
enumerated types, and data structures supporting the use of C-Motion.dll from Visual Basic. PMDLibrary.vb
should be included in any Visual Basic project for PRP or Magellan device control.

Both debug and release versions of C-Motion.dll are provided in directories CMESDK\HostCode\Debug and
CMESDK\HostCode\Release, respectively. The library input file C-Motion.lib is also provided so that C-Motion.dll may
be used with C/C++ language programs. When compiling C/C++ programs to be linked against the DLL the
preprocessor symbol PMD_IMPORTS must be defined.

C-Motion.dll must be in the executable path when using it, either from a C or a Visual Basic program. Frequently the
easiest and safest way of doing this is to put it in the same directory as the executable file.

PMDLibrary.vb is located in the directory CMESDK\HostCode\DotNet.

3.5.2 Visual Basic Classes

The file PMDLibrary.vb defines a Visual Basic class for each of the opaque data types used in the PMD library:
PMDPeripheral, PMDDevice, PMDAxis, and PMDMemory. PMDPeripheral is inherited by a set of derived classes

#include “C-Motion.h”
#include "PMDsys.h"

// this macro is required at the beginning of a CME user application
USER_CODE_VERSION (1,0)
// UserTCP is the name of the main task function
USER_CODE_TASK (myProgram)
{
…

 while (I) {
 // Handle task events
 }
 PMDTaskAbort(0);

}

C-Motion PRP II Programming Reference 23

PMD C-Motion API Reference3
for each peripheral type: PMDPeripheralSerial, PMDPeripheralMultiDrop, PMDPeripheralPRP,
PMDPeripheralCAN, PMDPeripheralSPI, and PMDPeripheralTCP.

Each class takes care of allocating and freeing the memory used for the “handle” structures used in the C language
interface. The first pointer argument to, for example, a PMDPeriphHandle in a C language procedure call is not
needed because a method call for a particular PMDPeripheral object is used instead, and each object manages its own
PMDPeriphHandle.

The “Open” procedures used in the C language interface are replaced in Visual Basic with constructor methods that
take the same arguments in the same order, with the exception that the first pointer argument is not needed. “Close”
methods are provided that call the C language “Close” procedures, however these procedures may also be called
automatically as part of the finalization process when objects are garbage collected.

The following example demonstrates how to open a peripheral connection to a PRP device accessible by TCP/IP, and
to access the resources of that device.

Public Class Examples
 Public Sub Example1()

' Allocate and open a peripheral connection to a PRP device using TCP/IP.
' Note that the arguments for the PMDPeripheralTCP object are the same as for the
' C language call PMDDeviceOpenPeriphTCP, except that the first argument for the peripheral
' struct pointer and the second argument for the device are not used.
' The standard .NET class for IP addresses is used instead of a numeric IP address.
' DEFAULT_ETHERNET_PORT is a constant defined in PMDLibrary.vb for the default
' TCP port used for commands by the PRP device.
' 1000 is a timeout value in milliseconds.
Dim periph As New PMDPeripheralTCP(System.Net.IPAddress.Parse("192.168.0.27"), _
 DEFAULT_ETHERNET_PORT, _
 1000)

' Now allocate and connect a device object using the newly opened peripheral.
' Instead of using two different names the second argument specifies whether a
' PRP device or attached Magellan device is expected.
Dim DevCME As New PMDDevice(periph, PMDDeviceType.ResourceProtocol)

' Once the PRP device is open we can obtain an axis object, which may be used
' for any C-Motion commands. Notice that the enumerated value used to specify the axis is
' called "Axis1" instead of "PMDAxis1" because the enumeration name already includes
‘ the “PMD” prefix.
Dim axis1 As New PMDAxis(DevCME, PMDAxisNumber.Axis1)

' C-Motion procedures returning a single value become class properties, and may be
' retrieved or set by using an assignment. The "Get" or "Set" part of the name is dropped.
Dim pos As Int32
pos = axis1.ActualPosition

' The following line sets the actual position of the axis to zero.
axis1.ActualPosition = 0

' Properties may accept parameters, for example the CurrentLoop parameter is used to set
' control gains for the current loops, and takes two parameters. This example sets
' the proportional gain for phaseA to 1000
axis1.CurrentLoop(PMDCurrentLoopNumber.PhaseA, _
PMDCurrentLoopParameter.ProportionalGain) = 1000

' C-Motion procedures returning multiple values become Sub methods, and return their
' values using ByRef parameters. The "Get" and "Set" parts of the names are the same as
' in the C language binding.
Dim MPmajor, MPminor, NumberAxes, special, custom, family As UInt16
Dim MotorType As PMDMotorTypeVersion
axis1.GetVersion(family, MotorType, NumberAxes, special, custom, MPmajor, MPminor)

' If the objects opened here are not explicitly closed they will be closed by the
' garbage collector.
 End Sub
End Class

Several general points about the translation from C to Visual Basic are shown in the example:
24 C-Motion PRP II Programming Reference

PMD C-Motion API Reference 3
• Argument type and order are the same, except that the initial “handle” pointer argument is not needed.
The null device pointer used to indicate that a peripheral is opened on the local device is also not needed.

• “Get/Set” procedures returning a single argument become object properties, with parameters if needed.
The property name does not contain “Get” or “Set”, or the “PMD” prefix.

• Procedures returning or setting multiple values are implemented as Sub methods, returning values via
ByRef parameters. “Get” or “Set” is retained in the names, but the “PMD” prefix is not.

• Enumerated value names do not use the “PMD” prefix, but the enumeration names do.

• Procedures reading or writing array data through C pointers instead take Visual Basic arrays of the
appropriate type.

3.5.3 C# Programming

The C# language is very similar to the VB language. A C# PMD program uses the PMDLibrary.dll created by the
ClassLibrary project located in CMESDK\HostCode\DotNet\ClassLibrary. An example C# PMD program can be
found in CMESDK\HostCode\DotNet\CSTestApp.

3.5.4 Error Handling

Almost all of the PMD C language library procedures return an error code to indicate success or failure. The Visual
Basic versions of these procedures instead throw an exception if the wrapped DLL procedures return an error code.
The exception message will contain the error number and a short description of the error. The Data member of the
exception will contain the error number as an enumeration of type PMDresult, associated with the key “PMDresult”,
so that structured exception handling may be used to appropriately handle errors.

The following example commands a PRP device to reset, and then ignores the expected error return on the next
command:

dev.Reset()
Try
 Dim major, minor As UInt32
 dev.Version(major, minor)
Catch ex As Exception When ex.Data("PMDresult").Equals(PMDresult.ERR_RP_Reset)
' Ignore the expected error
 End Try

Any errors that are not caught will cause the application to display a popup window displaying an error message,
including the error number and description, and a stack trace with file names and line numbers. The popup window
allows a user to continue, ignoring the error, or to abort the application.

While popup windows are useful for debugging, any application controlling motors should be designed to recover
gracefully and safely from any foreseeable error condition, and it is recommended to use Try blocks liberally to make
applications more robust.

3.6 PMD Library Procedures

This section documents the PMD C language interface to the library procedures for programming a CME PRP device,
both in hosted programs and C-Motion Engine user programs. Most procedure calls are syntactically the same in both
environments, but their implementation is of course quite different.

In many cases a PRP action corresponds closely to the action of a library procedure, but this is not invariable. One
procedure call may involve a PRP action, or none. Whether PRP is used may depend on whether the procedure call is
C-Motion PRP II Programming Reference 25

PMD C-Motion API Reference3
executed on the host or in a C-Motion Engine user program, and on whether it is directed at a remote device or the
device on which the program itself is running.

There are a few conventions common to many procedures:

• When opening a handle to some object a pointer to an uninitialized instance of the appropriate data type
is passed first, and the open procedure will write to it. The initialized data type should not be written to
as long as it is in use.

• Most procedures return an integer status code of type PMDresult. A zero indicates success, and a non-
zero value failure or error.

• Many procedures that accept a pointer to a PMDDeviceHandle as an argument should be passed a null
pointer to indicate the “local” device. For C-Motion Engine user programs the local device is the device
hosting the C-Motion Engine. For hosted programs, for example when opening a peripheral, the local
device is the host itself.

3.7 C-Motion to API PRP Table

The table below provides an alphabetical listing of the C-Motion API with its corresponding PRP packet content
including Resource, Action, And Sub-Action IDs if applicable. Note that C-Motion calls which do not have corresponding
PRP packets are not shown in this table.

For a complete alphabetical list of the C-Motion PRP II API calls refer to Appendix B, Summary List of C-Motion
API. For a complete description of the C-Motion Magellan API refer to the C-Motion Magellan Programming Reference.]

C-Motion Procedure PRP Resource PRP Action PRP Sub-action
PMDCMETaskGetInfo CMotionEngine Get TaskInfo

PMDCMEGetUserCodeChecksum CMotionEngine Get FileChecksum

PMDCMEGetUserCodeDate CMotionEngine Get FileDate

PMDCMEGetUserCodeName CMotionEngine Get FileName

PMDCMEGetUserCodeVersion CMotionEngine Get FileVersion

PMDCMEStoreUserCode CMotionEngine Command Flash

PMDCMETaskStart CMotionEngine Command TaskControl

PMDCMETaskStop CMotionEngine Command TaskControl

PMDDeviceClose Device Close

PMDDeviceClose MotionProcessor Close

PMDDeviceGetDefault Device Get Default

PMDDeviceGetFaultCode Device Get FaultCode

PMDDeviceGetInfo Device Get Version

PMDDeviceGetSystemTime Device Get SystemTime

PMDDeviceOpenPeriphCANFD Device Open PeriphCANFD

PMDDeviceOpenPeriphCAN Device Open PeriphCAN

PMDDeviceOpenPeriphSerial Device Open PeriphSerial

PMDDeviceOpenMemory Device Open Memory

PMDDeviceOpenPeriphPIO Device Open PeriphPIO

PMDDeviceOpenPeriphPRP Device Open PeriphPRP

PMDDeviceOpenPeriphSPI Device Open PeriphSPI

PMDDeviceOpenPeriphTCP Device Open PeriphTCP

PMDDeviceOpenPeriphUDP Device Open PeriphUDP

PMDDeviceReset Device Reset

PMDCMESetConsole CMotionEngine Set Console
26 C-Motion PRP II Programming Reference

PMD C-Motion API Reference 3
PMDDeviceSetDefault Device Set Default

PMDMemoryClose Memory Close

PMDMemoryErase Memory Clear

PMDMemoryRead Memory Read

PMDMemoryWrite Memory Write

PMDPeriphClose Peripheral Close

PMDPeriphOpenDeviceMP Peripheral Open DeviceMP

PMDPeriphOpenPeriphMultiDrop Peripheral Open PeriphMultiDrop

PMDPeriphOpenDevicePRP Peripheral Open DevicePRP

PMDPeriphRead Peripheral Read

PMDPeriphReceive Peripheral Receive

PMDPeriphSend Peripheral Send

PMDPeriphWrite Peripheral Write

PMDDeviceSetSystemTime Device Set SystemTime

C-Motion Procedure PRP Resource PRP Action PRP Sub-action
C-Motion PRP II Programming Reference 27

PMD C-Motion API Reference3
3.8 Alphabetical C-Motion API
Reference
28 C-Motion PRP II Programming Reference

3

PMDAxisOpen C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDAxisOpen(PMDAxisHandle *hAxis,
 PMDDeviceHandle *hDevice,
 PMDAxis axis_number);

C# Syntax Axis axis = new Axis(device, AxisNumber.Axis);

VB Syntax Dim axis As New(device, PMDAxisNumber.Axis)

Description PMDAxisOpen is used to obtain a handle to a single control axis of a Magellan Motion Processor, which
will be used for all C-Motion procedures. The hAxis argument should point to an uninitialized
PMDAxisHandle struct, which should not be freed or written to as long as the handle is required. The
device argument should point to an open PMDDeviceHandle handle, which may represent either a
PMD device or a Magellan attached device. In a C-Motion engine user program, device may be null, in
which case the Magellan processor on the local device will be opened.

For example, to open the first axis on the local Magellan processor from a CME user program:

PMDAxisHandle axis1;
PMDresult result;

result = PMDAxisOpen(&axis1, 0, PMDAxis1);

And to open the second axis on a Magellan attached device accessible by CANBus:

PMDPeriphHandle periph;
PMDDeviceHandle dev;
PMDAxisHandle axis2;
PMDresult result;

// First open the peripheral connection, CAN_TX, CAN_RX, and CAN_EVENT
// depend on how the attached device is configured.
result = PMDDeviceOpenPeriphCAN(&periph, 0, CAN_TX, CAN_RX, CAN_EVENT);
// Now open an MP Device on the peripheral
if (PMD_NOERROR == result)
 status = PMDPeriphOpenDeviceMP(&dev, &periph);
// Now we’re ready to obtain the axis handle.
if (PMD_NOERROR == result)
 result = PMDAxisOpen(&axis2, &dev, PMDAxis2);

PRP Action None

Name Type
hAxis pointer to PMDAxisHandle
hDevice pointer to an open PRP device handle or NULL if local
axis_number enumeration PMDAxis1 to PMDAxis4
C-Motion PRP II Programming Reference 29

30

3

PMDCMEGetUserCodeChecksum C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDCMEGetUserCodeVersion(PMDDeviceHandle *hDevice,
 PMDuint32* checksum);

C# Syntax UInt32 value;
value = device.UserCodeChecksum();

VB Syntax Dim value as UInt32
value = device.UserCodeChecksum()

Description The function PMDCMEGetUserCodeChecksum is used to retrieve the CRC-32 of the user code that
is stored in the CME.

PRP Action Get FileChecksum CMotionEngine

Name Type
hDevice pointer to open RP device handle or NULL if local
checksum CRC of the user code that is stored in the CME
C-Motion PRP II Programming Reference

3

PMDCMEGetUserCodeDate C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDCMEGetUserCodeDate(PMDDeviceHandle *hDevice,
 char* date);

C# Syntax String value = device.UserCodeDate();

VB Syntax Dim value as String
value = device.UserCodeDate()

Description The function PMDCMEGetUserCodeDate is used to retrieve the file date of the user code that is
stored in the CME.

PRP Action Get FileDate CMotionEngine

Name Type
hDevice pointer to open RP device handle or NULL if local
date date of the user code file that is stored in the CME
C-Motion PRP II Programming Reference 31

32

3

PMDCMEGetUserCodeName C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDCMEGetUserCodeName(PMDDeviceHandle *hDevice,
 char* filename);

C# Syntax String value = device.UserCodeName();

VB Syntax Dim value as String
value = device.UserCodeName()

Description The function PMDCMEGetUserCodeName is used to retrieve the file name of the user code that is
stored in the CME.

PRP Action Get FileName CMotionEngine

Name Type
hDevice pointer to open RP device handle or NULL if local
filename file name of the user code that is stored in the CME
C-Motion PRP II Programming Reference

3

PMDCMEGetUserCodeVersion C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDCMEGetUserCodeVersion(PMDDeviceHandle *hDevice,
 PMDuint32* version);

C# Syntax UInt32 value;
value = device.UserCodeVersion();

VB Syntax Dim value as UInt32
value = device.UserCodeVersion()

Description The function PMDCMEGetUserCodeVersion is used to retrieve the user-specified version of the
user code that is stored in the CME.

PRP Action Get FileVersion CMotionEngine

Name Type
hDevice pointer to open RP device handle or NULL if local
version version of the user code that is stored in the CME
C-Motion PRP II Programming Reference 33

34

3

PMDCMESetConsole C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDCMESetConsole(PMDDeviceHandle *hDevice,
 PMDPeriphHandle *hPeriph);

C# Syntax device.SetConsole(periph);

VB Syntax device.SetConsole(periph)

Description The function PMDCMESetConsole is used to set the console peripheral to the one indicated in the
hPeriph handle. See the PRP action for more information.

PRP Action Set Console CMotionEngine

Name Type
hDevice pointer to open RP device handle or NULL if local
hPeriph pointer to open peripheral handle to set the console to
C-Motion PRP II Programming Reference

3

PMDCMEStoreUserCode C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDCMEStoreUserCode(PMDDeviceHandle* hDevice,
 PMDuint8* pdata,
 int length);

C# Syntax Byte *pdata;
UInt32 length;
device.StoreUserCode(data, length);

VB Syntax Dim pdata As Byte()
Dim length as UInt32
device.StoreUserCode(pdata, length)

Description PMDCMEStoreUserCode is used to store a user program in the CME device addressed by the hDevice
device handle. The pdata parameter is a pointer to the data buffer that contains the contents of the
binary compiled from the CMESDK. The length parameter is the size of the buffer pointed to by the
pdata parameter. The binary data is sent to the device in multiple PRP packets using the Command
Flash CMotionEngine action.

PRP Action Command Flash CMotionEngine

Name Type
hDevice pointer to an open PRP device handle
pdata pointer to data buffer
length length of data buffer in bytes
C-Motion PRP II Programming Reference 35

36

3

PMDCMETaskGetInfo C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDCMETaskGetInfo(PMDDeviceHandle *hDevice,
 int tasknumber,
 PMDTaskInfo infoID,
 PMDint32* value);

C# Syntax UInt32 value;
Byte taskno;
value = device.TaskGetInfo(taskno, PMDTaskInfo.InfoID);

VB Syntax Dim taskno as Byte
Dim value as UInt32
value = device.TaskGetInfo(taskno, PMDTaskInfo.InfoID)

Description The function PMDCMETaskGetInfo is used to retrieve information about a particular task such as its
state, remaining stack space, abort code, or priority.

PRP Action Get TaskInfo CMotionEngine

Name Type
hDevice pointer to an open PRP device handle or NULL if local
tasknumber task number
infoID a value of PMDTaskInfo that identifies the information to retrieve
value a 32 bit value representing the task information
C-Motion PRP II Programming Reference

3

PMDCMETaskStart C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDCMETaskStart (PMDDeviceHandle *hDevice);

C# Syntax device.TaskStart();

VB Syntax device.TaskStart()

Description PMDCMETaskStart is used to start a user program installed in the C-Motion Engine that is part of the
CME device associated with the hDevice argument. If hDevice is not a PRP device then
PMD_ERR_Not_Supported will be returned. If no runnable program is installed then
PMD_ERR_UC_NotProgrammed will be returned. If a program is already running, then
PMD_ERR_UC_TaskAlreadyRunning will be returned.

PRP Action Command TaskControl CMotionEngine

Name Type
hDevice pointer to PMDDeviceHandle
C-Motion PRP II Programming Reference 37

38

3

PMDCMETaskStop C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDCMETaskStop(PMDDeviceHandle *hDevice);

C# Syntax device.TaskStop();

VB Syntax device.TaskStop()

Description PMDCMETaskStop is used to stop any user program currently running in the C-Motion Engine that
is part of the PRP device associated with the hDevice argument. If hDevice is not a CME PRP device
then PMD_ERR_Not_Supported will be returned. If no program is currently running, then
PMD_ERR_UC_TaskNotCreated will be returned. If no program is installed, then
PMD_ERR_UC_NotProgrammed will be returned.

It is the user’s responsibility to ensure safety when starting or stopping a user program that controls
motors. It is not possible to predict the state of the PRP device or of it's motion processor at the instant
that the user program is stopped. PMD strongly recommends that a task be stopped only to correct
unrecoverable errors and that the card and any devices that it controls be put immediately into a known
safe state using host commands. Because the card resources and the dynamic heap are not in a known
state it is not safe to restart a task after stopping it without first resetting the entire device. Stopping a
task may cause a mutex timeout in other tasks and host applications accessing the Magellan because the
mutex and other resources do not get released when a task is stopped.

PRP Action Command TaskControl CMotionEngine

Name Type
hDevice pointer to PMDDeviceHandle
C-Motion PRP II Programming Reference

3

PMDDeviceClose C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceClose(PMDDeviceHandle *hDevice);

C# Syntax device.Close();

VB Syntax device.Close()

Description PMDDeviceClose is used to free any resources used in maintaining the device handle passed as a
pointer argument. After closing the device handle, the memory used for hDevice may be freed or re-used
for another device.

PRP Action Close various

Name Type
hDevice pointer to PMDDeviceHandle
C-Motion PRP II Programming Reference 39

40

3

PMDDeviceGetDefault C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceGetDefault(PMDDeviceHandle *hDevice,
 PMDDefault defaultcode,
 void *value,
 unsigned valueSize);

C# Syntax UInt32 value32;
device.GetDefault(PMDDefault.code, value32);

VB Syntax Dim value32 As UInt32
device.GetDefault(PMDDefault.code, value32)

Description PMDDeviceGetDefault is used to retrieve the value of a device default. Device defaults are various non-
volatile properties of the PRP device for example the IP address, or whether to run a user program
immediately after power up.

hDevice is a pointer to a handle associated with the device to retrieve the value of a device default. In C-
Motion Engine user programs hDevice may be a null pointer, meaning the local device.

default is a numeric default code, please see the description of the Set DefaultDevice action in
Section 2.4, PRP Addresses for a table of supported default codes and their meaning.

value is a pointer to a data area in which to store the default code, and valueSize is the size, in bytes, of
the area. The size of a default depends on the particular data type, and is encoded in the upper byte of
the default code – a value of zero means one byte, one means two bytes, and n means n – 1 bytes.
valueSize is required in order to prevent buffer overruns, an error code will be returned if valueSize is
not large enough to contain the default value.

Two byte default values are generally 16 bit integers, and four byte values 32 bit integers. The value
pointer must be properly aligned to hold these values.

PRP Action Get Default Device

Name Type
hDevice pointer to an open PRP device handle or NULL if local
defaultcode enumerated default code
value pointer to memory area to receive default value
valueSize maximum size of value area
C-Motion PRP II Programming Reference

3

PMDDeviceGetFaultCode C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceGetFaultCode(PMDDeviceHandle *hDevice,
 PMDFaultCode faultID,
 PMDint32* value);

C# Syntax UInt32 value;
value = device.GetFaultCode(PMDFaultCode.faultid);

VB Syntax Dim value as UInt32
value = device.GetFaultCode(PMDFaultCode.faultid)

Description The function PMDDeviceGetFaultCode is used to retrieve any fault codes such as PMDInitFault,
PMDException or PMDResetCause. See the PRP action for more information.

PRP Action Get FaultCode Device

Name Type
hDevice pointer to open RP device handle or NULL if local
faultID a value of PMDFaultCode that identifies the information to retrieve
value a 32 bit value representing the fault code requested
C-Motion PRP II Programming Reference 41

42

3

PMDDeviceGetInfo C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceGetInfo(PMDDeviceHandle *hDevice,
 PMDDeviceInfo infoID,
 PMDuint16 option,
 PMDint32* value);

C# Syntax UInt32 value, optionID;
value = device.GetInfo(PMDDeviceInfo.infoID, optionID);

VB Syntax Dim value as UInt32
Dim optionID as UInt32
value = device.GetInfo(PMDDeviceInfo.infoID, optionID)

Description The function is used to retrieve information about the device such as its firmware version, logic version
and host interface. The requested information is one of PMDDeviceInfo.

The PMDDeviceInfo_CMEVersion infoID returns the firmware version in this format:

The PMDDeviceInfo_LogicVersion infoID returns the logic version as a 16 bit value.

The PMDDeviceInfo_HostInterface infoID returns the available host interfaces as one or more of
PMDHostInterface.

The PMDDeviceInfo_Heap infoID returns the heap information specified in the option parameter as one
of PMDHeap.

The PMDHeap_AvailableBytes returns the total amount of heap space remaining in bytes. There is no
guarantee that all of this can be allocated, depending no what sizes are asked for. The
PMDHeap_MinimumAvailableBytes option return how close we have come to running out of heap space
so far.

PRP Action Get Info Device

Name Type
hDevice pointer to an open PRP device handle or NULL if local
infoID a value of PMDDeviceInfo that identifies the information to retrieve
option not used
value a 32 bit value representing the task information requested

typedef enum {
PMDDeviceInfo_CMEVersion = 0, // byte3=mode, byte2=major, byte1=customcode, byte0=minor
PMDDeviceInfo_LogicVersion = 1, // 16 bit version
PMDDeviceInfo_HostInterface = 2, // one or more of PMDHostInterface
PMDDeviceInfo_MemorySize = 3, // with optional parameter set to one of PMDMemoryAddress
PMDDeviceInfo_Heap = 5, // with optional parameter set to one of PMDHeap
PMDDeviceInfo_IPaddress = 6, // IPv4 address of the device

} PMDDeviceInfo;

byte 3 byte 2 byte 1 byte 1
reserved major custom minor

typedef enum {
PMDHostInterface_Serial = 1,
PMDHostInterface_CAN = 2,
PMDHostInterface_SPI = 4,
PMDHostInterface_Ethernet = 8,

} PMDHostInterface;

typedef enum {
PMDHeap_AvailableBytes = 0,
PMDHeap_MinimumAvailableBytes = 1,

} PMDHeap;
C-Motion PRP II Programming Reference

3

PMDDeviceGetMicroseconds C-Motion Engine
Arguments None

C Syntax PMDuint32 PMDDeviceGetMicroseconds(void);

Description The function PMDDeviceGetMicroseconds is used to obtain a count of the number of microseconds
since the C-Motion Engine was reset, and may be used for timing events. Note that the count is not from
the time the user program began to run. The count will wrap around to zero after 0xFFFFFFFF
(4294967295) microseconds.

PRP Action None
C-Motion PRP II Programming Reference 43

44

3

PMDDeviceGetSystemTime C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceGetSystemTime(PMDDeviceHandle* hDevice,
 SYSTEMTIME* time);

C# Syntax SYSTEMTIME time;
device.GetSystemTime(time);

VB Syntax Dim time as PMD.SYSTEMTIME
device.GetSystemTime(time)

Description PMDDeviceGetSystemTime is used to obtain the date and time from the built-in real-time clock. The
time argument is a pointer to a SYSTEMTIME structure which is the same format as the Windows
SYSTEMTIME structure. The milliseconds value has an accuracy of approximately 3 milliseconds.

typedef struct _SYSTEMTIME {
 WORD wYear;
 WORD wMonth; // The current month; January is 1.
 WORD wDayOfWeek; // The current day of the week; Sunday is 0, Monday is 1, etc.
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME

PRP Action Get Time Device

Name Type
hEvent pointer to an open PRP device handle or NULL if local
time pointer to a SYSTEMTIME structure
C-Motion PRP II Programming Reference

3

PMDDeviceGetTickCount C-Motion Engine Host-Based
Arguments None

C Syntax PMDuint32 PMDDeviceGetTickCount(void);

Description PMDDeviceGetTickCount returns the number of milliseconds from the time the C-Motion Engine
from which it is called has been running. The count is maintained with a granularity of 1 milliseconds,

and will overflow to zero after 232 milliseconds.

PRP Action None
C-Motion PRP II Programming Reference 45

46

3

PMDDeviceOpenMemory C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceOpenMemory (PMDMemoryHandle *hMemory,
 PMDDeviceHandle *hDevice,
 PMDDataSize datasize,
 PMDMemoryAddress memoryaddress);

C# Syntax PMDMemory memory = new
PMDMemory(deviceRP, PMDDataSize.Size32Bit);

VB Syntax Dim mem As New PMDMemory(deviceRP, PMDDataSize.Size32Bit)

Description PMDDeviceOpenMemory is used to obtain a handle to a memory resource such as dual-ported RAM
on a Prodigy/CME or non-CME Prodigy card. hDevice specifies the device containing the memory, and
may have been opened using PMDPeriphOpenDeviceMP (for non-CME cards), or
PMDPeriphOpenDevicePRP (for CME cards). In the case of C-Motion Engine user programs
needing to read or write the local memory, hDevice should be a null pointer.

The width argument indicates the size of the data that are read or written to the memory device. All
currently supported memory devices support only 32 bit access, so width must be PMDDataSize_32bit.
All accesses to the memory must use addresses dword-aligned, ie divisible by four, and use buffer lengths
that are also divisble by four.

For all current products memoryaddress is one of:

PMDMemoryType_DPRAM

PMDMemoryType_NVRAM

PMDMemoryType_RAM

PRP Action Open Memory Device

Name Type
hMemory pointer to uninitialized PMDMemoryHandle
hDevice pointer to PMDDeviceHandle
datasize PMDDataType
memoryaddress PMDMemoryAddress
C-Motion PRP II Programming Reference

3

PMDDeviceOpenPeriphCAN C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceOpenPeriphCAN(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint32 addressTX,
 PMDuint32 addressRX,
 PMDuint32 addressEvent;

C# Syntax UInt32 addressTX, addressRX, addressEvent;
PMDPeripheral periph = new PMDPeripheralCAN(addressTX, addressRX,
addressEvent);

VB Syntax Dim addressTX As UInt32
Dim addressRX As UInt32
Dim addressEvent As UInt32
Dim periph As New PMDPeripheralCAN(addressTX, addressRX, addressEvent)

Description PMDDeviceOpenPeriphCAN is used to open a peripheral connection to a device on a CANBus that
uses two or three CAN identifiers for communication, for example a Magellan attached device or a
Prodigy/CME card. hPeriph should point to an uninitialized PMDPeriphHandle data structure. hDevice
should point to an open device handle corresponding to a PRP device, hDevice may be a null pointer,
which means the local device, either the host or, for C-Motion Engine user programs, the local PRP
device.

addressTX is a CAN identifier that will be used for sending outgoing packets. addressRX is a CAN
identifier that will be used to listen for incoming packets. Currently only 11 bit CAN identifiers are
supported.

addressEvent is an optional CAN identifier used for receiving asynchronous event notification packets
from a Magellan attached device. If no such event notification is needed then addressEvent should be
zero.

PRP Action None

Name Type
hPeriph pointer to uninitialized PMDPeriphHandle
hDevice pointer to an open device handle
addressTx CAN identifier for transmit
addressRx CAN identifier for receive
addressEvent CAN identifier for event notification receive
C-Motion PRP II Programming Reference 47

48

3

PMDDeviceOpenPeriphCANFD C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceOpenPeriphCANFD(PMDPeriphHandle* hPeriph,
 PMDDeviceHandle* hDevice,
 PMDCANPort port,
 PMDparam baud,
 PMDparam addressTX,
 PMDparam addressRX,
 PMDparam addressMode);

C# Syntax UInt32 addressTX, addressRX;
PMDPeripheral periph = new PMDPeripheralCANFD(PMDCANPort.port,
PMDCANBaud.baud, addressTX, addressRX, 0);

VB Syntax Dim addressTX As UInt32
Dim addressRX As UInt32
Dim periph As New PMDPeripheralCANFD(PMDCANPort.port, PMDCANBaud.baud,
addressTX, addressRX, 0)

Description PMDDeviceOpenPeriphCANFD is used to open a peripheral connection to a device on a CANBus
that uses two CAN identifiers for communication, for example a Magellan attached device or another
CME device. hPeriph should point to an uninitialized PMDPeriphHandle data structure. hDevice should
point to either an open device handle corresponding to a PRP device or a null pointer, which means the
local device. port is the local physical CANFD port on the device itself: 0 for ExpCAN, and 1 for
HostCAN (if applicable). baud sets the bitrate of the specified CANcontroller. CANFD supports 2
bitrates during the transmission of a frame: a nominal bitrate and a data bitrate. The nominal bitrate is
one of the standard CAN bitrates: 10,000 to 1,000,000 bps. The data bit rate has a range of 1,000,000 to
5,000,000 bps. The low nibble (bits 0-3) of the baud parameter sets the nominal bit rate with a range of
0-7 representing 1Mbps to 10kbps respectively. The second nibble (bits 4-7) sets the data bit rate with a
range of 4-7 representing 5Mbps to 1Mbps respectively. The bitrate for the CAN port is set to the bitrate
of the last call to PMDDeviceOpenPeriphCANFD. All the devices on the bus must be set to the same
bitrate. addressTX is the CAN identifier that will be used for sending outgoing packets. addressRX is the
CAN identifier that will be used to listen for incoming packets. Currently, only 11 bit CAN identifiers
are supported. addressMode is not used and must be set to 0.

typedef enum {
 PMDCANBaud1000000 = 0,
 PMDCANBaud800000 = 1,
 PMDCANBaud500000 = 2,
 PMDCANBaud250000 = 3,
 PMDCANBaud125000 = 4,
 PMDCANBaud50000 = 5,
 PMDCANBaud20000 = 6,
 PMDCANBaud10000 = 7
} PMDCANBaud;
typedef enum {
 PMDCANFDDataBaudNone = 0 << 4,
 PMDCANFDDataBaud5000000 = 4 << 4,
 PMDCANFDDataBaud4000000 = 5 << 4,
 PMDCANFDDataBaud2000000 = 6 << 4,
 PMDCANFDDataBaud1000000 = 7 << 4,
} PMDCANFDDataBaud;

PMDCANFDBaud is the logical or of PMDCANBaud and PMDCANFDDataBaud.

PRP Action Open CANFD Device

Name Type
hPeriph pointer to uninitialized peripheral handle
hDevice pointer to an open PRP device handle or NULL if local
port ExpCAN or HostCAN port (0-1)
baud CAN bitrate (one of PMDCANFDBaud)
addressTx CAN identifier for transmit (0-2047)
addressRx CAN identifier for receive (0-2047)
addressMode reserved (0)
C-Motion PRP II Programming Reference

3

PMDDeviceOpenPeriphCME C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceOpenPeriphCME(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice);

Description PMDDeviceOpenPeriphCME is used to open a connection to a virtual peripheral using PRP user
packets. User packets may contain data for user application control and monitoring in any format, but are
limited in size to USER_PACKET_LENGTH (250) bytes. User packets are sent as discrete units, they do
not constitute a stream.

User packets are transported in PRP packets, that is, they are “tunneled” through PRP, and are a very
simple way to establish communication between host programs and C-Motion engine user programs
because they do not require opening a separate communication channel, nor implementing a low-level
protocol over it.

PMDDeviceOpenPeriphCME is used to open both sides of the user packet channel: On the host side
an opened device handle associated with a PRP device must be passed using the hDevice argument. On
the C-Motion engine side a user program should pass a null pointer as hDevice.

The peripheral handle opened by PMDDeviceOpenPeriphCME may be used in the same way as other
peripheral handles, using PMDPeriphSend, PMDPeriphReceive, and PMDPeriphClose.

When considering the timeout parameter for peripheral send and receive commands for user packets, it
is useful to know that the C-Motion Engine can buffer one user packet on the incoming side, and one
on the outgoing side. The timeout period is not determined by when something actually reads a user
packet, but rather by when it is copied into the appropriate buffer. There are four cases to consider:

1. A host sending user packets to a CME can always send one packet without a timeout, but the second
packet will time out if a CME user program has not read the first packet in the specified time.

2. A host receiving user packets from a CME will time out if a CME user program has not written a
packet to the outgoing buffer by the specified time.

3. A CME sending user packets to a host can always send one packet without a timeout, but the second
packet will time out if a host program has not read the first packet in the specified time.

4. A CME receiving user packets will time out if a host program has not written a user packet to the
incoming buffer in the specified time.

PRP Action None

Name Type
hPeriph pointer to uninitialized PMDPeriphHandle
hDevice pointer to an open PRP device handle
C-Motion PRP II Programming Reference 49

50

3

PMDDeviceOpenPeriphPIO C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceOpenPeriphPIO(PMDPeriphHandle* hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint16 address,
 PMDuint8 eventIRQ,
 PMDDataSize datasize);

C# Syntax UInt32 address;
PMDPeripheral periph = new PMDPeripheralPIO(address, 0,
PMDDataSize.Size16Bit);

VB Syntax Dim address As UInt16
Dim periph As New PMDPeripheralPIO(address, 0, PMDDataSize.Size16Bit)

Description PMDDeviceOpenPeriphPIO is used to open a peripheral handle representing a parallel channel on the
indicated device. The nature of the parallel channel is specific to the device being addressed. N-Series
ION/CME supports parallel channels used for digital I/O, encoder configuration parameters, and for
analog input.

The address argument indicates the specific parallel channel to be opened, and is device-specific. The
datasize argument indicates the data width of the peripheral to be opened, that is, the number of 8 bit
bytes read or written with each operation. Only one data width is normally supported for each type of
parallel channel. The eventIRQ argument indicates the interrupt used for parallel communication, and is
not used in N-Series ION/CME.

Consult the appropriate device user manual for details.

PRP Action Open PIO Device

Name Type
hPeriph pointer to uninitialized peripheral handle
hDevice pointer to a valid device handle
address 16 bit address indicating peripheral channel to open
eventIRQ device-specific interrupt channel
datasize data width of the peripheral in bytes
C-Motion PRP II Programming Reference

3

PMDDeviceOpenPeriphPRP C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceOpenPeriphPRP(PMDPeriphHandle* hPeriph,
 PMDDeviceHandle* hDevice,
 PMDparam channel,
 PMDparam bufsize);

C# Syntax UInt32 channel, bufsize;
PMDPeripheral periph = new PMDPeripheralPRP(channel, bufsize);

VB Syntax Dim channel, bufsize As UInt32
Dim periph As New PMDPeripheralPRP(channel, bufsize)

Description PMDDeviceOpenPeriphPRP is used to open a virtual peripheral using PRP packets. It is similar to the
CME user packet peripheral accessed via PMDDeviceOpenPeriphCME but transfers a stream of bytes
rather than a single “user packet” of a fixed size.

A peripheral connection is made using the function PMDDeviceOpenPeriphPRP, where hPeriph is the
peripheral handle that will be assigned, hDevice is the device handle of the remote PRP device or NULL
to indicate the local device, channel is the channel number from 2-10 (1 is reserved for the PRP console)
and bufsize is the size of the buffer to allocate. Data are sent and received using PMDPeriphSend and
PMDPeriphReceive.

When a PRP peripheral channel is opened by CME user code two buffers of size bufsize bytes each are
created, one for sending data and one for receiving data. If the buffer memory cannot be allocated
PMD_ERR_Memory will be returned. When a PRP peripheral channel is opened by host software the
channel is assigned to the peripheral handle but no PRP “open” command is sent. If the host attempts
to send or receive data to a channel that is not opened by the CME a PMD_ERR_NotConnected error is
returned.

PRP Action None

Name Type
hPeriph pointer to uninitialized peripheral handle
hDevice pointer to an open PRP device handle or NULL if local
channel channel number (1-10)
bufsize size of buffer in bytes to allocate
C-Motion PRP II Programming Reference 51

52

3

PMDDeviceOpenPeriphSerial C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceOpenPeriphSerial(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDSerialPort port,
 PMDSerialBaud baud,
 PMDSerialParity parity,
 PMDSerialStopBits stopbits);

C# Syntax PMDPeripheral periph = new PMDPeripheralSerial(portnum,
PMDSerialBaud.baud, PMDSerialParity.parity, PMDSerialStopBits.bits);

VB Syntax Dim periph As New PMDPeripheralSerial(portnum, PMDSerialBaud.baud, _
 PMDSerialParity.parity, PMDSerialStopBits.bits)

Description PMDDeviceOpenPeriphSerial is used to open a peripheral handle representing an open serial line.
hPeriph should point to an uninitialized PMDPeriphHandle data structure. hDevice is a device handle
which should be associated with a PRP device, hDevice may be a null pointer, in which case it means the
local device, either the host or, for a C-Motion Engine user program, the local PRP device.

port is the serial port to use, one of PMDSerialPort1 or PMDSerialPort2 or higher for host PCs.

baud is the serial port speed to set, one of PMDSerialBaud9600, PMDSerialBaud19200,
PMDSerialBaud57600, PMDSerialBaud115200, PMDSerialBaud230400, or PMDSerialBaud460800.

parity is the parity to use, one of PMDSerialParityNone, PMDSerialParityOdd, or
PMDSerialParityEven.

stopbits is the number of stopbits to use, either PMDSerialStopBits1 or PMDSerialStopBits2.

Eight data bits are always used.

In order to open a PMD serial protocol multi-drop peripheral, PMDPeriphOpenPeriphMultiDrop
should be applied to the peripheral handle opened by PMDDeviceOpenPeriphSerial.

PRP Action Open Serial Device

Name Type
hPeriph pointer to uninitialized PMDPeriphHandle
hDevice pointer to an open PRP device handle or NULL if local
port enumerated serial port
baud enumerated baud rate
parity enumerated parity
stopbits enumerated number of stop bits
C-Motion PRP II Programming Reference

3

PMDDeviceOpenPeriphSPI C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceOpenPeriphSPI(PMDPeriphHandle* hPeriph,
 PMDDeviceHandle* hDevice,
 PMDSPIPort port,
 PMDSPIChipSelect chipselect,
 PMDSPIMode SPImode,
 PMDuint8 datasize,
 PMDSPIBitRate bitrate);

C# Syntax Byte datasize;
PMDPeripheral periph = new PMDPeripheralSPI(SPIPort.port,
PMDSPIChipSelect.chipselect, PMDSPIMode.mode, datasize,
PMDSPIBitRate.bitrate);

VB Syntax Dim datasize As Byte
Dim periph As New PMDPeripheralSPI(PMDSPIPort.port,
PMDSPIChipSelect.chipselect, PMDSPIMode.mode, datasize,
PMDSPIBitRate.bitrate)

Description PMDDeviceOpenPeriphSPI is used to open an Expansion or Host SPI peripheral. The port parameter
selects the SPI port: ExpSPI (SPI master) or HostSPI (SPI slave). The chipselect parameter sets the chip
select signal that will be activated during a transaction on the ExpSPI port. Up to 4 chip selects can be
opened simultaneously. The possible chipselect values are 0-4 where 1-4 select the chip select signal to
use and a value is of 0 specifies no chip select signal will be used. The chipselect parameter is not valid
for the HostSPI port. Each chip select supports different SPI configurations. The datasize parameter
sets the number of bits in a single word for both ExpSPI and HostSPI. The datasize field affects the size
of the data parameter in the Send and Receive functions. If datasize is 8 bits or less the data parameter
is a pointer to an array of bytes. If datasize is 16 bits or less the data parameter for the PMDPeriphSend
and PMDPeriphReceive functions is a pointer to an array of 16 bit words. The bitrateHz parameter
specifies the ExpSPI clock frequency as one of PMDSPIBitRate. The DIO configuration such as the mux
selection and signal direction must be configured separately (see the ION/CME N-Series Digital Drive
User Manual).

PRP Action Open SPI Device

Name Type
hPeriph pointer to uninitialized peripheral handle
hDevice pointer to an open PRP device handle or NULL if local
port ExpSPI or HostSPI port (0-1)
chipselect a value of PMDSPIChipSelect (0-4)
spimode a value of PMDSPIMode (0-3)
datasize number of bits in an SPI word (4-16)
bitrate clock frequency as one of PMDSPIBitRate (1-7)
C-Motion PRP II Programming Reference 53

54

3

PMDDeviceOpenPeriphTCP C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceOpenPeriphTCP(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDparam IPAddress,
 PMDparam port,
 PMDparam timeout);

C# Syntax System.Net.IPAddress ipaddress;
UInt32 port, timeout;
PMDPeripheral periph = new PMDPeripheralTCP(ipaddress, port, timeout);

VB Syntax Dim address As System.Net.IPAddress
Dim portnum, timeout As UInt32
Dim periph As New PMDPeripheralTCP(address, portnum, timeout)

Description PMDDeviceOpenPeriphTCP is used to open a TCP peripheral on the PRP device indicated by
hDevice. If hDevice is a null pointer then the local device, either the host or the PRP device on which a
CME user program is running.

If IPAddress is nonzero then it is the IP address of a remote Ethernet device to which a connection
should be opened. If IPAddress is nonzero then the device will listen on the indicated TCP port for
incoming connections from any device, handle one connection at a time, and resume listening after a
remote device closes the connection. In either case, a connection may be closed using
PMDPeriphClose.

IPAddress must be numeric, PRP devices do not support any kind of name service. An IP address in the
familiar dotted quad notation A.B.C.D is equivalent to the 32 bit number (A<<24) + (B<<16) + (C<<8)
+ D, this conversion may be done using the macro PMD_IP4_ADDR, for example the numeric value
of the IP address 192.168.13.42 could be obtained by writing PMD_IP4_ADDR(192, 168, 13, 42).

port is the TCP port number to use for sending or receiving. TCP ports are divided into three ranges:
1. The well-known ports from 0 to 1023 are used for standard services, which are not likely to be

hosted by user C-Motion Engine applications.
2. The registered ports from 1024 to 49151 are used ad hoc, and are most likely to be used for user motion

control applications,

3. The dynamic ports from 49152 to 65535 are used for temporary applications, and may be useful for
user applications that dynamically assign TCP ports.

PRP Action Open TCP Device

Name Type
hPeriph pointer to uninitialized PMDPeriphHandle
hDevice pointer to an open PMDDeviceHandle or NULL if local
IPAddress 32 bit IP address
port 16 bit TCP port
timeout milliseconds
C-Motion PRP II Programming Reference

3

PMDDeviceOpenPeriphUDP C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceOpenPeriphUDP(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDparam IPAddress,
 PMDparam port);

C# Syntax System.Net.IPAddress ipaddress;
UInt32 port;
PMDPeripheral periph = new PMDPeripheralUDP(ipaddress, port);

VB Syntax Dim IPaddress As UInt32
Dim port As UInt32
Dim periph As New PMDPeripheralUDP(IPaddress, port)

Description PMDDeviceOpenPeriphUDP is used to open a UDP peripheral on the PRP device indicated by
hDevice. If hDevice is a null pointer then the local device, either the host or the PRP device on which a
CME user program is running.

If IPAddress is nonzero then it is the IP address of a remote Ethernet device to which packets will be
sent; the peripheral will be write-only. If IPAddress is zero then a UDP port will be opened for listening;
the peripheral will be read-only. IPAddress must be numeric, PRP devices do not support any kind of
name service. An IP address in the familiar dotted quad notation A.B.C.D is equivalent to the 32 bit
number (A<<24) + (B<<16) + (C<<8) + D, this conversion may be done using the macro
PMD_IP4_ADDR, for example the numeric value of the IP address 192.168.13.42 could be obtained
by writing PMD_IP4_ADDR(192, 168, 13, 42).

port is the UDP port number to use for sending or receiving. UDP ports are divided into three ranges:
1. The well-known ports from 0 to 1023 are used for standard services, which are not likely to be

hosted by user C-Motion Engine applications.
2. The registered ports from 1024 to 49151 are used ad hoc, and are most likely to be used for user motion

control applications,

3. The dynamic ports from 49152 to 65535 are used for temporary applications, and may be useful for
user applications that dynamically assign UDP ports.

PRP Action Open UDP Device

Name Type
hPeriph pointer to uninitialized PMDPeriphHandle
hDevice pointer to an open PMDDeviceHandle
IPAddress 32 bit IP address
port 16 bit UDP port
C-Motion PRP II Programming Reference 55

56

3

PMDDeviceReset C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceReset(PMDDeviceHandle *hDevice);

C# Syntax device.Reset();

VB Syntax device.Reset()

Description PMDDeviceReset is used to reset the device. After resetting a CME device, the first valid command
sent from a host will return PMD_ERR_RP_Reset.

PRP Action Reset Device

Name Type
hDevice pointer to PMDDeviceHandle
C-Motion PRP II Programming Reference

3

PMDDeviceSetDefault C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceSetDefault(PMDDeviceHandle *hDevice,
 PMDDefault defaultcode,
 void *value,
 unsigned valueSize);

C# Syntax UInt32 value32;
device.SetDefault(PMDDefault.code, value32);

VB Syntax Dim value32 As UInt32
device.SetDefault(PMDDefault.code, value32)

Description PMDDeviceSetDefault is used to change the value of a device default. Device defaults are various non-
volatile properties of the PRP device, for example the IP address, or whether to run a user program
immediately after power up.

hDevice is a pointer to a handle associated with the PRP device being interrogated; in C-Motion Engine
user programs hDevice may be a null pointer, meaning the local device.

default is a numeric default code, please see the description of the Set DefaultDevice action in
Section 2.4, PRP Addresses for a table of supported default codes and their meaning.

value is the data to be stored, and valueSize is the size, in bytes, of the area. The size of a default depends
on the particular data type, and is encoded in the upper byte of the default code – a value of zero means
one byte, one means two bytes, and n means n – 1 bytes. valueSize is required as a sanity check, an error
code will be returned if valueSize is not large enough to contain the default value.

Two byte default values are generally 16 bit integers, and four byte values 32 bit integers. The value
pointer must be properly aligned to hold these values. It is safe in all cases to make value to be double-
word aligned.

PRP Action Set Default Device

Name Type
hDevice pointer to an open PRP device handle or NULL if local
defaultcode enumerated default code
value pointer to new default value
valueSize size of default value
C-Motion PRP II Programming Reference 57

58

3

PMDDeviceSetNodeID C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceSetNodeID(PMDDeviceHandle *hDevice,
 PMDuint8 nodeID,
 PMDuint8 DOsignal,
 PMDuint8 DIsignal,
 PMDuint8 DIsense);

C# Syntax Byte nodeID, DOsignal, DIsignal, DIsense;
device.SetNodeID(nodeID, DOsignal, DIsignal, DIsense);

VB Syntax Dim nodeID, DOsignal, DIsignal, DIsense As Byte
device.SetNodeID(nodeID, DOsignal, DIsignal, DIsense)

Description The function PMDDeviceSetNodeID is used to set the NodeID of the interface on the CME device
that the command is received on (Serial or CAN). See the PRP action for more information.

PRP Action Set NodeID Device

Name Type
hDevice pointer to open RP device handle or NULL if local
nodeID desired NodeID to assign to the device
DOsignal digital output signal that will be set
DIsignal digital input signal to sample
DIsense digital input and output signal sense
C-Motion PRP II Programming Reference

3

PMDDeviceSetSystemTime C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDDeviceSetSystemTime(PMDDeviceHandle* hDevice,
 SYSTEMTIME* time);

C# Syntax SYSTEMTIME time;
device.SetSystemTime(time);

VB Syntax Dim time as PMD.SYSTEMTIME
device.SetSystemTime(time)

Description PMDDeviceSetSystemTime is used to obtain the date and time from built-in real-time clock. The time
argument is a pointer to a SYSTEMTIME structure which is the same format as the Windows
SYSTEMTIME structure.

typedef struct _SYSTEMTIME {
 WORD wYear;
 WORD wMonth; // The current month; January is 1.
 WORD wDayOfWeek; // The current day of the week; Sunday is 0, Monday is 1, etc.
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME

PRP Action None

Name Type
hDevice pointer to an open PRP device handle or NULL if local
time pointer to a SYSTEMTIME structure
C-Motion PRP II Programming Reference 59

60

3

PMDEventOpenDI C-Motion Engine
Arguments

C Syntax PMDresult PMDEventOpenDI(PMDEventHandle* hEvent,
 PMDEventNumber number,
 PMDEventSignal signal,
 PMDEventTrigger trigger);

Description The PMDEventOpenDI function is used to setup a digital input event. Events are hardware interrupts
from various sources. The CME user code waits for an event to occur using the PMDEventWait
function.

The eventumber parameter specifies which of the 2 possible events to configure. The signal parameter
sets the digital input to monitor. The trigger parameter sets the trigger mode of PMDEventTrigger.

typedef enum {
 PMDEventSignal_DI1 = 0,
 PMDEventSignal_DI2 = 1,
 PMDEventSignal_DI3 = 2,
 PMDEventSignal_DI4 = 3,
 PMDEventSignal_DI5 = 4,
 PMDEventSignal_DI6 = 5,
 PMDEventSignal_DI7 = 6,
 PMDEventSignal_DI8 = 7,
 PMDEventSignal_HallA = 8,
 PMDEventSignal_HallB = 9,
 PMDEventSignal_HallC = 10,
 PMDEventSignal_PosLimit = 11,
 PMDEventSignal_NegLimit = 12,
 PMDEventSignal_Home = 13,
 PMDEventSignal_Enable = 14,
 PMDEventSignal_Brake = 15,
 PMDEventSignal_QuadA1 = 16,
 PMDEventSignal_QuadB1 = 17,
 PMDEventSignal_Index1 = 18,
 PMDEventSignal_QuadA2 = 20,
 PMDEventSignal_QuadB2 = 21,
 PMDEventSignal_Index2 = 22,
 PMDEventSignal_FaultOut = 23,
} PMDEventSignal;

typedef enum {
 PMDEventTrigger_Disable = 0,
 PMDEventTrigger_PosEdge = 1,
 PMDEventTrigger_NegEdge = 2,
 PMDEventTrigger_BothEdges = 3,
} PMDEventTrigger;

PRP Action None

Name Type
hEvent pointer to uninitialized event handle
eventnumber a value of PMDEventNumber indicating 1 of 2 possible event inputs
signal a value of PMDEventSignal that indicates which digital input will cause the event
trigger a value of PMDEventTrigger that sets the trigger mode
C-Motion PRP II Programming Reference

3

PMDEventOpenMotion C-Motion Engine
Arguments

C Syntax PMDresult PMDEventOpenMotion(PMDEventHandle* hEvent);

Description The PMDEventOpenMotion function is used to setup a motion event from the motion IC such as a
motion complete event. This event is triggered by the HostInterrupt signal of the Motion IC. The CME
user code waits for an event to occur using the PMDEventWait function. (For more information see
the Host Interrupts section in the Magellan Motion Control IC User Guide).

PRP Action None

Name Type
hEvent pointer to uninitialized event handle
C-Motion PRP II Programming Reference 61

62

3

PMDEventOpenTimer C-Motion Engine
Arguments

C Syntax PMDresult PMDEventOpenTimer(PMDEventHandle* hEvent,
 PMDEventNumber timernumber,
 PMDEventMode mode,
 PMDparam periodus);

Description The PMDEventOpenTimer function is used to setup a high-resolution timer event. There are 4 timers

available. The timernumber parameter specifies which of the 4 possible timers to configure. The mode
parameter selects the mode of the timer event: one-time or continuous. The period parameter sets the
period of the timer in µs. The timer starts counting down from the period value to 0 after the call to
PMDEventOpenTimer. The event will trigger when the timer reaches 0. If the timer mode is
continuous the timer will reload the period value and begin to count down again and the event will
repeatedly trigger when the counter reaches 0. The PMDEventWait function will return
PMD_ERR_ReceiveOverrun if more than one event was missed before the PMDEventWait function was
called.

PRP Action None

Name Type
hEvent pointer to uninitialized event handle
timernumber a value of PMDEventNumber indicating 1 of 4 possible timers
mode a value of PMDEventMode that sets the timer mode
periodus period in microseconds
C-Motion PRP II Programming Reference

3

PMDEventWait C-Motion Engine
Arguments

C Syntax PMDresult PMDEventWait(PMDEventHandle* hEvent,
 PMDparam* eventvalue,
 PMDparam timeoutms);

Description The PMDEventWait function is used to wait for an event created by one of the PMDEventOpen
functions. The function returns when the event occurs or timeoutms milliseconds have elapsed. The
eventvalue parameter is reserved for future use and can be set to NULL.

PRP Action None

Name Type
hEvent pointer to initialized event handle
eventvalue reserved
timeoutms timeout in milliseconds
C-Motion PRP II Programming Reference 63

64

3

PMDMailboxOpen C-Motion Engine
Arguments

C Syntax PMDresult PMDMailboxOpen(PMDMailboxHandle* hMailbox,
 PMDDeviceHandle* hDevice,
 PMDparam mailboxid
 PMDparam depth,
 PMDparam itemsize);

Description The PMDMailboxOpen function is used to create a mailbox for intertask communication. Up to 10
mailboxes can be created. The mailboxid parameter is the mailbox number to create, itemsize is the size
of each item in bytes and depth is the number of items that the mailbox can hold. The maximum depth
is 10. Messages are sent and received using PMDMailboxSend and PMDMailboxReceive.

One or more tasks send messages to the mailbox while another task receives messages from the mailbox.
The PMDMailboxPeek function receives a message from the mailbox without removing it from the
mailbox.

A semaphore can be implemented using a mailbox with a depth of 1 and item size of 0.

PRP Action None

Name Type
hMailbox pointer to uninitialized mailbox handle
hDevice must be set to NULL
mailboxid the mailbox number to open
depth number of items that the mailbox can hold
itemsize size of a single mailbox item in bytes
C-Motion PRP II Programming Reference

3

PMDMailboxPeek C-Motion Engine
Arguments

C Syntax PMDresult PMDMailboxPeek(PMDMailboxHandle* hMailbox,
 void* pItem,
 PMDparam timeoutms);

Description The PMDMailboxPeek function is used to receive an item from the mailbox identified by the hMailbox
parameter without removing it from the mailbox. The pItem is a pointer to the item that should be able
to receive a block of data of size itemsize that was set in the call to PMDMailboxOpen. The
PMDMailboxPeek function will block the calling task if the mailbox is empty. It will return if an item
is posted to the mailbox or timeoutms elapses.

PRP Action None

Name Type
hMailbox pointer to initialized mailbox handle
pItem pointer to the item to receive
timeoutms timeout in milliseconds
C-Motion PRP II Programming Reference 65

66

3

PMDMailboxReceive C-Motion Engine
Arguments

C Syntax PMDresult PMDMailboxReceive(PMDMailboxHandle* hMailbox,
 void* pItem,
 PMDparam timeoutms);

Description The PMDMailboxReceive function is used to receive an item from the mailbox identified by the
hMailbox parameter. The pItem is a pointer to the item that should be able to receive a block of data of
size itemsize that was set in the call to PMDMailboxOpen. The PMDMailboxReceive function will
block the calling task if the mailbox is empty. It will return PMD_ERR_OK if an item is posted to the
mailbox or PMD_ERR_Timeout if timeoutms elapses.

PRP Action None

Name Type
hMailbox pointer to initialized mailbox handle
pItem pointer to the item to receive
timeoutms timeout in milliseconds
C-Motion PRP II Programming Reference

3

PMDMailboxSend C-Motion Engine
Arguments

C Syntax PMDresult PMDMailboxSend(PMDMailboxHandle* hMailbox,
 void* pItem,
 PMDparam timeoutms);

Description The PMDMailboxSend function is used to send an item to the mailbox identified by the hMailbox
parameter. The pItem is a pointer to the item that is of size itemsize that was set in the call to
PMDMailboxOpen. The PMDMailboxSend function will block the calling task if the mailbox is full. It
will return PMD_ERR_OK if space becomes free or PMD_ERR_Timeout if timeoutms elapses.

PRP Action None

Name Type
hMailbox pointer to initialized mailbox handle
pItem pointer to the item to send
timeoutms timeout in milliseconds
C-Motion PRP II Programming Reference 67

68

3

PMDMemoryClose C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDMemoryClose(PMDMemoryHandle *hMemory);

C# Syntax memory.Close();

VB Syntax memory.Close()

Description PMDMemoryClose is used to free any resources used in maintaining a handle to a memory resource
such as dual-ported RAM. After closing the memory used for the PMDMemoryHandle data type may
be freed or re-used.

PRP Action Close various

Name Type
hMemory pointer to an open PMDMemoryHandle
C-Motion PRP II Programming Reference

3

PMDMemoryErase C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDMemoryErase(PMDMemoryHandle *hMemory);

C# Syntax memory.Erase();

VB Syntax memory.Erase()

Description The function PMDMemoryErase is used to erase the memory indicated by the hMemory handle
opened with PMDDeviceOpenMemory. If the memory is of type PMDMemoryAddress_NVRAM the
function may take several seconds to return and will set all the bytes to 0xFF. If the memory is of type
PMDMemoryAddress_RAM the function may take several milliseconds to return and will set all the bytes
to 0x00.

PRP Action Clear Memory

Name Type
hMemory pointer to open memory handle
C-Motion PRP II Programming Reference 69

70

3

PMDMemoryRead C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDMemoryRead(PMDMemoryHandle *hMemory,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

C# Syntax UInt32 offset, length;
UInt32 values[MaxLength];
memory.Read(values, offset, length);

VB Syntax Dim offset, length As UInt32
Dim values(0 To MaxLength)
memory.Read(values, offset, length)

Description PMDMemoryRead is used to read a sequence of bytes from the memory object indicated by the
hMemory argument. The data argument is a pointer to a data buffer for the values read. The offset
argument is the memory address at which to start reading. The length argument is the number of bytes
to read.

Each memory device has a data width, for example memory handles opened with a datasize of
PMDDataSize32bit have a data width of 4 bytes, or 32 bits. If the data, offset, or length arguments are
not aligned to the memory data width then a PMD_ERR_ParameterAlignment error code will be returned.
Most CME products support only dword addressable memory resources.

PRP Action Read Memory

Name Type
hMemory pointer to an open PMDMemoryHandle
data pointer to data read
offset memory address
length memory byte length
C-Motion PRP II Programming Reference

3

PMDMemoryWrite C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDMemoryWrite(PMDMemoryHandle *hMemory,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);

C# Syntax UInt32 offset, length;
UInt32 values[MaxLength];
memory.Write(values, offset, length);

VB Syntax Dim offset, length As UInt32
Dim values(0 To MaxLength)
memory.Write(values, offset, length)

Description PMDMemoryWrite is used to write data to the memory resource indicated by the hMemory handle.
The data argument is a pointer to the data to write. The offset argument is the memory address at which
to start writing. The length argument is the number of data units to write depending on the data size.

Each memory device has a data width. For example, memory handles opened with a datasize of
PMD_DataSize_32Bit have a data width of 4 bytes, or 32 bits. If the data, offset, or length arguments are
not aligned to the memory data width then a PMD_ERR_ParameterAlignment error code will be returned.
Most CME products support only dword- addressable memory resources. The N-Series ION writes data
in 256 bit blocks (32 dwords). The data pointer can point to an array of up to 8 32 bit values (dwords).
The offset must be divisible by 8 dwords or PMD_ERR_ParameterAlignment error code will be returned.
PMDMemoryRead does not have this restriction.

PRP Action Write Memory

Name Type
hMemory pointer to an open PMDMemoryHandle
data pointer to data to write
offset memory address
length number of bytes to write
C-Motion PRP II Programming Reference 71

72

3

PMDPeriphClose C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDPeriphClose(PMDPeriphHandle *hPeriph);

C# Syntax memory.Close();

VB Syntax peripheral.Close()

Description PMDPeriphClose is used to free resources associated with an open peripheral handle.

The communication channel will be closed, and no input will be accepted on it. Memory used for the
peripheral handle may be freed or used for another purpose.

PRP Action Close various

Name Type
hPeriph pointer to an open PMDPeriphHandle
C-Motion PRP II Programming Reference

3

PMDPeriphOpenDeviceMP C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDPeriphOpenDeviceMP(PMDDeviceHandle *hDevice,
 PMDPeriphHandle *hPeriph);

C# Syntax PMDDevice device = new PMDDevice(periph,
 PMDDeviceType.MotionProcessor);

VB Syntax Dim device As New PMDDevice(peripheral, PMDDeviceType.MotionProcessor)

Description PMDPeriphOpenDeviceMP is used to obtain a handle to a Magellan attached device, for example a
non-CME ION module, or a Magellan DK card. A Magellan attached device communicates using the
Magellan protocol, and not PRP. The hDevice argument should point to an uninitialized
PMDDeviceHandle data type, which may not be freed or written to as long as the device handle is in use.

hPeriph should point to an open peripheral connection to the Magellan attached device.

The device handle obtained using this procedure is useful for opening motion processor axis handles,
using the PMDAxisOpen procedure.

PRP Action Open MotionProcessor Peripheral

Name Type
hDevice pointer to uninitialized PMDDeviceHandle
hPeriph pointer to PMDPeriphHandle
C-Motion PRP II Programming Reference 73

74

3

PMDPeriphOpenDevicePRP C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDPeriphOpenDevicePRP(PMDDeviceHandle *hDevice,
 PMDPeriphHandle *hPeriph);

C# Syntax PMDDevice device = new PMDDevice(periph, PMDDeviceType.ResourceProtocol)

VB Syntax Dim dev As New PMDDevice(periph, PMDDeviceType.ResourceProtocol)

Description PMDPeriphOpenDevicePRP is used to open a handle to a device that communicates using PRP, that
is, a Prodigy/CME card or N-Series ION/CME module. hPeriph should be a handle to an open
peripheral that is physically connected to a PRP device.

The device handle opened by this procedure may be used for opening motion processor axes, (see
PMDAxisOpen (p. 29)), or memory resources (see PMDDeviceOpenMemory (p. 46), or peripherals
on the device (see PMDDeviceOpenPeriphSerial (p. 52), PMDDeviceOpenPeriphTCP (p. 54),
PMDDeviceOpenPeriphUDP (p. 55), PMDDeviceOpenPeriphSPI (p. 53), and
PMDDeviceOpenPeriphCAN (p. 47)) .

The device handle is also used to access the C-Motion Engine on the device, for example using
PMDCMETaskStart or PMDCMETaskGetInfo.

PRP Action Open Device Peripheral

Name Type
hDevice pointer to uninitialized PMDDeviceHandle
hPeriph pointer to an open PMDPeriphHandle
C-Motion PRP II Programming Reference

3

PMDPeriphOpenPeriphMultiDrop C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDPeriphOpenPeriphMultiDrop(PMDPeriphHandle *hPeriph,
 PMDPeriphHandle *hPeriphParent,
 PMDparam address);

C# Syntax UInt32 address;
Peripheral periph = new PeripheralMultiDrop(periph, address);

VB Syntax Dim address As UInt32
Dim periph As New PMDPeripheralMultiDrop(periph, address)

Description PMDPeriphOpenPeriphMultiDrop is used to open a peripheral representing a connection on a serial
line to a device using the PMD multi-drop serial protocol, either a Magellan attached device or a PRP
device. hParent must be a pointer to a previously opened peripheral representing the serial line, and
address is the multi-drop address. This function can be used to open multiple handles to different CAN
nodeIDs on a host PC.

PRP Action Open MultiDrop Peripheral

Name Type
hPeriph pointer to uninitialized PMDPeriphHandle
hParent pointer to an open handle to serial port peripheral
address multi-drop address
C-Motion PRP II Programming Reference 75

76

3

PMDPeriphRead C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDPeriphRead (PMDPeriphHandle *hPeriph,
 void *data,
 PMDparam offset,
 PMDparam length);

C# Syntax UInt16 data16[MaxLength];
UInt32 offset, length;
periph.Read(data16, offset, length);

VB Syntax Dim data16(0 To MaxLength) As UInt16
Dim offset, length As UInt32
periph.read(data16, offset, length)

Description PMDPeriphRead is used to read a stream of bytes from a peripheral with a specified base address,
specifically PIO bus peripherals. hPeriph should point to an open handle to such a peripheral, for
peripherals without an address concept an error code of PMD_ERR_Not_Supported will be returned.

data is a pointer to a buffer for incoming data, offset is an increment to add to the base address to give
the address to read from, and length is the number of datasize elements (specified in PMDPeriphOpen
call) to read.

PRP Action Read Peripheral

Name Type
hPeriph pointer to an open PMDPeriphHandle
data buffer for incoming data
offset byte offset from base address
length number of data units to read
C-Motion PRP II Programming Reference

3

PMDPeriphReceive C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDPeriphReceive(PMDPeriphHandle *hPeriph,
 void *data,
 PMDparam *nReceived,
 PMDparam nExpected,
 PMDparam timeout);

C# Syntax Byte data[MaxLength];
UInt32 expected, received, timeout;
periph.Receive(data, received, expected, timeout);

VB Syntax Dim data(0 To MaxLength) As Byte
Dim nReceived, nExpected, timeout As UInt32
periph.Receive(data, nReceived, nExpected, timeout)

Description PMDPeriphReceive is used to read bytes from a peripheral. hPeriph should be a pointer to an open
peripheral handle, data a pointer to a memory buffer for incoming data, and nExpected the maximum
number of bytes to accept, typically the size of the data buffer.

For peripherals that receive data in packets, such as CANBus, TCP, and UDP, PMDPeriphReceive will
return after receiving one packet, writing to the data buffer, and writing the actual number of bytes
received to nReceived. Note that the number of bytes received may be greater than nExpected, but at
most nExpected bytes will be written to the buffer.

For peripherals that do not receive data in packets, such as serial ports, PMDPeriphReceive will return
after receiving exactly nExpected bytes.

PMDPeriphReceive will return PMD_ERR_RP_Timeout if timeout milliseconds elapsed waiting for
data. Some ports may timeout before receiving nExpected bytes. The nReceived parameter will contain
the number of bytes received before the timeout. A timeout value of PMD_WAITFOREVER
(0xFFFFFFFF) disables the time out. When this function is sent as a PRP command (i.e. remote
peripheral access) the maximum timeout is 0xFFFF.

If the peripheral connection has been closed by some external action, for example a TCP connection
that has been closed by a peer, then PMD_ERR_NotConnected will be returned. After such an error the
peripheral handle must be closed using PMDPeriphClose. In the case of a TCP connection, after
closing the unconnected peripheral a new peripheral with the same TCP port may be opened using
PMDDeviceOpenPeriphTCP.

The following example shows how to implement a TCP server that handles a single connection at a time,
and reads data until the connection is closed by the peer.

 PMDresult status;
 PMDPeriphHandle hPeriphTCP;
 PMDuint32 nReceived;
 unsigned char buffer[PACKETSIZE];
 int open;

 while (!0) {
 status = PMDDeviceOpenPeriphTCP(&hPeriphTCP, NULL, 0, TCPPORT, timeout);
 open = 1;

Name Type
hPeriph pointer to an open PMDPeriphHandle
data pointer to incoming data buffer
nReceived pointer to actual bytes received
nExpected maximum bytes to receive
timeout milliseconds to wait
C-Motion PRP II Programming Reference 77

78

3

PMDPeriphReceive (cont.) C-Motion Engine Host-Based
Description
(cont.) while (open) {

 status = PMDPeriphReceive(&hPeriphTCP, buffer, &nReceived, sizeof(buffer), timeout);
 // As a simple example we just read data. For a more complicated protocol each send
 // and receive operation should include a check of the return value as shown.
 switch (status) {
 default:
 Handle the error;
 case PMD_ERR_NotConnected:
 // The peripheral handle must be closed. It will be re-opened in the outer loop.
 PMDPeriphClose(&hPeriphTCP);
 open = 0;
 break;
 case PMD_ERR_OK:
 Do something useful with the data;
 break;
 }
 }
 }

PRP Action Receive Peripheral
C-Motion PRP II Programming Reference

3

PMDPeriphSend C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDPeriphSend(PMDPeriphHandle *hPeriph,
 void *data,
 PMDparam nCount,
 PMDparam timeout);

C# Syntax Byte data[MaxLength];
UInt32 length, timeout;
periph.Send(data, length, timeout);

VB Syntax Dim data8(0 To MaxLength) As Byte
Dim nCount, timeout As UInt32
periph.Send(data8, nCount, timeout)

Description PMDPeriphSend is used to send bytes to a peripheral, indicated by the hPeriph argument.

nCount bytes are sent from the buffer data. If the data may not be sent in timeout milliseconds then
PMDPeriphSend will stop trying and return PMD_ERR_Timeout. A timeout value of
PMD_WAITFOREVER (0xFFFFFFFF) means never stop trying. When this function is sent as a PRP
command (i.e. remote peripheral access) the maximum timeout is 0xFFFF.

If the peripheral connection has been closed by some external action, for example a TCP connection
that has been closed by a peer, then PMD_ERR_NotConnected will be returned. After such an error the
peripheral handle must be closed using PMDPeriphClose. In the case of a TCP connection, after
closing the unconnected peripheral a new peripheral with the same TCP port may be opened using
PMDDeviceOpenPeriphTCP. See PMDPeriphReceive (p. 77) for example code.

PRP Action Send Peripheral

Name Type
hPeriph pointer to an open PMDPeriphHandle
data pointer to data to send
nCount number of bytes to send
timeout milliseconds to wait
C-Motion PRP II Programming Reference 79

80

3

PMDPeriphWrite C-Motion Engine Host-Based
Arguments

C Syntax PMDresult PMDPeriphWrite(PMDPeriphHandle *hPeriph,
 void *data,
 PMDparam offset,
 PMDparam length);

C# Syntax UInt16 data16[MaxLength];
UInt32 offset, length;
periph.Write(data16, offset, length);

VB Syntax Dim data16(0 To MaxLength) As UInt16
Dim offset, length As UInt32
periph.Write(data16, offset, length)

Description PMDPeriphWrite is used to write a stream of bytes to a peripheral with a specified base address,
specifically PIO bus peripherals. hPeriph should point to an open handle to such a peripheral, for
peripherals without an address concept an error code of PMD_ERR_Not_Supported will be returned.

data is a pointer to a buffer containing the data to write, offset is an increment to add to the base address
to give the address for writing, and length is the number of datasize elements (specified in
PMDPeriphOpen call) to write.

PRP Action Write Peripheral

Name Type
hPeriph pointer to an open peripheral handle
data pointer to data to write
offset offset from base address
length number of data units to write
C-Motion PRP II Programming Reference

3

PMDprintf C-Motion Engine Host-Based
Arguments

C Syntax int PMDprintf(const char *fmt, …);

Description PMDprintf is the primary procedure used for console output, a feature used for progress reporting
during development and debugging. The console may be attached to any of the available communication
devices at startup using the default settings PMDDefault_DebugIntfType,
PMDDefault_DebugIntfAddr, and PMDDefault_DebugIntfPort. The console may be changed at run
time to a specified peripheral by using the PRP action Set Console. Pro-Motion can also be used
conveniently to set the current or default console.

The arguments to PMDprintf are the same as to the C standard library printf, and the return value is the
number of characters printed. Because there is only one console and no file system there is no equivalent
to fprintf. In order to send formatted data through a peripheral sprintf should be used to format to a
user-supplied buffer, and the buffer sent.

PRP Action None

Name Type
fmt string
… arguments to format
C-Motion PRP II Programming Reference 81

82

3

PMDputch C-Motion Engine Host-Based
Arguments

C Syntax void PMDputch(int ch);

Description PMDputch is used to print a single character to the console. See also PMDprintf (p. 81) for more
description of the console.

PRP Action None

Name Type
ch 8 bit integer
C-Motion PRP II Programming Reference

3

PMDputs C-Motion Engine Host-Based
Arguments

C Syntax void PMDputs(const char *str);

Description PMDputs is used to print a constant string to the console. See also PMDprintf (p. 81) for more
description of the console.

PRP Action None

Name Type
str string
C-Motion PRP II Programming Reference 83

84

3

PMDTaskAbort C-Motion Engine
Arguments

C Syntax void PMDAbortTask(int UserAbortCode);

Description PMDTaskAbort is used to halt user code execution, it does not return. The argument is a nonzero code
that can be used to communicate the cause of a failure to the next invocation of the user program, and
can be checked using PMDTaskGetAbortCode at the beginning of the user program.

PMDTaskAbort does not perform any cleanup actions, nor does it perform a reset. Any cleanup
required to put the device in a safe state must be done by the user program before calling
PMDTaskAbort.

PRP Action None. This procedure may be called only from a C-Motion Engine user program.

Name Type
UserAbortCode integer
C-Motion PRP II Programming Reference

3

PMDTaskCreate C-Motion Engine
Arguments

C Syntax int PMDTaskCreate(taskptr pTask,
 char* name,
 size_t stacksize,
 void* taskparam,
 PMDTaskPriority priority);

Description The function PMDTaskCreate is used to create a new user task from within an existing user task. The
return value is an assigned task number that can be used to obtain information about the newly created
task. Task numbers increment in the order that they are created. A value of -1 means the task could not
be created due to a lack of memory or exceeding the maximum number of tasks. Once a task is created
and assigned a task number that task number does not get reused if the task is aborted. Each call to
PMDTaskCreate will increment the task number until all available task numbers have been used
regardless of how many have been aborted. PMDTaskAbort is used to abort a task. A task number of
0 is reserved to indicate the main function. Therefore, the first call to PMDTaskCreate in the main task
will return 1 if successful. The stacksize parameter specifies the amount of memory to allocate for the
stack. The stack size should be set according to the number of automatic variables that are used in the
task function and functions called from the task. The taskparam parameter can be used to pass in a 32
bit value or pointer from the calling task to the task being created. The priority parameter is used to set
the priority: low, normal or high. High should only be used for tasks that quickly respond to
PMDEvents.

Example task function prototype:

void MyTask(void* pvTaskParam);

PRP Action None

Name Type
pTask pointer to task function
name character string (max 31 chars)
stacksize size of stack in 32 bit words
taskparam user specified 32 bit value passed to the task function
priority a value of PMDTaskPriority
C-Motion PRP II Programming Reference 85

86

3

PMDTaskGetAbortCode C-Motion Engine
Arguments None

C Syntax unsigned PMDTaskGetAbortCode();

Description PMDTaskGetAbortCode is used to retrieve the code left by a previous call to PMDTaskAbort, and
may be used for communication from one instance of a C-Motion Engine user program to the next. The
abort code is volatile, and does not survive a reset or power cycle. After reading the abort code is cleared,
and subsequent reads will return zero. Zero is also returned if PMDTaskAbort was not called by the
previous program. To obtain extended information about other user tasks use PMDCMETaskGetInfo.

PMDTaskGetAbortCode is only available to CME user programs.

PRP Action None
C-Motion PRP II Programming Reference

3

PMDTaskGetNumber C-Motion Engine
Arguments None

Returned Data Task number

Description The function PMDTaskGetNumber is used to retrieve the task number of the calling task to be used
in functions that require a task number.

C Syntax int PMDTaskGetNumber()
C-Motion PRP II Programming Reference 87

88

3

PMDTaskWait C-Motion Engine
Arguments

C Syntax void PMDTaskWait(PMDuint32 msec);

Description The PMDTaskWait procedure is used to delay execution of a C-Motion Engine user program for a
specified number of milliseconds. The delay is relative to the time the procedure is called, and has a
granularity of 1 millisecond.

For a way to arrange a periodic task, see PMDTaskWaitUntil (p. 89).

PRP Action None

Name Type
msec milliseconds
C-Motion PRP II Programming Reference

3

PMDTaskWaitUntil C-Motion Engine Host-Based
Arguments

C Syntax void PMDTaskWaitUntil(PMDuint32 *pPreviousTime, PMDuint32 incrms);

Description The PMDTaskWaitUntil procedure is used to wait until a particular specified time and may be used to
arrange a periodic task loop. The argument pPreviousTime should point to a timer count previously
returned by PMDDeviceGetTickCount or modified by PMDTaskWaitUntil. PMDTaskWaitUntil
will return after the timer tick computed by adding incrms to the tick value in *pPreviousTime. The value
in *pPreviousTime will be updated to the current time.

If the time computed by adding incrms to *pPreviousTime is in the past then PMDTaskWaitUntil will
return immediately and will not update *pPreviousTime. If this case is likely, it must be checked explicitly
using PMDDeviceGetTickCount.

For example:
PMDuint32 lastTime, thisTime;
PMDuint32 incrTime = 32;

lastTime = PMDDeviceGetTickCount();
while (!0) {

 Do some useful job

 thisTime = PMDDeviceGetTickCount();
 if ((lastTime + incrTime < thisTime) &&
 (lastTime + incrTime > lastTime)) {
 Report a time budget overrun
 lastTime = thisTime;
 }
 PMDTaskWaitUntil(*lastTime, incrTime); // wait for up to 32 milliseconds
}

PRP Action None

Name Type
pPreviousTime pointer to time in milliseconds
incrms increment in milliseconds
C-Motion PRP II Programming Reference 89

90

3

PMDWaitForEvent C-Motion Engine
Arguments

C Syntax PMDresult PMDWaitForEvent(PMDDeviceHandle *hDevice,
 PMDEvent *hEvent,
 PMDuint32 timeout);

VB Syntax Dim EventStruct As PMDEvent
Dim timeout As UInt32
device.WaitForEvent(EventStruct, timeout)
Dim axis As PMDAxis
Dim EventMask As UInt16
axis = EventStruct.axis
EventMask = EventStruct.EventMask

Description PMDWaitForEvent is used to check for any reported asynchronous events raised by the device
indicated by hDevice. The device must be a Magellan device.

If an asynchronous event notification is received for any of the Magellan axes of the motion processor
attached to the device then the function returns and the axis and event status register are written to
members of the hEvent struct. This struct has at least these members:

PMDAxis axis;

PMDuint16 eventStatus;

which indicate the axis and events responsible for the notification. If no event notifications have been
received within timeout milliseconds, then PMD_ERR_Timeout is returned, and hEvent is not written. A
timeout value of PMD_WAITFOREVER will block the task until the event occurs.

Asynchronous event notification is an optional Magellan feature described in the Magellan Motion Control
IC User Guide. The conditions causing an event notification are programmable, using commands
described in the C-Motion Magellan Programming Reference. The PMDWaitForEvent function handles all
the necessary function calls to deal with the event except for the PMDClearInterrupt function. Not all
peripheral types support event notification, in particular serial communication does not.
PMDWaitForEvent is supported by the local Magellan and Magellan attached devices opened with
PMDDeviceOpenPeriphCAN.

PRP Action None

Name Type
hDevice pointer to PMDDeviceHandle
hEvent pointer to event struct
timeout milliseconds, up to 0xFFFE
C-Motion PRP II Programming Reference

4

4.PRP Action Reference
This section describes each action and sub-action, with the binary encoding of all arguments. Some aspects of action
processing are common to all commands:

• Many PRP actions require a sub-action in addition to the action and resource, this is an 8 bit unsigned
quantity that immediately follows the PRP outgoing header. Not all actions use a sub-action.

• All multi-byte argument values are encoded in little endian order: The least significant byte is sent first, and
the most significant last. A 32 bit quantity is sent as bytes 0, 1, 2, and then 3, the most significant byte.

• Signed arguments are sent as twos-complement integers.

4.1 Action Table

The table below provides a listing of available PRP packets including Resource, Action, and Sub-Action if applicable along
with the corresponding C-Motion API calls.

For a complete alphabetical list of the C-Motion PRP II API refer to Section 3.8, Alphabetical C-Motion API Reference.
For a complete description of the C-Motion Magellan API refer to the C-Motion Magellan Programming Reference.

PRP Resource PRP Action PRP Sub-action C-Motion Procedure
MotionProcessor Command Any C-Motion Magellan Commands

MotionProcessor Close PMDDeviceClose

Device Open PeriphCAN PMDDeviceOpenPeriphCAN

Device Open PeriphCANFD PMDDeviceOpenPeriphCANFD

Device Open Memory PMDDeviceOpenMemory

Device Open PeriphSerial PMDDeviceOpenPeriphSerial

Device Open PeriphPIO PMDDeviceOpenPeriphPIO

Device Open PeriphSPI PMDDeviceOpenPeriphSPI

Device Open PeriphTCP PMDDeviceOpenPeriphTCP

Device Open PeriphUDP PMDDeviceOpenPeriphUDP

Device Get Default PMDDeviceGetDefault

Device Get ResetCause PMDDeviceGetResetCause

Device Get Version PMDDeviceGetInfo

Device Get SystemTime PMDDeviceGetSystemTime

Device Get FaultCode PMDDeviceGetFaultCode

Device Set Console PMDDeviceSetConsole

Device Set Default PMDDeviceSetDefault

Device Set SystemTime PMDDeviceSetSystemTime

Device Reset PMDDeviceReset

Device Close PMDDeviceClose

Peripheral Receive PMDPeriphReceive

Peripheral Send PMDPeriphSend

Peripheral Read PMDPeriphRead
C-Motion PRP II Programming Reference 91

PRP Action Reference4
Peripheral Write PMDPeriphWrite

Peripheral Open DevicePRP PMDPeriphOpenDevicePRP

Peripheral Open DeviceMP PMDPeriphOpenDeviceMP

Peripheral Open PeriphMultiDrop PMDPeriphOpenPeriphMultiDrop

Peripheral Close PMDPeriphClose

CMotionEngine Command Flash PMDCMEStoreUserCode

CMotionEngine Command TaskControl PMDCMETaskStart

CMotionEngine Command TaskControl PMDCMETaskStop

CMotionEngine Get TaskInfo PMDCMETaskGetInfo

CMotionEngine Get TaskState PMDCMEGetTaskState

CMotionEngine Get FileName PMDCMEGetUserCodeName

CMotionEngine Get FileDate PMDCMEGetUserCodeDate

CMotionEngine Get FileChecksum PMDCMEGetUserCodeChecksum

CMotionEngine Get FileVersion PMDCMEGetUserCodeVersion

Memory Clear PMDMemoryErase

Memory Close PMDMemoryClose

Memory Read Dword PMDMemoryRead

Memory Write Dword PMDMemoryWrite

PRP Resource PRP Action PRP Sub-action C-Motion Procedure
92 C-Motion PRP II Programming Reference

PRP Action Reference 4
4.2 Alphabetical PRP Action Reference
C-Motion PRP II Programming Reference 93

PRP Action Reference4
This page intentionally left blank.
94 C-Motion PRP II Programming Reference

4

Clear Memory
Coding

Arguments None

Returned Data None

Packet
Structure

Description The Clear Memory action erases the memory addressed. If the addressed memory is NVRAM it may
take a few seconds to respond.

C Syntax PMDresult PMDMemoryErase(PMDMemoryHandle *hMemory);

Action Sub-action Resource
11 - 3

write 1 2 11
7 6 5 4 3 2 1 0

write 3 address
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 95

96

4

Close various
Coding

Arguments None

Returned Data None

Packet
Structure

Description The Close action may be used to free any resource that was originally returned by an Open action. After
closing, such a resource no longer exists and will signal an error if an action is addressed to it.

Close will close an open TCP connection if applied to a TCP peripheral. For reasonably sized networks
that are static it may never be necessary to use Close. It is an error to send a Close action to a resource
that was not returned by Open.

C Syntax PMDresult PMDPeriphClose(PMDPeriphHandle *hPeriph);
PMDresult PMDDeviceClose(PMDDeviceHandle *hDevice);
PMDresult PMDMemoryClose(PMDMemoryHandle *hMemory);

Action Sub-action Resource
4 - various

write 1 2 4
7 6 5 4 3 2 1 0

write resource address
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Command Flash CMotionEngine
Coding

Arguments

Returned Data None

Packet
Structure

Description The Command Flash CMotionEngine action is used to install a user program in a C-Motion Engine.
The flash process proceeds in three steps, each with a separate value of the FlashCmd argument. In
addition to FlashCmd, this action may include many bytes of message body, depending on the step.

If any step of the flash procedure gives an error response then the procedure must be restarted from the
beginning. No actions may be sent between flash procedure actions. The steps, in order of execution, are:

1. FlashStart: The body bytes are a four byte length of the flash image, least significant byte first. If
this step is successful the user program flash is erased. The length may be specified as zero, in
which case no new user program is installed, and no further steps need be taken.

1 FlashData: The body bytes are sequential parts of the entire flash image, in order.

2 FlashEnd: There are no body bytes. This action verifies the checksum of the program image re-
ceived. If it finishes successfully then a new user program has been installed and may be run using
the Command Task CMotionEngine action.

C Syntax PMDresult PMDCMEStoreUserCode (PMDDeviceHandle *hDevice,
 PMDuint8* pdata,
 int length);

Action Sub-action Resource
2 2 1

Name Encoding Instance
FlashCmd 1 FlashStart

2 FlashData
3 FlashEnd

write 1 2 2
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write FlashCmd
7 6 5 4 3 2 1 0

write body byte 0
7 6 5 4 3 2 1 0

write body byte 1 …
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 97

98

4

Command TaskControl CMotionEngine
Coding

Arguments

Returned Data None

Packet
Structure

Description The Command TaskControl CMotionEngine action is used to start or stop a C-Motion Engine user
program. The two cases are distinguished by the argument option.

If option is start, then if no user program is installed this action will return
PMD_ERR_UC_NotProgrammed. If a user program is already running then
PMD_ERR_UC_TaskAlreadyRunning will be returned.

If option is stop, then any running user program will be stopped. If no user program is currently running
in the C-Motion Engine then this action will return PMD_ERR_UC_TaskNotCreated.

It is the user’s responsibility to ensure safety when starting or stopping a user program that controls
motors. It is not possible to predict the state of the PRP device or of its motion processor at the instant
that the user program is stopped. PMD strongly recommends that a task be stopped only to correct
unrecoverable errors and that the PRP device and any devices that it controls be put immediately into a
known safe state using host commands. Because the card resources and the dynamic heap are not in a
known state it is not safe to restart a task after stopping it without first resetting the entire device.

C Syntax PMDresult PMDCMETaskStart(PMDDeviceHandle *pDevice);
PMDresult PMDCMETaskStop(PMDDeviceHandle *pDevice);

Action Sub-action Resource
2 1 1

Name Encoding Instance
option 1 start

2 stop

write 1 2 2
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 1
7 6 5 4 3 2 1 0

write option
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Command MotionProcessor
Coding

Arguments Magellan command and arguments
rxCount, 2 bit count of words returned

Returned Data Magellan return data

Packet
Structure

Description The Command action directed to a MotionProcessor resource sends a Magellan protocol command to
the motion processor indicated by the address field. A sub-action field is not used, instead a Magellan
protocol command packet follows the header immediately.

Magellan commands are documented in the C-Motion Magellan Programming Reference, with the addition of
the rxCount parameter. A Magellan protocol packet consists of at least one 16 bit command word,
followed by zero to three argument words. The first byte of the command word is an opcode for the
Magellan command. The remaining bits 0 – 5 are the Magellan axis addressed. The second byte of
command word comprises two fields, bits 6 and 7 are the rxCount field, the number of words that are
expected as returned values from the command. Each command takes a fixed number of arguments and
returns a fixed number of return data. The arguments and data are encoded as little-endian quantities,
16 bit words are sent most significant byte first, followed by the most significant byte, 32 bit words are
sent in order of significance, starting with the least significant word, and ending with the least significant
word.

If the status field of the return packet PRP header is zero then the return data of the Magellan command
follow. If the Magellan motion processor reports an error then the status field of the return header will
be 1 (error), and the Magellan error code will follow. Magellan error codes are documented in the C-
Motion Magellan Programming Reference, and do not overlap with any PRP or PMD C library error codes.
The error code will not be encoded as a big-endian value.

C Syntax All C-Motion command procedures use this action. See the C-Motion Magellan Programming Reference for
documentation of C-Motion commands and C language syntax.

Action Sub-action Resource
2 - 2

write 1 2 2
7 6 5 4 3 2 1 0

write 2 address
7 6 5 4 3 2 1 0

write Magellan command code
7 6 5 4 3 2 1 0

write rxCount Magellan axis
7 6 5 4 3 2 1 0

write Magellan arguments …
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read Magellan data …
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 99

100

4

Get Default Device
Coding

Arguments

Returned Data

Packet
Structure

Description The Get Default Device action is used to retrieve the value of a device default. Device defaults are
various non-volatile properties of the PRP device, for example the IP address, or whether to run a user
program immediately after power up. The length of DefaultValue depends on the particular data type,
and is encoded in the upper byte of DefaultCode. A length value of one means two bytes, three means
four bytes. Please see the description of Set Default Device (p. 140) for a table of supported default codes
and their meaning.

C Syntax PMDresult PMDDeviceGetDefault(PMDDeviceHandle *hDevice,
 PMDDefault defaultcode,
 void *value,
 unsigned valueSize);

Action Sub-action Resource
10 2 0

Name Type meaning
DefaultCode unsigned 32 bit default identifier

Name Type meaning
DefaultValue varies varies – see Set ValueDefault

write 1 2 10
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write DefaultCode byte 0
7 6 5 4 3 2 1 0

write DefaultCode byte 1
7 6 5 4 3 2 1 0

write DefaultCode byte 2
7 6 5 4 3 2 1 0

write DefaultCode byte 3
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read DefaultValue byte 0
7 6 5 4 3 2 1 0

read DefaultValue byte 1 …
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Get FaultCode Device
Coding

Arguments

Returned Data

Packet
Structure

Action Sub-action Resource
10 14 0

Name Type Encoding Instance
FaultID unsigned 32 bit 0 ResetCause

1 Initialization
2 Exception

Name Type Encoding Instance
ResetCause unsigned 32 bit 0x00000200 Software reset

0x00000400 Exception
0x00000800 System watchdog
0x00001000 Hardware reset
0x00002000 Undervoltage

InitFault unsigned 32 bit 0x00000000 No fault
0x00000001 Boot firmware CRC error
0x00000002 Main firmware CRC error
0x00000020 Magellan initialization error
0x00000100 Internal PIO fault
0x00000200 Cannot determine model
0x00000400 Hardware initialization fault
0x00000800 Memory allocation failure

Exception unsigned 32 bit 0 None
1 NMI
2 HardFault
3 MemManage
4 BusFault
5 UsageFault
16 StackOverflow
17 UserTaskReturned

write 1 2 10
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 14
7 6 5 4 3 2 1 0

write FaultID
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read FaultCode byte 0
7 6 5 4 3 2 1 0

read FaultCode byte 1
7 6 5 4 3 2 1 0

read FaultCode byte 2
7 6 5 4 3 2 1 0

read FaultCode byte 3
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 101

102

4

Get FaultCode Device (cont.)
Description The Get FaultCode Device action retrieves various fault codes from the CME device addressed. The
type of fault code returned depends on the FaultID requested. A FaultID of ResetCause will return the
reset cause. A FaultID of PMDFaultCode_Initialization will return any combination of PMDInitFault.

C Syntax PMDDeviceGetFaultCode(PMDDeviceHandle *hDevice,
 PMDuint32 FaultID,
 PMDuint32* FaultCode);
C-Motion PRP II Programming Reference

4

Get FileChecksum CMotionEngine
Coding

Arguments None

Returned Data

Packet
Structure

Description The Get FileChecksum CMotionEngine action retrieves the CRC of the file that has been downloaded.
The CRC polynomial is CRC-32 (0x04C11DB7).

C Syntax PMDresult PMDCMEGetUserCodeChecksum(PMDDeviceHandle *hDevice,
 PMDuint32* checksum);

Action Sub-action Resource
10 8 1

Name Type
checksum unsigned 32 bit

write 1 2 10
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 8
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

read checksum byte 0
7 6 5 4 3 2 1 0

read checksum byte 1
7 6 5 4 3 2 1 0

read checksum byte 2
7 6 5 4 3 2 1 0

read checksum byte 3
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 103

104

4

Get FileDate CMotionEngine
Coding

Arguments None

Returned Data

Packet
Structure

Description The Get FileDate CMotionEngine action retrieves the date of the file that has been downloaded. The
returned string contains the date and time in the universal full date/time pattern. For example: 2009-06-
15T13:45:30

C Syntax PMDresult PMDCMEGetUserCodeDate(PMDDeviceHandle *hDevice,
 char* date);

Action Sub-action Resource
10 7 1

Name Type
date pointer to a string with a minimum size of 20 bytes

write 1 2 10
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 7
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

read data byte 0
7 6 5 4 3 2 1 0

read data byte 1
7 6 5 4 3 2 1 0

read data byte 2
7 6 5 4 3 2 1 0

read data byte 3...
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Get FileName CMotionEngine
Coding

Arguments None

Returned Data

Packet
Structure

Description The Get FileName CMotionEngine action retrieves the name of the file that has been downloaded. The
returned string contains the file name of the main source file without the folder structure. For example:
“MoveARM.c”.

C Syntax PMDresult PMDCMEGetUserCodeName(PMDDeviceHandle *hDevice,
 char* name);

Action Sub-action Resource
10 6 1

Name Type
name pointer to a string with a minimum size of 256 bytes

write 1 2 10
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 6
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

read name byte 0
7 6 5 4 3 2 1 0

read name byte 1
7 6 5 4 3 2 1 0

read name byte 2
7 6 5 4 3 2 1 0

read name byte 3...
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 105

106

4

Get FileVersion CMotionEngine
Coding

Arguments None

Returned Data

Packet
Structure

Description The Get FileVersion CMotionEngine action retrieves the version of the file that has been downloaded.
The version is set using the macro:

USER_CODE_VERSION(MAJOR_VERSION,MINOR_VERSION)

The returned 32 bit version is stored as (major << 16 | minor).

C Syntax PMDresult PMDCMEGetUserCodeVersion(PMDDeviceHandle *hDevice,
 PMDuint32* version);

Action Sub-action Resource
10 9 1

Name Type
version unsigned 32 bit

write 1 2 10
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 9
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

read version byte 0
7 6 5 4 3 2 1 0

read version byte 1
7 6 5 4 3 2 1 0

read version byte 2
7 6 5 4 3 2 1 0

read version byte 3
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Get Info Device
Coding

Arguments

Returned Data

Packet
Structure

Description The Get Info Device action is a request to a PRP device to return information about the device such as
its firmware version, logic version and host interface. The requested information is one of
PMDDeviceInfo.

Action Sub-action Resource
10 1 0

Name Type Range Encoding
infoID unsigned 8 bit 0 CMEVersion

1 LogicVersion
2 HostInterface
3 MemorySize
5 Heap
6 IPaddress

option unsigned 16 bit 0-2 See Description

Name Type Range Encoding
CMEVersion unsigned 32 bit 0-0xFFFFFFFF CME firmware version
LogicVersion unsigned 32 bit 0-0xFFFF CME logic version
HostInterface unsigned 32 bit 0-0xF Available host interfaces
MemorySize unsigned 32 bit 0-0xFFFFFFFF See Description
Heap unsigned 32 bit 0-0xFFFFFFFF See Description
IPaddress unsigned 32 bit 0-0xFFFFFFFF IPaddress of the device

write 1 2 10
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 1
7 6 5 4 3 2 1 0

write infoID
7 6 5 4 3 2 1 0

write option byte 0
7 6 5 4 3 2 1 0

write option byte 1
7 6 5 4 3 2 1 0

read value byte 0
7 6 5 4 3 2 1 0

read value byte 1
7 6 5 4 3 2 1 0

read value byte 2
7 6 5 4 3 2 1 0

read value byte 3
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 107

108

4

Get Info Device (cont.)
Description
(cont.)

The CMEVersion infoID returns the firmware version in this format:

The LogicVersion infoID returns the logic version as a 16 bit value.

The HostInterface infoID returns the available host interfaces as one or more of PMDHostInterface.

The MemorySize infoID returns the total memory size of the type of memory specified by the option
parameter. The available options are one of PMDMemoryAddress.

These memories are separate from the heap memory and are accessed via the Read Memory and Write
Memory commands.

The Heap infoID in combination with an option word of 0 returns the total amount of heap space
remaining in bytes. There is no guarantee that all of this can be allocated, depending on what sizes are
asked for. The Heap infoID in combination with an option word of 1 returns how close the heap has
come to running out of space so far.

byte 3 byte 2 byte 1 byte 0
reserved major custom minor
C-Motion PRP II Programming Reference

4

Get TaskInfo CMotionEngine
Coding

Arguments

Returned Data

Packet
Structure

Action Sub-action Resource
10 5 1

Name Type Encoding Instance
TaskNo unsigned 8 bit Task number
TaskInfoID unsigned 32 bit 0 TaskState

1 AbortCode
2 StackRemaining
3 StackSize
4 Priority

Name Type Encoding Instance
TaskState unsigned 32 bit 0 no program

1 not started
2 running

AbortCode unsigned 32 bit user defined abort code
StackRemaining unsigned 32 bit remaining stack space in 32 bit words
StackSize unsigned 32 bit stack size in 32 bit words
Priority unsigned 32 bit one of PMDTaskPriority

write 1 2 10
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write 5
7 6 5 4 3 2 1 0

write TaskNo
7 6 5 4 3 2 1 0

write TaskInfoID byte 0
7 6 5 4 3 2 1 0

write TaskInfoID byte 1
7 6 5 4 3 2 1 0

write TaskInfoID byte 2
7 6 5 4 3 2 1 0

write TaskInfoID byte 3
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read TaskInfo byte 0
7 6 5 4 3 2 1 0

read TaskInfo byte 1
7 6 5 4 3 2 1 0

read TaskInfo byte 2
7 6 5 4 3 2 1 0

read TaskInfo byte 3
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 109

110

4

Get TaskInfo CMotionEngine (cont.)
Description The Get TaskInfo CMotionEngine action retrieves the current state of the specified task in the
CMotionEngine user program. The TaskNo parameter is 0-based. Specifying a TaskNo of 0 returns the
information requested for the main task. A TaskNo of 1 returns the information requested for the first
task created from the main task. To obtain the task number of the calling task PMDTaskGetNumber
can be used.

C Syntax PMDresult PMDCMETaskGetInfo(PMDDeviceHandle *hDevice,
 int TaskNo,
 PMDTaskInfo infoID,
 PMDint32* value);
C-Motion PRP II Programming Reference

4

Get Time Device
Coding

Arguments None

Returned Data

Packet
Structure

Description The Get Time Device action retrieves the current real-time clock value in 24-hour format from the
CME device addressed. Time zones are not supported.

C Syntax PMDresult PMDDeviceGetSystemTime(PMDDeviceHandle *hDevice,
 SYSTEMTIME* time)

Action Sub-action Resource
10 13 0

Name Type Range
Year unsigned 16 bit 0-0xFFFF
Month unsigned 16 bit 1-12
DayOfWeek unsigned 16 bit 0-6
Day unsigned 16 bit 1-31
Hour unsigned 16 bit 0-24
Minute unsigned 16 bit 0-59
Second unsigned 16 bit 0-59
Millisecond unsigned 16 bit 0-999

write 1 2 10
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 13
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read Year byte 0
7 6 5 4 3 2 1 0

read Year byte 1
7 6 5 4 3 2 1 0

read Month byte 0
7 6 5 4 3 2 1 0

read Month byte 1
7 6 5 4 3 2 1 0

read DayOfWeek byte 0
7 6 5 4 3 2 1 0

read …
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 111

112

4

NOP
Coding

Arguments None

Returned Data None

Packet
Structure

Description The NOP action does not result in any action on the part of the resource addressed, but may be used to
verify that a resource with the given address exists. If the status field of the reply header is nonzero then
an error of InvalidAddress indicates that no resource with the supplied address exists.

C Syntax PMDDeviceNoOperation (PMDDeviceHandle *hDevice);

Action Sub-action Resource
0 - any

write 1 2 0
7 6 5 4 3 2 1 0

write resource address
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Open CANFD Device
Coding

Arguments

Returned Data

Packet
Structure

Action Sub-action Resource
3 24 0

Name Type Range Encoding
CANController unsigned 8 bit 0-1
TransmitIdentifier unsigned 32 bit 0-2047
ReceiveIdentifier unsigned 32 bit 0-2047
Bitrate (bps) unsigned 32 bit 0 1000k

1 800k
2 500k
3 250k
4 125k
5 50k
6 25k
7 10k
0x40 5M data & 1M nominal
0x50 4M data & 1M nominal
0x60 2M data & 1M nominal
0x72 1M data & 500k nominal

Name Type Range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 24
7 6 5 4 3 2 1 0

write CANController
7 6 5 4 3 2 1 0

write TransmitIdentifier byte 0
7 6 5 4 3 2 1 0

write TransmitIdentifier byte 1
7 6 5 4 3 2 1 0

write TransmitIdentifier byte 2
7 6 5 4 3 2 1 0

write TransmitIdentifier byte 3
7 6 5 4 3 2 1 0

write ReceiveIdentifier byte 0
7 6 5 4 3 2 1 0

write ReceiveIdentifier byte 1
7 6 5 4 3 2 1 0

write ReceiveIdentifier byte 2
7 6 5 4 3 2 1 0

write ReceiveIdentifier byte 3
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 113

114

4

Open CANFD Device (cont.)
Packet
Structure
(cont.)

Description The Open CANFD Device action is a request to a PRP device to return a PRP peripheral address
associated with a CANFD port on the device. The CANFD port is the local physical CANFD port on
the device itself: 0 for ExpCAN, and 1 for HostCAN (if applicable). TransmitIdentifier and
ReceiveIdentifier are CAN identifiers used for sending and receiving messages. The point of view is the
device, so TransmitIdentifier is used for sending messages from the PRP device to the peripheral CAN
device, and ReceiveIdentifier should be used by the peripheral device to send messages to the PRP device.
If either TransmitIdentifier or ReceiveIdentifier is zero than transmit or receive will be disabled. The Baud
argument sets the bitrate of the specified CANcontroller. CANFD supports 2 bitrates during the
transmission of a frame: a nominal bitrate and a data bitrate. The nominal bitrate is one of the standard
CAN bitrates: 10,000 to 1,000,000 bps. The data bit rate has a range of 1,000,000 to 5,000,000 bps. The
bitrate for the CAN port is set to the bitrate of the last call to Open CANFD Device.

write Reserved byte 0
7 6 5 4 3 2 1 0

write Reserved byte 1
7 6 5 4 3 2 1 0

write Reserved byte 2
7 6 5 4 3 2 1 0

write Reserved byte 3
7 6 5 4 3 2 1 0

write Baud byte 0
7 6 5 4 3 2 1 0

write Baud byte 1
7 6 5 4 3 2 1 0

write Baud byte 2
7 6 5 4 3 2 1 0

write Baud byte 3
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Open Device Peripheral
Coding

Arguments None

Returned Data

Packet
Structure

Description The Open Device Peripheral action is used to allocate a PRP address for a Device resource that may be
used to communicate with a PRP device accessible using an existing peripheral connection, for example
a TCP or serial connection. The RemoteAddress returned may be used for any PRP action that may be
addressed to a Device resource; such as other N-Series IONs.

C Syntax PMDresult PMDPeriphOpenDevicePRP (PMDDeviceHandle *hDevice,
 PMDPeriphHandle *hPeriph);

Action Sub-action Resource
3 1 4

Name Type Range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 115

116

4

Open Memory Device
Coding

Arguments

Returned Data

Packet
Structure

Description The Open Memory Device action is used to request a connection to a Memory resource on a remote
PRP device. The MemoryAddress argument indicates which Memory resource on the remote device is
to be used and can be one of PMDMemoryAddress.

The returned RemoteAddress may be used as the address when accessing the resource, for example Read
and Write actions to read and write values from a remote memory resource.

C Syntax PMDresult PMDDeviceOpenMemory(PMDMemoryHandle *hMemory,
 PMDDeviceHandle *hDevice,
 PMDDataSize datasize,
 PMDMemoryAddress memoryaddress)

C# Syntax PMDMemory memory = new PMDMemory(deviceRP, PMDDataSize.Size32Bit);

Action Sub-action Resource
3 3 0

Name Type Range
MemoryAddress unsigned 8 bit 0-2
Datasize unsigned 8 bit 1,2,4

Name Type Range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 3
7 6 5 4 3 2 1 0

write MemoryAddress
7 6 5 4 3 2 1 0

write DataSize
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Open MotionProcessor Peripheral
Coding

Arguments None

Returned Data

Packet
Structure

Description The Open MotionProcessor Peripheral action is used to allocate a PRP address to a Magellan Motion
Processor that is accessible using an existing PRP peripheral resource, using a serial port, SPI, CAN bus,
or PC/104 ISA bus (PR83 only). The PRP RemoteAddress returned may be used to command the
motion processor using the Command action. The PRP device to which this action is directed will
perform the translation from the PRP protocol for Magellan motion processor commands to the native
Magellan protocol.

For example, to use a CME device to control an ION module on a CAN bus, one would:

1. Open a CAN peripheral with the CAN identifiers used by the module for command send and
receive, using OpenCAN directed to the CME Device.

3 Use Open MotionProcessor to get an address for the remote ION using the peripherals opened in
step 1.

4 Send commands to the remote ION using the MotionProcessor address returned in step 2.

C Syntax PMDresult PMDPeriphOpenDeviceMP(PMDDeviceHandle *hDevice,
 PMDPeriphHandlle *hPeriph);

Action Sub-action Resource
3 0 4

Name Type Range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 117

118

4

Open MultiDrop Peripheral
Coding

Arguments

Returned Data

Packet
Structure

Description The Open MultiDrop Peripheral action is used to obtain a peripheral that uses the PMD multi-drop
serial protocol used for communicating with Magellan attached devices, such as non-CME ION
modules, or with other PRP devices. The peripheral resource to which this action is directed must have
been obtained using the Open Serial Device action; the “parent” peripheral must not be closed before the
multi-drop peripheral returned by Open MultiDrop. The RemoteAddress returned by the Open
MultiDrop action will typically be used as a target for Open MotionProcessor or Open Device.

For more information on the multi-drop protocol, see Chapter 2, PMD Resource Access Protocol (PRP)
Tutorial and the Magellan Motion Control IC User Guide.

C Syntax PMDresult PMDPeriphOpenPeriphMultiDrop(PMDPeriphHandle *hPeriph,
 PMDPeriphHandle *hParent,
 PMDuint8 MultiDropAddress);

Action Sub-action Resource
3 25 4

Name Type Range
MultiDropAddress unsigned 8 bit 0-31

Name Type Range
RemoteAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write 25
7 6 5 4 3 2 1 0

write MultiDropAddress
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Open PIO Device
Coding

Arguments

Returned Data

Packet
Structure

Description The Open PIO Device action is a request to open a connection to a parallel IO peripheral channel on a
PRP device. Once such a peripheral is open the peripheral read or write actions may be used with it.
Address is used to specify the channel to open; BusWidth to specify the size, in bytes, of individual data
transfers EventIRQ is not used.

The return value RemoteAddress is a PRP address that may be used with resource type Peripheral for
addressing the opened channel.

Consult the appropriate product user manual for details.

Action Sub-action Resource
3 18 0

Name Type Range
Address unsigned 16 bit 0-0xFFFF
EventIRQ unsigned 8 bit 0-0xFF
BusWidth unsigned 8 bit 1,2,4

Name Type Range
PeriphAddress unsigned 8 bit 0-0xFF

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 18
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Address byte 0
7 6 5 4 3 2 1 0

write Address high byte
7 6 5 4 3 2 1 0

write EventIRQ
7 6 5 4 3 2 1 0

write BusWidth
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read RemoteAddress
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 119

120

4

Open PIO Device (cont.)
C language
interface

PMDresult PMDDeviceOpenPeriphPIO(PMDPeriphHandle*hPeriph
 PMDDeviceHandle*hDevice,
 WORD address,

 BYTE EventIRQ,
 PMDDataSize datasize);
C-Motion PRP II Programming Reference

4

Open Serial Device
Coding

Arguments

Returned Data

Packet
Structure

Description The Open Serial Device action is a request to a PRP device to return a PRP peripheral address
associated with a serial port on the device. SerialPort is the local physical serial port on the device itself:
0 for Serial1, and 1 for Serial2. SerialMode is a 16 bit word encoding serial parameters as shown in the
table below. The return value, PeriphAddress, is a PRP address that may be used with the resource type
Peripheral for addressing the newly opened serial peripheral until it is closed.

In order to open a peripheral that uses the PRP multi-drop serial protocol it is necessary to first open a
Serial peripheral using the Open Serial Device action, and then to use the Open MultiDrop Peripheral
action.

Action Sub-action Resource
3 20 0

Name Type Range
SerialPort unsigned 8 bit 0-2
SerialMode unsigned 16 bit see below

Name Type Range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 20
7 6 5 4 3 2 1 0

write SerialPort
7 6 5 4 3 2 1 0

write multidrop address 0 protocol
7 6 5 4 3 2 1 0

write protocol stop bits parity transmission rate
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read PeriphAddress
7 6 5 4 3 2 1 0

SerialMode Encoding

Bit Number Name Instance Encoding

0-3 transmission rate 1200 baud 0
2400 baud 1
9600 baud 2
19200 baud 3
57600 baud 4
115200 baud 5
230400 baud 6
460800 baud 7
C-Motion PRP II Programming Reference 121

122

4

Open Serial Device (cont.)
Description
(cont.)

C Syntax PMDresult PMDDeviceOpenPeriphSerial(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDSerialPort port,
 PMDSerialBaud baud,
 PMDSerialParity parity,
 PMDSerialStopBits stopbits);

SerialMode Encoding

Bit Number Name Instance Encoding

4-5 parity none 0
odd 1
even 2

6 stop bits 1 0
2 1

7-8 protocol point-to-point 0
multi-drop 3

9-10 reserved 0
10-15 multi-drop

address
0 0-63
C-Motion PRP II Programming Reference

4

Open SPI Device
Coding

Arguments

Returned Data

Packet
Structure

Description The Open SPI Device action is a request to a PRP device to return a PRP peripheral address associated
with an SPI port on the device. SPIPort is the local physical SPI port on the device itself: 0 for ExpSPI
(SPI master), and 1 for HostSPI (SPI slave). ChipSelect is one of 4 possible chip select signals to use or
0 for no ChipSelect. ChipSelect is ignored if the HostSPI port is specified. SPIMode is the SPI mode of
0-3 as shown in the table below.

SPIMode 0: Rising Edge Without Delay. The SPI transmits data on the rising edge of the SPI clock signal
and receives data on the falling edge of the SPI clock signal.

SPIMode 1: Rising Edge With Delay. The SPI transmits data one half-cycle ahead of the rising edge of
the SPI clock signal and receives data on the rising edge of the SPI clock signal.

SPIMode 2: Falling Edge Without Delay. The SPI transmits data on the falling edge of the SPI clock and
receives data on the rising edge of the SPI clock.

SPIMode 3: Falling Edge With Delay. The SPI transmits data one half-cycle ahead of the falling edge of
the SPI clock signal and receives data on the falling edge of the SPI clock signal. DataSize is the number
of bits in an SPI word. Valid values are 4-16. Bitrate is the SPI master clock frequency. Valid values are
1-7 corresponding to 20 MHz, 10 MHz, 5 MHz, 2.5 MHz, 1.25 MHz, 625 kHz, 312.5 kHz. Each
ChipSelect can use a different SPIMode, DataSize and BitRate.

Action Sub-action Resource
3 26 0

Name Type Range
SPIPort unsigned 8 bit 0-1
ChipSelect unsigned 8 bit 0-4
SPIMode unsigned 8 bit 0-3
DataSize unsigned 8 bit 4-16
BitRate unsigned 8 bit 1-7

PeriphAddress

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 26
7 6 5 4 3 2 1 0

write SPIPort
7 6 5 4 3 2 1 0

write ChipSelect
7 6 5 4 3 2 1 0

write SPIMode
7 6 5 4 3 2 1 0

write DataSize
7 6 5 4 3 2 1 0

write BitRate
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 123

124

4

Open SPI Device (cont.)
Description
(cont)

The return value, PeriphAddress, is a PRP address that may be used with the resource type Peripheral for
addressing the newly opened SPI peripheral until it is closed.

C Syntax PMDresult PMDDeviceOpenPeriphSPI(PMDPeriphHandle* hPeriph,
 PMDDeviceHandle *hDevice,
 PMDSPIPort Port,
 PMDSPIChipSelect ChipSelect,
 PMDSPIMode SPIMode,
 PMDuint8 DataSize,
 PMDuint8 BitRate);
C-Motion PRP II Programming Reference

4

Open TCP Device
Coding

Arguments

Returned Data

Packet
Structure

Description The Open TCP action is a request to a PRP device to return a PRP peripheral address associated with
an Ethernet TCP connection. EthernetInterface is the local physical Ethernet interface; for all current
PRP devices there is one Ethernet interface, so this argument should be zero.

IPAddress is the remote address to which a connection should be opened. If IPAddress is zero, then the
port will be opened that will accept incoming connections, one incoming connection at a time may be
handled by such a port. TCPPort is the TCP port to connect to or to listen on.

The return value, PeriphAddress, is a PRP address that may be used with the resource type Peripheral
for addressing the newly opened Ethernet peripheral until it is closed.

Action Sub-action Resource
3 22 0

Name Type Range
EthernetInterface unsigned 8 bit 0
IPAddress unsigned 32 bit 0-0xFFFFFFFF
TCPPort unsigned 16 bit 0-0xFFFF

Name Type Range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 22
7 6 5 4 3 2 1 0

write EthernetInterface
7 6 5 4 3 2 1 0

write IPAddress byte 0
7 6 5 4 3 2 1 0

write IPAddress byte 1
7 6 5 4 3 2 1 0

write IPAddress byte 2
7 6 5 4 3 2 1 0

write IPAddress byte 3
7 6 5 4 3 2 1 0

write TCPPort byte 0
7 6 5 4 3 2 1 0

write TCPPort byte 1
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read PeriphAddress
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 125

126

4

Open TCP Device (cont.)
C language
interface

PMDresult PMDDeviceOpenPeriphTCP(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint32 IPAddress,
 PMDuint16 TCPPort);
C-Motion PRP II Programming Reference

4

Open UDP Device
Coding

Arguments

Returned Data

Packet
Structure

Description The Open UDP Device action is a request to a PRP device to return a PRP peripheral address associated
with an Ethernet UDP port and remote IP address. EthernetInterface is the local physical Ethernet
interface; for all current PRP devices there is one Ethernet interface, so this argument should be zero.

IPAddress is the remote address to which UDP packets should be sent. If IPAddress is zero then the port
will be opened that will accept incoming UDP packets. UDPPort is the UDP port to connect to or to
listen on.

Action Sub-action Resource
3 23 0

Name Type Range
EthernetInterface unsigned 8 bit 0
IPAddress unsigned 32 bit 0-0xFFFFFFFF
UDPPort unsigned 16 bit 0-0xFFFF

Name Type Range
PeriphAddress unsigned 8 bit 1-31

write 1 2 3
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 23
7 6 5 4 3 2 1 0

write EthernetInterface
7 6 5 4 3 2 1 0

write IPAddress byte 0
7 6 5 4 3 2 1 0

write IPAddress byte 1
7 6 5 4 3 2 1 0

write IPAddress byte 2
7 6 5 4 3 2 1 0

write IPAddress byte 3
7 6 5 4 3 2 1 0

write UDPPort least significant byte
7 6 5 4 3 2 1 0

write UDPPort byte 1
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read PeriphAddress
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 127

128

4

Open UDP Device (cont.)
Description
(cont.)

The return value, PeriphAddress, is a PRP address that may be used with the resource type Peripheral
for addressing the newly opened Ethernet peripheral until it is closed.

C language
interface

PMDresult PMDDeviceOpenPeriphUDP(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice,
 PMDuint32 IPAddress,
 PMDuint16 UDPPort);
C-Motion PRP II Programming Reference

4

Read Memory
Coding

Arguments

Returned Data data words

Packet
Structure

Action Sub-action Resource
8 4 3

Name Type Range Units
DataSize unsigned 8 bit 1,2,4
Offset unsigned 32 bit 0-0xFFFFFFFF Datasize
Length unsigned 32 bit 0-0xFFFF Datasize

write 1 2 8
7 6 5 4 3 2 1 0

write 3 address
7 6 5 4 3 2 1 0

write DataSize
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write Length byte 0
7 6 5 4 3 2 1 0

write Length byte 1
7 6 5 4 3 2 1 0

write Length byte 2
7 6 5 4 3 2 1 0

write Length byte 3
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read data word 0 byte 0
7 6 5 4 3 2 1 0

read data word 0 byte 1 …
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 129

130

4

Read Memory (cont.)
 Description The Read Memory action is used to read a sequence of DataSize words from a memory resource. The
Offset argument is an address in the memory. The DataSize argument is the size of the data to read:
1=byte, 2=word, or 4=double word. Offset should be divisible by DataSize. A non-aligned access will
return PMD_ERR_ParameterAlignment. The Length argument is the number of DataSize words to read,
exactly this number of DataSize words are returned as the message body of the response packet.

C Syntax PMDresult PMDMemoryRead (PMDMemoryHandle *hMemory,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);
C-Motion PRP II Programming Reference

4

Read Peripheral
Coding

Arguments

Returned Data data bytes

Packet
Structure

Description The Read Peripheral action is used to read a sequence of DataSize words from a parallel bus peripheral
such as a PC/104 bus or internal registers. The DataSize argument is the size of the data to read: a value
of 2 represents a 16 bit word, or a value of 4 represents a 32 bit word. The Offset argument is an offset
from the base address that was specified when the peripheral was opened; Offset must be even. The
Length argument specifies the number of DataSize to read; Length must also be even. The data read is
returned as the message body of the response packet.

Action Sub-action Resource
8 2 4

Name Type Range Units
DataSize unsigned 8 bit 2,4
Offset unsigned 32 bit 0-0xFFFFFFFF DataSize
Length unsigned 32 bit 0-0xFFFF DataSize

write 1 2 8
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write DataSize
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write Length byte 0
7 6 5 4 3 2 1 0

write Length byte 1
7 6 5 4 3 2 1 0

write Length byte 2
7 6 5 4 3 2 1 0

write Length byte 3
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read data byte 0 …
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 131

132

4

Read Peripheral (cont.)
Description
(cont.)

This action is not applicable to other types of peripheral, and an InvalidResource error will be returned
if another peripheral type is specified.

C Syntax PMDresult PMDPeriphRead(PMDPeriphHandle *hPeriph,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);
C-Motion PRP II Programming Reference

4

Receive CMotionEngine
Coding

Arguments

Returned Data data bytes

Packet
Structure

Description The Receive CMotionEngine action is used to receive user packet data sent by a user program running
on a C-Motion Engine. See the description of Send CMotionEngine (p. 137) for a description of the
user packet mechanism. C-Motion user programs send user packets by calling PMDPeriphSend using a
peripheral opened with the PMDDeviceOpenPeriphCME procedure.

The timeout argument specifies the maximum number of milliseconds to wait for data before failing
with a PRP timeout error. A timeout value of 65535 (0xFFFF) means no time limit. In case of a timeout
no bytes will be returned.

The C-Motion Engine buffers only one outgoing user packet at a time.

The size of the message received is given implicitly by the size of the return packet. How the size of the
return packet is determined depends on the transport mechanism in use.

C Syntax PMDresult PMDDeviceOpenPeriphCME(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice);

PMDresult PMDPeriphReceive(PMDPeriphHandle *hPeriph,
 void *buffer,
 PMDuint32 *nReceived,
 PMDuint32 nExpected,
 PMDuint32 timeout);

Action Sub-action Resource
6 - 1

Name Type Range Units
timeout unsigned 16 bit 0-0xFFFF msec
nExpected unsigned 16 bit 0-0xFFFF bytes

write 1 2 6
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write timeout byte 0
7 6 5 4 3 2 1 0

write timeout byte 1
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0

read received data byte 0
7 6 5 4 3 2 1 0

read received data byte 1 …
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 133

134

4

Receive Peripheral
Coding

Arguments

Returned Data data bytes

Packet
Structure

Description The Receive Peripheral action is used to receive data from some remote device using the
communication channel specified by the Peripheral resource to which it is addressed.

The timeout argument specifies the maximum number of milliseconds to wait for data before failing with
a PRP timeout error. In case of a time out any received bytes will be returned.

The nExpected argument specifies the maximum number of bytes to receive. For data that are naturally
arranged in packets, for example TCP and UDP, only one packet will be received so the actual number
of bytes returned may be less than nExpected. For data that are not arranged in packets, for example data
received on a serial port peripheral, exactly nExpected bytes must be received or a timeout results and
any received bytes will be returned.

The number of bytes of data actually returned is encoded in the size of the packet, how that size is
transmitted depends on the transport mechanism.

Action Sub-action Resource
6 - 4

Name Type Range Units
timeout unsigned 16 bit 0-0xFFFF msec
nExpected unsigned 16 bit 0-0xFFFF bytes

write 1 2 6
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write timeout byte 0
7 6 5 4 3 2 1 0

write timeout byte 1
7 6 5 4 3 2 1 0

write nExpected byte 0
7 6 5 4 3 2 1 0

write nExpected byte 1
7 6 5 4 3 2 1 0

read 1 status reserved
7 5 4 3 2 1 0

read received data byte 0
7 6 5 4 3 2 1 0

read received data byte 1 …
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Receive Peripheral (cont.)
Description
(cont.)

If the peripheral connection has been closed by some external action, for example a TCP connection
that has been closed by a peer, then a status of PMD_ERR_NotConnected will be returned. All PMD_ERR_
values should be in the non-serifed font. Such a peripheral must be closed using the Close action. In the
case of a TCP connection, after closing the unconnected peripheral a new peripheral with the same TCP
port may be opened using the OpenTCP action.

C Syntax PMDresult PMDPeriphReceive(PMDPeriphHandle *hPeriph,
 void *buffer,
 PMDuint32 *nReceived,
 PMDuint32 nExpected,
 PMDuint32 timeout);
C-Motion PRP II Programming Reference 135

136

4

Reset Device
Coding

Arguments None

Returned Data None

Packet
Structure

Description The Reset Device action may be used to reset a PRP device. No return packet is sent after this command
except for nIONs. A minimum 500ms delay should be performed before sending the next command to
allow for the device to reset. The return packet for the next command will be a PMD_ERR_RP_Reset error
(0x2001), regardless of the command requested. A Reset error in reply to an action indicates that the
command was not processed, and should be re-sent.

C Syntax PMDresult PMDDeviceReset(PMDDeviceHandle *hDevice);

Action Sub-action Resource
1 - 0

write 1 2 1
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Send CMotionEngine
Coding

Arguments

Returned Data None

Packet
Structure

Description The Send CMotionEngine action is used to send a user packet to a user program running on a C-Motion
Engine, which may read them using the PMDPeriphReceive procedure applied to a peripheral opened
with PMDDeviceOpenPeriphCME. The user packet mechanism allows arbitrary user data to be sent to
or received from user programs without opening dedicated peripheral channels – the packets are
encapsulated in PRP packets. User packets are sent as discrete units, and only one packet may be
buffered before being read by a user program.

The timeout argument specifies how many milliseconds to wait for the user program to read the user
packet.

The user packet mechanism is the simplest way to exchange data with running C-Motion Engine user
programs, and has the advantage of working the same way regardless of the transport mechanism used
to send packets, but it is limited in performance and flexibility. If user packets are not sufficient then
peripheral channels specific to the user application should be opened and used.

The maximum size of a user packet is 250 bytes, as given by USER_PACKET in the file PMDPeriph.h.
The actual size of the user packet sent is implicitly given by the size of the outgoing PRP packet. How
the PRP packet size is determined depends on the transport mechanism in use.

C Syntax PMDresult PMDDeviceOpenPeriphCME(PMDPeriphHandle *hPeriph,
 PMDDeviceHandle *hDevice);

PMDresult PMDPeriphSend(PMDPeriphHandle *hPeriph,
 void *buffer,
 PMDuint32 nCount,
 PMDuint32 timeout);

Action Sub-action Resource
5 - 1

Name Type Range Units
timeout unsigned 16 bit 0-0xFFFF msec

write 1 2 5
7 6 5 4 3 2 1 0

write 1 address
7 6 5 4 3 2 1 0

write timeout byte 0
7 6 5 4 3 2 1 0

write timeout byte 1
7 6 5 4 3 2 1 0

write data byte 0
7 6 5 4 3 2 1 0

write data byte 1 …
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 137

138

4

Send Peripheral
Coding

Arguments

Returned Data None

Packet
Structure

Description The Send Peripheral action is used to transmit data to some remote device using the communication
channel specified by the Peripheral resource to which it is addressed. The peripheral might be a TCP
Ethernet connection, a serial port, pair of CAN bus identifiers, or any other peripheral type. The number
of bytes to send is implicit in the size of the PRP packet, how this is determined depends on the transport
mechanism in use.

If all of the data cannot be sent within timeout milliseconds then a PRP timeout error will be returned.
In which case some of the data may have been sent, it is not possible to tell.

If the peripheral connection has been closed by some external action, for example a TCP connection
that has been closed by a peer, then a status of PMD_ERR_NotConnected will be returned. Such a
peripheral must be closed using the Close action. In the case of a TCP connection, after closing the
unconnected peripheral a new peripheral with the same TCP port may be opened using the OpenTCP
action.

C Syntax PMDresult PMDPeriphSend(PMDPeriphHandle *hPeriph,
 void *buffer,
 PMDuint32 nCount,
 PMDuint32 timeout);

Action Sub-action Resource
5 - 4

Name Type Range Units
timeout unsigned 16 bit 0-0xFFFF msec

write 1 2 5
7 6 5 4 3 2 1 0

write 4 address
7 6 5 4 3 2 1 0

write timeout byte 0
7 6 5 4 3 2 1 0

write timeout byte 1
7 6 5 4 3 2 1 0

write data byte 0
7 6 5 4 3 2 1 0

write data byte 1 …
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Set Console CMotionEngine
Coding

Arguments

Returned Data None

Packet
Structure

Description The Set Console CMotionEngine action is used to change the destination of console messages from a
user program running in the C-Motion Engine to which the action is addressed. User programs can
emit console messages using the C library procedure PMDprintf. Console messages are primarily
intended for debugging and routine progress monitoring.

The Console argument is the address of a peripheral to be used for console output. If Console is zero,
then all console output will be suppressed. If Console is nonzero it must be the address of a peripheral
that was opened on the same device as the C-Motion engine being addressed – if it is an inappropriate
peripheral address then an error will be returned.

C Syntax PMDresult PMDCMESetConsole (PMDDeviceHandle *hDevice,
 PMDPeriphHandle *hPeriph);

Action Sub-action Resource
9 4 3

Name Type meaning
Console unsigned 8 bit peripheral address

write 1 2 9
7 6 5 4 3 2 1 0

write 3 address
7 6 5 4 3 2 1 0

write 4
7 6 5 4 3 2 1 0

write Console
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 139

140

4

Set Default Device
Coding

Arguments

Returned Data None

Packet
Structure

Description The Set Default Device action is used to change various non-volatile properties of a PRP device, for
example the IP address, or whether to run a user program immediately after power up. The length of
DefaultValue depends on the particular data type, and is encoded in the upper byte of DefaultCode. The
length in bytes is the field value minus one; a length value of zero means one byte, one means two bytes.
Most default values are either two or four bytes long, but some are longer.

Action Sub-action Resource
9 2 0

Name Type meaning
DefaultCode unsigned 32 bit default identifier
DefaultValue varies

write 1 2 9
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 2
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write DefaultCode byte 0
7 6 5 4 3 2 1 0

write DefaultCode byte 1
7 6 5 4 3 2 1 0

write DefaultCode byte 2
7 6 5 4 3 2 1 0

write DefaultCode byte 3
7 6 5 4 3 2 1 0

write DefaultValue byte 0
7 6 5 4 3 2 1 0

write DefaultValue byte 1 …
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Set Default Device (cont.)
Description
(cont.)

The table below summarizes the set of default values and their codes:

DefaultIPAddress is the IP address of the Ethernet controller. It is typically necessary to set this default
using the serial interface to suit the network in which a PRP device is to be installed. The default value
is chosen to be part of a reserved IP class, and is not routable on the Internet.

Note that IP addresses are typically written in “dotted quad” notation, where each byte is written in
decimal, separated by a dot. In order to convert from dotted quad notation to hexadecimal write convert
each dot-separated field to hexadecimal and concatenate.

DefaultNetMask is a bitmask defining which IP addresses are directly accessible in the local subnet, the
default is for a class C network, and must typically be changed to suit the network in which the PRP
device is installed.

DefaultGateway is the IP address of the router to be used for all non-local IP addresses. PRP devices
does not support more general routing tables because it is expected that they will usually deal with hosts
on the local network. DefaultGateway must be changed to enable routing to any non-local IP addresses,
but that such routing may not be necessary for many applications.

N-Series ION CME Defaults

Name code
length
(bytes) factory default

DefaultIPAddress 0x0303 4 0xC0A80202 (192.168.2.2)

DefaultNetMask 0x0304 4 0xFFFFFF00 (255.255.255.0)

DefaultGateway 0x0305 4 0x00000000 (0.0.0.0)

DefaultTCPPort 0x0106 2 40100

DefaultSerial1Mode 0x010E 2 0x0004 (57600,n,8,1)

DefaultSerial2Mode 0x010F 2 0x0005 (115200,n,8,1)

DefaultRS485Duplex 0x0110 2 0 (Full duplex)

DefaultCANMode 0x0111 2 0x0000 (1000 kbps)

DefaultAutoStartMode 0x0114 2 0

DefaultConsoleIntfType 0x0118 2 0 (None)

DefaultConsoleIntfAddr 0x0119 2 0xC0A80201 (192.168.2.1)

DefaultConsoleIntfPort 0x011A 2 0

DefaultHostCANMode 0x0112 2 0xC000 (20 kbps)

DefaultDHCPTries 0x0120 2 2

DefaultTaskParam 0x011E 2 0

DefaultSerial3Mode 0x0121 2 0x0004 (57600,n,8,1)

DefaultSerial1ModeRS485 0x0124 2 0

DefaultDIOmux 0x0125 2 0x1555

DefaultDIOdir 0x0126 2 0

DefaultDIOout 0x0127 2 0

DefaultBiSSConfig 0x0129 2 0

DefaultSSIResolution 0x012A 2 0

DefaultBiSSFFrequency 0x012B 2 0

DefaultBiSSEnable 0x012C 2 0

DefaultBiSSSingleTurn 0x012D 2 0

DefaultBiSSMultiTurn 0x012E 2 0

DefaultBiSSRightBitShift 0x012F 2 0

All other values reserved.
C-Motion PRP II Programming Reference 141

142

4

Set Default Device (cont.)
Description
(cont.)

DefaultTCPPort is the base TCP port used for accepting host commands. In most cases there is no reason
to change the default value of 40100.

DefaultSerial1Mode and DefaultSerial2Mode are serial port modes with the same meaning as SerialMode
in the OpenSerial action, and are applied to the two serial ports immediately after coming out of reset.
Serial port modes may be changed later by using the OpenSerial action.

DefaultRS485Duplex controls whether duplex mode is used in case serial port Serial1 is configured as
for RS-485. One means full-duplex, zero means half-duplex.

DefaultCANMode is an encoding of CAN bus parameters similar to that used by Magellan, as described
in the C-Motion Magellan Programming Reference, and are summarized below. The CAN mode cannot be
changed except by using DefaultCANMode, it cannot be changed “on the fly.”

All CAN devices on the same bus must use the same transmission rate in order to communicate
properly. The CAN NodeID encodes a set of CAN identifiers to be used for accepting host commands
and returning responses, and uses the same scheme as do Magellan Motion Processors. All PRP devices
and all Magellan Motion Processors on the same CAN bus must have distinct NodeIDs. Messages with
a CAN identifier of 0x600 + NodeID will be accepted as PRP host commands, and will be responded
to using CAN identifier 0x580 + NodeID. Asynchronous event notification messages will be sent using
CAN identifier 0x180 + NodeID.

DefaultAutoStartMode controls whether a user program in the C-Motion Engine will be run
automatically after coming out of reset. A value of one means that any user program present will be
automatically run, zero means that a user program will not be run until a CommandTaskStart action is
received. Automatic starting of user programs will be inhibited if a user program has caused a previous
reset, for example by causing an exception.

DefaultCANMode fields

Bits Name Instance Encoding

0-6 CAN NodeID Node0 0

Node1 … 1

Node127 127

7-12 reserved 0

13-15 Transmission Rate 1,000,000 baud 0

 800,000 baud 1

 500,000 baud 2

 250,000 baud 3

 125,000 baud 4

 50,000 baud 5

 20,000 baud 6

 10,000 baud 7
C-Motion PRP II Programming Reference

4

Set Default Device (cont.)
Description
(cont.)

DefaultConsoleIntfType, DefaultConsoleIntfAddr, and DefaultConsoleIntfPort determine the
communications channel that will be used for console (user program output) messages. The channel
used may be changed at run time by using the Set ValueConsole action. The encoding of these default
values is explained in the table below.

DefaultDHCPTries is the number of attempts to obtain the IP configuration from the DHCP server.

DefaultTaskParam is the default 32 bit parameter to pass to the main user task upon startup.

DefaultSerial3Mode is the serial port mode to apply Serial3 the programming port. (0x0004 =
57600,n,8,1)

DefaultSerial1ModeRS485 is the serial port mode to apply when RS485 mode is enabled.

DefaultDIOmux is the default value to apply to the DIO signal mux PIO register 0x228.

DefaultDIOdir is the default value to apply to the DIO signal direction PIO register 0x222.

DefaultDIOout is the default value to apply to the DIO signal out PIO register 0x212.

DefaultBiSSConfig is the default value to apply to the BiSS config PIO register 0x100.

DefaultSSIResolution is the default value to apply to the BiSS resolution PIO register 0x102.

DefaultBiSSFFrequency is the default value to apply to the BiSS frequency PIO register 0x104.

DefaultBiSSEnable is the default value to apply to the BiSS enable PIO register 0x106.

DefaultBiSSSingleTurn is the default value to apply to the BiSS single-turn PIO register 0x108.

DefaultBiSSMultiTurn is the default value to apply to the BiSS multi-turnPIO register 0x10A.

DefaultBiSSRightBitShift is the default value to apply to the BiSS right bit shift PIO register 0x10C.

See the appropriate product user manual for a list of PIO registers.

C Syntax PMDresult PMDSetDefault(PMDDeviceHandle *hDevice,
 PMDDefault default,
 void *value,
 unsigned valueSize);

Console Output Defaults

DefaultConsoleIntfType
value

Peripheral
type

DefaultConsoleIntfAddr
meaning

DefaultConsoleIntfPort
meaning

0 none ignored ignored

1 reserved

2 PCI ignored ignored

3 reserved

4 serial 0 – Serial1, 1 – Serial2 port settings

5 reserved

6 reserved

7 UDP IP address UDP port

8 SPI

9 PRP

> 9 reserved
C-Motion PRP II Programming Reference 143

144

4

Set NodeID Device
Coding

Arguments

Returned Data None

Packet
Structure

Description The Set NodeID Device action sets the NodeID of the interface on the CME device that the command
is received on (Serial or CAN). This command is primarily used for daisy-chaining N-Series IONs to
perform auto-addressing. If a digital input signal is specified in the command, the signal is sampled and
if it is at the signal sense specified the node id is changed. If no digital input signal is specified (DISignal
= 0) the node id is changed regardless. If a digital output signal is specified its pin muxing and direction
are changed accordingly, and the output value is changed to the SignalSense value after a delay of 5ms to
prevent the output signal from changing before other IONs process the command. If the device
changed its node id to the node id specified it responds with the standard PRP response packet that no
error occurred otherwise no response is sent.

The NodeID value is the desired NodeID to assign to the device. The DOsignal is the digital output
signal that will be set to SignalSense if the sampled DIsignal is equal to SignalSense. Valid values are 0-8
(DIOs1-8). A value of 0 will not cause any DO to be changed. The DIsignal is the digital input signal to
sample. Valid values are the same options as DOsignal.

C Syntax PMDresult PMDDeviceSetNodeID(PMDDeviceHandle *hDevice,
 PMDuint8 NodeId,
 PMDuint8 DOSignal,
 PMDuint8 DISignal,
 PMDuint8 SignalSense);

Action Sub-action Resource
9 15 0

Name Type Range
NodeID unsigned 8 bit 0-255
DOsignal unsigned 8 bit 0-8
DIsignal unsigned 8 bit 0-8
SignalSense unsigned 8 bit 0-1 (0=low, 1=high)

write 1 2 9
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 15
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write NodeID
7 6 5 4 3 2 1 0

write DOsignal
7 6 5 4 3 2 1 0

write DIsignal
7 6 5 4 3 2 1 0

write SignalSense
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Set Time Device
Coding

Arguments

Returned Data None

Packet
Structure

Description The Set Time Device action sets the current real-time clock value of the CME device addressed.

C Syntax PMDresult PMDDeviceSetSystemTime(PMDDeviceHandle *hDevice,
 const SYSTEMTIME* time)

Action Sub-action Resource
9 13 0

Name Type Range
Year unsigned 16 bit 0-0xFFFF
Month unsigned 16 bit 1-12
DayOfWeek unsigned 16 bit 0-6
Day unsigned 16 bit 1-31
Hour unsigned 16 bit 0-24
Minute unsigned 16 bit 0-59
Second unsigned 16 bit 0-59
Millisecond unsigned 16 bit 0-999

write 1 2 9
7 6 5 4 3 2 1 0

write 0 address
7 6 5 4 3 2 1 0

write 13
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Year byte 0
7 6 5 4 3 2 1 0

write Year byte 1
7 6 5 4 3 2 1 0

write Month byte 0
7 6 5 4 3 2 1 0

write Month byte 1
7 6 5 4 3 2 1 0

write DayOfWeek byte 0
7 6 5 4 3 2 1 0

write …
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference 145

146

4

Write Memory
Coding

Arguments

Returned Data None

Packet
Structure

Action Sub-action Resource
7 4 3

Name Type Range Units
DataSize unsigned 8 bit 1,2,4
Offset unsigned 32 bit 0-0xFFFFFFFF bytes
Length unsigned 32 bit 0-0xFFFFFFFF datasize

write 1 2 7
7 6 5 4 3 2 1 0

write 3 address
7 6 5 4 3 2 1 0

write DataSize
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write Length byte 0
7 6 5 4 3 2 1 0

write Length byte 1
7 6 5 4 3 2 1 0

write Length byte 2
7 6 5 4 3 2 1 0

write Length byte 3
7 6 5 4 3 2 1 0

write data word 0 byte 0
7 6 5 4 3 2 1 0

write data word 0 byte 1
7 6 5 4 3 2 1 0

write data word 0 byte 2
7 6 5 4 3 2 1 0

write data word 0 byte 3 …
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Write Memory (cont.)
Description The Write Memory action is used to write a sequence of data words to a memory resource. The Offset
argument is an index or address into the memory. Offset should be divisible by DataSize. A non-aligned
access will return PMD_ERR_ParameterAlignment.

The Length argument is the number of DataSize words to write.

C Syntax PMDresult PMDMemoryWrite(PMDMemoryHandle *hMemory,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);
C-Motion PRP II Programming Reference 147

148

4

Write Peripheral
Coding

Arguments

Returned Data None

Packet
Structure

Action Sub-action Resource
7 4 3

Name Type Range Units
DataSize unsigned 8 bit 1,2,4
Offset unsigned 32 bit 0-0xFFFFFFFF bytes
Length unsigned 32 bit 0-0xFFFF datasize

write 1 2 7
7 6 5 4 3 2 1 0

write 3 address
7 6 5 4 3 2 1 0

write DataSize
7 6 5 4 3 2 1 0

write 0
7 6 5 4 3 2 1 0

write Offset byte 0
7 6 5 4 3 2 1 0

write Offset byte 1
7 6 5 4 3 2 1 0

write Offset byte 2
7 6 5 4 3 2 1 0

write Offset byte 3
7 6 5 4 3 2 1 0

write Length byte 0
7 6 5 4 3 2 1 0

write Length byte 1
7 6 5 4 3 2 1 0

write Length byte 2
7 6 5 4 3 2 1 0

write Length byte 3
7 6 5 4 3 2 1 0

write data word 0 byte 0
7 6 5 4 3 2 1 0

write data word 0 byte 1
7 6 5 4 3 2 1 0

write data word 0 byte 2
7 6 5 4 3 2 1 0

write data word 0 byte 3 …
7 6 5 4 3 2 1 0

read 1 status reserved
7 6 5 4 3 2 1 0
C-Motion PRP II Programming Reference

4

Write Peripheral (cont.)
Description The Write Peripheral action is used to write a sequence of data words to a memory resource. The Offset
argument is an index or address into the memory. Offset should be divisible by DataSize. A non-aligned
access will return PMD_ERR_ParameterAlignment.

The Length argument is the number of DataSize words to write.

C Syntax PMDresult PMDPeriphWrite(PMDMemoryHandle *hMemory,
 void *data,
 PMDuint32 offset,
 PMDuint32 length);
C-Motion PRP II Programming Reference 149

150

4

This page intentionally left blank.
C-Motion PRP II Programming Reference

C-Motion PRP II Programming Reference 151

A

Appendix A. PRP Transport

PRP may be transported using a serial, TCP/IP, CAN, or SPI communication channel. This section discusses these
communication channel-specific aspects of PRP message transport and processing.

A.1 PRP Transport Over Serial

To transport PRP packets over serial a header is used to specify the length of the PRP packet and to detect most cases
of packet corruption.

There are two cases of the serial protocol:

1 Point-to-point serial communication using either RS232 or RS485: only one PRP device and one host may
be connected to the serial line.

2 Multi-drop serial communication using RS485: multiple PRP devices may share the same serial bus, but
each must be configured to use a separate multi-drop address.

The figures below illustrate the packet formats for the two cases:

The MultiDropAddress field is used to address a particular serial device, and each device must be configured to use a
different address.

Point-to-Point Serial Packet

checksum
7 6 5 4 3 2 1 0

length
7 6 5 4 3 2 1 0

PRP packet byte 0
7 6 5 4 3 2 1 0

PRP packet byte 1 …
7 6 5 4 3 2 1 0

Multi-Drop Serial Packet

MultiDropAddress
7 6 5 4 3 2 1 0

checksum
7 6 5 4 3 2 1 0

length
7 6 5 4 3 2 1 0

PRP packet byte 0
7 6 5 4 3 2 1 0

PRP packet byte 1 …
7 6 5 4 3 2 1 0

152 C-Motion PRP II Programming Reference

A

The length field is the unsigned number of bytes in the PRP packet bytes. For example if there are 2 PRP packet bytes
to be transported the length field value is 2.

The checksum field is a simple additive checksum modulo 256, over just the bytes in the PRP packet. For example if
there are 2 PRP packet bytes to be transported then the checksum is calculated over these 2 bytes.

Both outgoing and response packets are formatted in the same way.

An error-free Serial/PRP communication sequence from the host controller to the PRP device consists of a full
outgoing packet transmission with the correct checksum and specified number of bytes, and a full packet response
with correct checksum and length received at the host controller. The return message must be received within a fixed
amount of time determined by the host controller. Correctly setting this 'timeout window' may depend on factors such
as baud rate, but 100 milliseconds is a typical safe value.

If the host controller receives a response packet with an incorrect checksum, or does not receive a complete packet
(communications timeout), then the original message should be resent.

If a PRP device receives a packet with an incorrect checksum, then it will respond with a PRP error response packet
with an error code of PMD_ERR_RP_Checksum. See Section 2.5.2, PRP Response Packet for a list of PRP response
packet error codes.

If the PRP device does not receive the specified number of bytes within 100 milliseconds of beginning of packet
reception, the incoming message is ignored and no message is sent to the host controller.

A.2 PRP Transport Over TCP/IP

PRP packets are realized as TCP/IP packets. Three padding bytes are added to the beginning of the response packet
and can be ignored. For example if the PRP response packet is two bytes in length, the 1st, 2nd, and 3rd bytes of the
TCP/IP response packet would hold zero, and the 4th and 5th bytes would hold the PRP response packet.

The length of each PRP packet is determined from the IP header.

In order to initiate a PRP connection, a host should establish a TCP connection to a PRP device using the port
specified by the device default DefaultTCPPort. The factory default for this port is 40100, but it may be changed using
Set Device SetDefault.

A.3 PRP Transport Over CAN

PRP over CAN uses the concept of a node identifier, a concept borrowed from CANOpen. The node identifier is a user-
chosen integer between 1 and 127, inclusive, and is the least significant seven bits of any CAN identifier used for PRP
communication. As long as their node identifiers are different, PRP devices should coexist (but not communicate) with
CANOpen devices on the same CANbus.

PRP uses three CAN identifiers for communication:

• 0x600 + NodeIdentifier is used for sending messages from the host to a PRP device. This identifier is used
by default for SDO transmit by CANOpen devices.

• 0x580 + NodeIdentifier is used for sending responses from a PRP device to a host. This identifier is used
by default for SDO receive by CANOpen devices.

CAN messages are limited to eight bytes of data, which means that some PRP packets may require several CAN mes-
sages for complete transport. In order to support this a segment/de-segment protocol is used. The protocol that is
used by the PRP devices to accomplish this is very similar to the Service Data Object (SDO) protocol of the
CANopen standard.

C-Motion PRP II Programming Reference 153

A

A header byte added as the first byte of each CAN message is used for segment identification. All of the remaining
(up to 7) bytes are used for the PRP packet content. Each CAN message used for PRP is either an initial message, or
a continued message. An initial message is the first message and is followed by zero or more continued messages,
which complete the PRP packet content.

The header byte of the initial message has the form:

NContinued is the number of continued messages that will follow, and may be zero.

Each continued header byte has this form:

The first continued message has a Sequence value of one, and each subsequent message has a Sequence value one
greater than that of the previous message. The final message has a Sequence value of NContinued.

If a message is received with an unexpected Sequence value, or an Initial message is received when expecting a
Continued message, then the receiver will immediately send a PRP error packet with the error code
PMD_ERR_RP_InvalidPacket. Each continued message must be sent within 100ms otherwise the PRP packet processing
state machine will be reset.

The exact length of a PRP packet may not be determined after reading just the initial message with a nonzero
NContinued value, because the length of the last message is not known. The length is at least 7 * NContinued + 1 and
at most 7 * (NContinued + 1).

No PRP packet checksum is required because the integrity of each CAN message is protected by a CRC including the
segment header bytes. Reception of the expected sequence numbers is very good evidence that a packet has been
correctly received.

Example

To send the 17 byte PRP packet 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 the message-by-message CAN
content is:

1st CAN message (all values in hex):

82, 01, 02, 03, 04, 05, 06, 07

2nd CAN message:

01, 08, 09, 0A, 0B, 0C, 0D, 0E

3rd CAN message:

02, 0F, 10, 11

A.4 PRP Transport over SPI

PRP transport over SPI utilizes standard SPI signals consisting of chip select, clock, MISO, and MOSI. In addition, a
signal known as SPIStatus used for message sequence control is used. In the PRP system the host acts as the SPI
master, and the PRP device acts as the SPI slave.

1 NContinued
7 6 5 4 3 2 1 0

0 Sequence
7 6 5 4 3 2 1 0

154 C-Motion PRP II Programming Reference

A

For reference, when operating as a PRP slave device (which is the default mode of operation) the Host SPI port signals
for the N-Series ION Digital Drive are shown below:

In the PRP system all SPI data is transmitted in bytes, most significant bit first, with 16 bit words being transmitted
low byte first, then high byte. Full duplex communication with chip select, clock, MISO, and MOSI signals is assumed,
meaning the slave is transmitting simultaneously as the host is transmitting. SPI mode 1 is used, meaning MISO and
MOSI change on the rising edge of the clock and are latched on the falling edge.

A.4.1 Outgoing Message Format

The complete PRP message packet is sent by the host to the PRP device using a single SPI message. The contents of
the complete PRP message consist of a two-byte header, the PRP payload (the PRP packet bytes), and a two byte
checksum. If the PRP payload has an odd length in bytes, then a padding zero byte is sent after the payload and before
the checksum.

The header contains a single byte length field which is the number of bytes in the PRP payload excluding any padding
bytes. Following the length field is a byte with a value of zero.

Figure A-1:

Outgoing

Packet Format

for PRP over

SPI

The checksum is the logical not of the 16 bit ones complement checksum of the complete PRP message including
Header, PRP payload, pad byte if present, and the checksum. A ones complement checksum is computed by first
adding together all message bytes as unsigned 16 bit words, assembling the result into a 32 bit value. If the high word
of this 32 bit value is non-zero the high 16 bit word should be repeatedly added to the low 16 bit word as unsigned 16
bit values until the high word is zero. This will be accomplished in no more than two such “foldback” adds.

Signal Name Function Input/Output
HostSPISelect Chip Select Input
HostSPIClock Clock Input
HostSPIXmt MISO (Master In Slave Out) Output
HostSPIRcv MOSI (Master Out Slave In) Input
HostSPIStatus SPIStatus Output

1234567 0

Length

1234567 0

Zero

1234567 0

PRP payload byte 1

1234567 0

PRP payload byte 2

1234567 0

PRP payload byte 3...

1234567 0

Zero pad byte if # payload bytes is odd

1234567 0

Low byte ones-complement checksum

1234567 0

High byte ones-complement checksum

C-Motion PRP II Programming Reference 155

A

The computed ones complement checksum of a correctly received complete PRP message should be 0xFFFF. If the
computed value is not 0xFFFF the PRP device will respond with a “checksum error” PRP packet. For a list of PRP
error codes see Section 2.5.2, PRP Response Packet.

During outgoing message transmission the host should ignore any data received from the PRP device.

A.4.2 Response Message Format

A PRP response packet can be retrieved via a single SPI transaction or via multiple SPI transactions.

The overall format of the complete PRP response message is similar, but not identical, to the outgoing message. First
a length byte is sent followed by two zero bytes (rather than one zero byte for the outgoing message header). Then the
PRP payload is sent which is padded with a zero byte at the end if the number of bytes in the payload is odd. Finally
a 16 bit checksum is sent.

Both the length and the checksum fields operate over the same fields as the outgoing message and are computed the
same way, except that their values come from the response message content.

Figure A-2:

Response

Packet Format

for PRP over

SPI

A.4.3 SPI PRP Command Sequence

An SPI PRP command sequence consists of sending a command, waiting for HostSPIStatus, then reading the response.
The chip select signal can either be de-asserted between sending and receiving or left asserted if it is the only device
on the bus. The complete sequence of events for sending a command follows:

1 The host sends an outgoing complete PRP message.

2 While the slave processes this command, the host waits for HostSPIStatus to be asserted.

3 Once HostSPIStatus is asserted the host sends a 16 bit message containing a value of zero, and reads two
bytes simultaneously transmitted by the PRP device to obtain the response header.

4 The host then reads the number of bytes of the PRP response indicated by the length field in the response
header plus any pad byte. When retrieving the full response and trailing checksum, the host should send
zeros and expect them to be ignored. The reading of the response header and the PRP payload can be
two separate SPI transactions if desired, or the chip select signal can be left asserted throughout.

5 The host calculates and verifies the checksum. If the checksum is not valid then the response should not
be accepted. The checksum includes all response packet bytes. A PRP response must be completely read

1234567 0

Length

1234567 0

Zero

1234567 0

Zero

1234567 0

PRP payload byte 1...

1234567 0

Zero pad byte if # payload bytes is odd

1234567 0

Low byte ones-complement checksum

1234567 0

High byte ones-complement checksum

156 C-Motion PRP II Programming Reference

A

within 100ms after HostSPIStatus is asserted otherwise the PRP Device returns to the “waiting for
outgoing PRP message” state and the response data is lost. HostSPIStatus will be deasserted when this
occurs.

Example

An outgoing PRP message carried over SPI encodes the following:

MotionProcessor, Addr 0, Command, <SetPosition, #3, 0x12FEDC>

What is the byte-by-byte outgoing SPI data stream?

We first determine the content of the PRP payload, i.e., the PRP header and PRP body content. See Section 2.6.2,
Automatically Assigned Addresses and Peripherals for encoding of a very similar PRP message.

The total length of the PRP payload is 8 bytes, and therefore no zero pad byte is added at the end of the payload. Had
a pad byte been necessary it would be added at the very end of the payload.

Now we show the complete outgoing PRP message content. From the previous description, note that 16 bit values
are encoded low byte first then second byte.

Complete outgoing PRP Message content:

To compute the needed checksum we add up all 16 bit words not including the checksum and maintain this sum in a
32 bit register. The above stream in 16 bit values is 0x0008, 0x4062, 0x0210, 0x0012, 0xFEDC. This gives a summed
value of 0x14168. Next we add the 1 of the high word to the low word giving a result of 0x4169 with no carry into the
high word indicating ‘folding’ is done. Finally we logical invert (not) this result giving 0xBE96, which is inserted as the
calculated checksum in the outgoing message.

For the receiving SPI Device to check the checksum it adds up all received words including the checksum in the same
way. This gives 0x1FFFE, which after folding the high word value into the low word gives 0xFFFF indicating a correct
checksum.

0x62 // 1st byte of PRP header encoding a Command action
0x40 // 2nd byte of PRP header encoding a MotionProcessor resource, Addr 0
0x0210 // 6-byte PRP payload body encoding SetPosition #3, 0x12FEDC
0x0012
0xFEDC

0x08 // length field which is includes a PRP payload of 8 bytes
0x00 // zero
0x62 // 1st word of PRP payload
0x40
0x10 // 2nd word of PRP payload
0x02
0x12 // 3rd word of PRP payload
0x00
0xDC // 4th word of PRP payload
0xFE
0x96 // computed folded checksum is 0x4169, inverted becomes 0xBE96
0xBE

C-Motion PRP II Programming Reference 157

B

Appendix B. Summary List of
C-Motion API

Instruction Page Instruction Page
PMDAxisOpen 29 PMDMemoryClose 68
PMDCMEGetUserCodeChecksum 30 PMDMemoryErase 69
PMDCMEGetUserCodeDate 31 PMDMemoryRead 70
PMDCMEGetUserCodeName 32 PMDMemoryWrite 71
PMDCMEGetUserCodeVersion 33 PMDPeriphClose 72
PMDCMESetConsole 34 PMDPeriphOpenDeviceMP 73
PMDCMEStoreUserCode 35 PMDPeriphOpenDevicePRP 74
PMDCMETaskGetInfo 36 PMDPeriphOpenPeriphMultiDrop 75
PMDCMETaskStart 37 PMDPeriphRead 76
PMDCMETaskStop 38 PMDPeriphReceive 77
PMDDeviceClose 39 PMDPeriphSend 79
PMDDeviceGetDefault 40 PMDPeriphWrite 80
PMDDeviceGetFaultCode 41 PMDprintf 81
PMDDeviceGetInfo 42 PMDputch 82
PMDDeviceGetMicroseconds 43 PMDputs 83
PMDDeviceGetSystemTime 44 PMDTaskAbort 84
PMDDeviceGetTickCount 45 PMDTaskCreate 85
PMDDeviceOpenMemory 46 PMDTaskGetAbortCode 86
PMDDeviceOpenPeriphCAN 47 PMDTaskWait 88
PMDDeviceOpenPeriphCANFD 48 PMDTaskWaitUntil 89
PMDDeviceOpenPeriphCME 49 PMDWaitForEvent 90
PMDDeviceOpenPeriphPIO 50
PMDDeviceOpenPeriphPRP 51
PMDDeviceOpenPeriphSerial 52
PMDDeviceOpenPeriphSPI 53
PMDDeviceOpenPeriphTCP 54
PMDDeviceOpenPeriphUDP 55
PMDDeviceReset 56
PMDDeviceSetDefault 57
PMDDeviceSetNodeID 58
PMDDeviceSetSystemTime 59
PMDEventOpenDI 60
PMDEventOpenMotion 61
PMDEventOpenTimer 62
PMDEventWait 63
PMDMailboxOpen 64
PMDMailboxPeek 65
PMDMailboxReceive 66
PMDMailboxSend 67

158 C-Motion PRP II Programming Reference

B

This page intentionally left blank.

Index

A
action reference 29
actions 22
addresses 22
axis handles 129

C
C language library procedure 77
CANbus transport 28
C-Motion 123

Axis handles 129
Engine 123
Engine macros 78
Engine Procedures 123
Engine programming 124
libraries 123
versions 129

console 127

D
data types 77

E
event notification packet 24
exceptions, C-Motion 127

N
naming conventions 77

O
outgoing PRP packet 23
overview, devices 7

P
packet

event notification 24
outgoing PRP 23
response 23
structure 23

PCI bus transport 27
PMD library procedures 79

PRP
action reference 29
actions 22
addresses 22
CANbus transport 28
devices, overview 7
outgoing packet 23
packet structure 23
PCI bus transport 27
resources 21
response packets 23
serial transport 26
sub-actions 22
TCP/IP transport 27
transport layers 25
tutorial 9

PRP Tutorial 9
actions 11
addressing 9
auto-assigned addresses 14
CANbus 19
communications formats 18
communications ports 11
description 9
Ethernet 19
magellan-attached device 16
on-card resources 15
peripheral connections 12
resources 11
serial 18

R
resources, PRP 21
response packets 23
return values 78

S
scope 7
serial transport 26
sub-actions 22
C-Motion PRP II Programming Reference 159

Index

160
T
TCP/IP transport 27
transport layers 25

U
user packets 127

V
VB-Motion 133

error handling 136
Magellan-atttched device 135
Visual Basic, classes 133

versions, C-Motion 129
C-Motion PRP II Programming Reference

C-Motion PRP II Programming Reference 161

For additional information, or for technical assistance,
please contact PMD at (978) 266-1210.

You may also e-mail your request to support@pmdcorp.com

Visit our website at https://www.pmdcorp.com

Performance Motion Devices
1 Technology Park Drive

Westford, MA 01886

	Table of Contents
	1. Introduction
	1.1 Introduction
	1.2 PMD Products and C-Motion Version
	1.3 Overview of C-Motion PRP II
	1.3.1 Resource Access Virtualization
	1.3.2 C-Motion Code Execution
	1.3.3 Communication Networks

	2. PMD Resource Access Protocol (PRP)
	2.1 Introduction
	2.2 PRP Resources
	2.3 PRP Actions and Sub-Actions
	2.4 PRP Addresses
	2.5 PRP Packet Structure
	2.5.1 Outgoing PRP Packet
	2.5.2 PRP Response Packet

	2.6 Using PRP
	2.6.1 Device Access Basics
	2.6.2 Automatically Assigned Addresses and Peripherals
	2.6.3 RS232 & RS485 Peripherals
	2.6.4 Remote Attached Devices
	2.6.5 Other Peripheral Types

	3. PMD C-Motion API Reference
	3.1 Naming Conventions
	3.2 Data Types
	3.3 Return Values
	3.4 C-Motion Engine
	3.4.1 C-Motion Engine Programming
	3.4.2 Macros

	3.5 Microsoft .NET Programming
	3.5.1 Visual Basic Programming
	3.5.2 Visual Basic Classes
	3.5.3 C# Programming
	3.5.4 Error Handling

	3.6 PMD Library Procedures
	3.7 C-Motion to API PRP Table
	3.8 Alphabetical C-Motion API Reference
	PMDAxisOpen
	PMDCMEGetUserCodeChecksum
	PMDCMEGetUserCodeDate
	PMDCMEGetUserCodeName
	PMDCMEGetUserCodeVersion
	PMDCMESetConsole
	PMDCMEStoreUserCode
	PMDCMETaskGetInfo
	PMDCMETaskStart
	PMDCMETaskStop
	PMDDeviceClose
	PMDDeviceGetDefault
	PMDDeviceGetFaultCode
	PMDDeviceGetInfo
	PMDDeviceGetMicroseconds
	PMDDeviceGetSystemTime
	PMDDeviceGetTickCount
	PMDDeviceOpenMemory
	PMDDeviceOpenPeriphCAN
	PMDDeviceOpenPeriphCANFD
	PMDDeviceOpenPeriphCME
	PMDDeviceOpenPeriphPIO
	PMDDeviceOpenPeriphPRP
	PMDDeviceOpenPeriphSerial
	PMDDeviceOpenPeriphSPI
	PMDDeviceOpenPeriphTCP
	PMDDeviceOpenPeriphUDP
	PMDDeviceReset
	PMDDeviceSetDefault
	PMDDeviceSetNodeID
	PMDDeviceSetSystemTime
	PMDEventOpenDI
	PMDEventOpenMotion
	PMDEventOpenTimer
	PMDEventWait
	PMDMailboxOpen
	PMDMailboxPeek
	PMDMailboxReceive
	PMDMailboxSend
	PMDMemoryClose
	PMDMemoryErase
	PMDMemoryRead
	PMDMemoryWrite
	PMDPeriphClose
	PMDPeriphOpenDeviceMP
	PMDPeriphOpenDevicePRP
	PMDPeriphOpenPeriphMultiDrop
	PMDPeriphRead
	PMDPeriphReceive
	PMDPeriphReceive (cont.)
	PMDPeriphSend
	PMDPeriphWrite
	PMDprintf
	PMDputch
	PMDputs
	PMDTaskAbort
	PMDTaskCreate
	PMDTaskGetAbortCode
	PMDTaskGetNumber
	PMDTaskWait
	PMDTaskWaitUntil
	PMDWaitForEvent

	4. PRP Action Reference
	4.1 Action Table
	4.2 Alphabetical PRP Action Reference
	Clear Memory
	Close various
	Command Flash CMotionEngine
	Command TaskControl CMotionEngine
	Command MotionProcessor
	Get Default Device
	Get FaultCode Device
	Get FaultCode Device (cont.)
	Get FileChecksum CMotionEngine
	Get FileDate CMotionEngine
	Get FileName CMotionEngine
	Get FileVersion CMotionEngine
	Get Info Device
	Get Info Device (cont.)
	Get TaskInfo CMotionEngine
	Get TaskInfo CMotionEngine (cont.)
	Get Time Device
	NOP
	Open CANFD Device
	Open CANFD Device (cont.)
	Open Device Peripheral
	Open Memory Device
	Open MotionProcessor Peripheral
	Open MultiDrop Peripheral
	Open PIO Device
	Open PIO Device (cont.)
	Open Serial Device
	Open SPI Device
	Open TCP Device
	Open UDP Device
	Read Memory
	Read Memory (cont.)
	Read Peripheral
	Read Peripheral (cont.)
	Receive CMotionEngine
	Receive Peripheral
	Reset Device
	Send CMotionEngine
	Send Peripheral
	Set Console CMotionEngine
	Set Default Device
	Set NodeID Device
	Set Time Device
	Write Memory
	Write Memory (cont.)
	Write Peripheral
	Write Peripheral (cont.)

	Appendix A. PRP Transport
	A.1 PRP Transport Over Serial
	A.2 PRP Transport Over TCP/IP
	A.3 PRP Transport Over CAN
	A.4 PRP Transport over SPI
	A.4.1 Outgoing Message Format
	A.4.2 Response Message Format
	A.4.3 SPI PRP Command Sequence

	Appendix B. Summary List of C-Motion API
	Index

