
Revision 4.3/ July 2023

Performance Motion Devices, Inc.

80 Central Street, Boxborough, MA 01719

www.pmdcorp.com

C-Motion Magellan

Programming Reference

ii C-Motion Magellan Programming Reference

NOTICE

This document contains proprietary and confidential information of Performance Motion Devices, Inc., and is protected
by federal copyright law. The contents of this document may not be disclosed to third parties, translated, copied, or du-
plicated in any form, in whole or in part, without the express written permission of PMD.

The information contained in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form, by any means, electronic or mechanical, for any purpose, without the express
written permission of PMD.

Copyright 1998–2023 by Performance Motion Devices, Inc.

Juno, Atlas, Magellan, ION, Prodigy, Pro-Motion, C-Motion and VB-Motion are trademarks of Performance Motion
Devices, Inc.

C-Motion Magellan Programming Reference iii

Warranty

Performance Motion Devices, Inc. warrants that its products shall substantially comply with the specifications applicable
at the time of sale, provided that this warranty does not extend to any use of any Performance Motion Devices, Inc.
product in an Unauthorized Application (as defined below). Except as specifically provided in this paragraph, each
Performance Motion Devices, Inc. product is provided “as is” and without warranty of any type, including without
limitation implied warranties of merchantability and fitness for any particular purpose.

Performance Motion Devices, Inc. reserves the right to modify its products, and to discontinue any product or service,
without notice and advises customers to obtain the latest version of relevant information (including without limitation
product specifications) before placing orders to verify the performance capabilities of the products being purchased. All
products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including
those pertaining to warranty, patent infringement and limitation of liability.

Unauthorized Applications

Performance Motion Devices, Inc. products are not designed, approved or warranted for use in any application where
failure of the Performance Motion Devices, Inc. product could result in death, personal injury or significant property or
environmental damage (each, an “Unauthorized Application”). By way of example and not limitation, a life support
system, an aircraft control system and a motor vehicle control system would all be considered “Unauthorized
Applications” and use of a Performance Motion Devices, Inc. product in such a system would not be warranted or
approved by Performance Motion Devices, Inc.

By using any Performance Motion Devices, Inc. product in connection with an Unauthorized Application, the customer
agrees to defend, indemnify and hold harmless Performance Motion Devices, Inc., its officers, directors, employees and
agents, from and against any and all claims, losses, liabilities, damages, costs and expenses, including without limitation
reasonable attorneys’ fees, (collectively, “Damages”) arising out of or relating to such use, including without limitation
any Damages arising out of the failure of the Performance Motion Devices, Inc. product to conform to specifications.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must
be provided by the customer to minimize inherent procedural hazards.

Disclaimer

Performance Motion Devices, Inc. assumes no liability for applications assistance or customer product design.
Performance Motion Devices, Inc. does not warrant or represent that any license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property right of Performance Motion Devices,
Inc. covering or relating to any combination, machine, or process in which such products or services might be or are
used. Performance Motion Devices, Inc.’s publication of information regarding any third party’s products or services
does not constitute Performance Motion Devices, Inc.’s approval, warranty or endorsement thereof.

Patents

Performance Motion Devices, Inc. may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials
and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents,
trademarks, copyrights, or other intellectual property rights.

Patents and/or pending patent applications of Performance Motion Devices, Inc. are listed at
https://www.pmdcorp.com/company/patents.

https://www.pmdcorp.com/company/patents

iv C-Motion Magellan Programming Reference

Related Documents

Magellan Motion Control IC User Guide

Complete description of the Magellan Motion Control IC features and functions with detailed theory of its
operation.

MC58000 Electrical Specification

For DC brush, brushless DC, Microstepping, and Pulse & Direction motion control ICs

MC55000 Electrical Specification

For Pulse & Direction motion control ICs

MC58113 Electrical Specification

For single chip DC Brush, brushless DC, microstepping, and Pulse & Direction motion control ICs with closed
loop current control.

Other Documents

ION/CME N-Series Digital Drive User Manual

How to install and configure ION/CME N-Series Digital Drives.

ION Digital Drive User Manual

How to install and configure ION 500 and ION 3000 Digital Drives.

Prodigy-PC/104 Motion Card User Guide

How to install and configure the Prodigy-PC/104 motion board.

Prodigy/CME Standalone User Guide

How to install and configure the Prodigy/CME standalone motion board.

Prodigy/CME Machine-Controller User Guide

How to install and configure the Prodigy/CME machine controller motion board.

Table of Contents
1. Introduction . 7
1.1 Introduction. 7
1.2 PMD Products and C-Motion Version . 7
1.3 Overview of C-Motion Magellan. 8
1.4 Microsoft .NET Programming . 11

2. Instruction Reference . 15
2.1 How to Use This Reference. 15

3. Instruction Summary Tables . 219
3.1 Descriptions by Functional Category . 219
3.2 Command Support by Product. 222
3.3 Alphabetical Listing . 225
3.4 Numerical Listing. 229
3.5 Magellan Compatibility . 231
C-Motion Magellan Programming Reference v

This page intentionally left blank.
vi C-Motion Magellan Programming Reference

1

1. Introduction

1.1 Introduction

This manual documents C-Motion Magellan, which is a software library used to control and monitor Magellan and Juno-
based PMD motion control products.

There are two other C-Motion versions; C-Motion PRP and C-Motion PRP II. All of these software systems are available
in separate SDKs as detailed below:

• C-Motion Magellan SDK – an SDK (Software Developer Kit) for creating motion applications using the
C/C++ programming language for PMD products that utilize a direct Magellan or Juno formatted
protocol.

• C-Motion PRP SDK – an SDK for creating PC and downloadable user code for systems utilizing either
a PRP (PMD Resource Access Protocol) protocol device or a Magellan/Juno protocol device. C-Motion
PRP is also used in motion applications that will use the .NET (C#, VB) programming languages.

• C-Motion PRP II SDK – This SDK is similar to C-Motion PRP but is used with ION/CME N-Series
ION Digital Drives. Compared to standard C-Motion PRP, C-Motion PRP II supports additional features
such as multi-tasking, mailboxes, mutexes, and enhanced event management.

For detailed information on Magellan/Juno protocol C-Motion refer to the C-Motion Magellan Programming Reference. For
detailed information on C-Motion PRP refer to the C-Motion PRP Programming Reference.

1.2 PMD Products and C-Motion Version

The following table shows the C-Motion versions that can be used with each PMD product family:

*C-Motion PRP typically only used for .NET support, or if a mix of Magellan/Juno protocol and PRP protocol devices
are attached.

Product Family Compatible C-Motion Versions
Magellan ICs C-Motion Magellan, C-Motion PRP*
Juno ICs C-Motion Magellan, C-Motion PRP*
ION/CME N-Series C-Motion PRP II
ION 500 C-Motion Magellan, C-Motion PRP*
ION/CME 500 C-Motion PRP
ION 3000 C-Motion Magellan, C-Motion PRP*
Prodigy PC/104 C-Motion Magellan, C-Motion PRP*
Prodigy/CME PC/104 C-Motion PRP
Prodigy/CME Stand-Alone C-Motion PRP
Prodigy/CME Machine-Controller C-Motion PRP
C-Motion Magellan Programming Reference 7777

Introduction1
1.3 Overview of C-Motion Magellan

1.3.1 Introduction

C-Motion Magellan is a “C” source code library that contains all the code required for communicating with the Ma-
gellan Motion Control IC.

C-Motion includes the following features:

• Axis virtualization.

• The ability to communicate to multiple Magellan Motion Control ICs.

• Can be easily linked to any “C/C++” application.

C-Motion callable functions are broken into two groups, those callable functions that encapsulate motion control IC
specific commands, and those callable functions that encapsulate product-specific capabilities.

The motion control IC specific commands are detailed in Chapter 2, Instruction Reference. They are the primary com-
mands that you will use to control the major motion features including profile generation, servo loop closure, motor
output signal generation (PWM and analog), breakpoint processing, trace operations, and many other functions.

Each Magellan Motion Control IC command has a C-Motion command of the identical name, but prefaced by the
letters “PMD.” For example, the Magellan command SetPosition is called PMDSetPosition.

1.3.2 Files

The following table lists the files that make up the C-Motion distribution.

1.3.3 Using C-Motion

C-Motion can be linked to your application code by including the above “C” source files in your application. Then,
for any application source file that requires access to the motion control IC, include C-Motion.h. In addition, the re-
quired interfaces need to be defined as shown below. Only the required interfaces need to be included.

#define PMD_W32SERIAL_INTERFACE
// use this for a standard serial interface under Windows

C-Motion.h/C-Motion.c Definition/declaration of the PMD Magellan command set
PMDpar.h/PMDpar.c Parallel interface functions
PMDW32ser.h/PMDW32ser.c Windows serial communication interface functions
PMDutil.h/PMDutil.c General utility functions
PMDtrans.h/PMDtrans.c Generic transport (interface) functions
PMDecode.h Defines the PMD Magellan and C-Motion error codes
PMDocode.h Defines the control codes for Magellan commands
PMDtypes.h Defines the basic types required by C-Motion
PMDCAN.h/PMDCAN.c CAN interface command/data transfer functions.
PMDIXXATCAN.c CAN interface for IXXAT VCI (Virtual Can Interface) API
PMDNISPI.c SPI interface for National Instruments USB-8452
PMDcommon.c Miscellaneous procedures
PMDdevice.h
PMDdiag.h/PMDdiag.c Diagnostic functions
IXXAT*.* IXXAT VCI include and library files
PLX*.* PLX Technology (PCI) and library include files
NI*.* National Instruments include and library files
8 C-Motion Magellan Programming Reference

Introduction 1
#define PMD_PCI_INTERFACE
// use this for a standard PCI parallel interface under Windows

#define PMD_CAN_INTERFACE
// use this for a CAN interface under Windows

By customizing the base interface functions, C-Motion can be ported to virtually any hardware platform. An example
would be a memory-mapped IO scheme that uses the parallel interface. This would be built using the PMDPar.c/.h
source files as a basis.

The Magellan Motion Control IC Developer Kit board and the Prodigy-PCI Motion Card use the PCI interface chip
provided by PLX Technology. To fully understand the interface mechanism, or to write your own interface software,
you can download the PLX SDK. More information on the functionality and features can be found on the PLX web-
site – http://www.plxtech.com – in the software development kits area.

C-Motion is a set of functions that encapsulate the motion control IC command set. Every command has as its first
parameter an “axis handle.” The axis handle is a structure containing information about the interface to the motion
control IC and the axis number that the handle represents. Before communicating to the motion control IC, the axis
handle must be initialized using the following sequence of commands:

// the axis handles
PMDAxisHandle hAxis1, hAxis2;

// open interface to PMD processor and initialize handle to axis one
PMDSetupAxisInterface_PCI(&hAxis1, PMDAxis1, 0);

// initialize handle to the second axis
PMDCopyAxisInterface(&hAxis2, &hAxis1, PMDAxis2);

The above is an example of initializing communication using the parallel communication interface. Each interface .c
source file contains an example of initializing the interface. Once the axis handle has been initialized, any of the motion
control IC commands can be executed.

The header file C-Motion.h includes the function prototypes for all motion control IC commands as implemented in
C-Motion. See this file for the required parameters for each command. For information about the operation and pur-
pose of each command, see Chapter 2, Instruction Reference.

Many functions require additional parameters. Some standard values are defined by C-Motion and can be used with
the appropriate functions. See PMDtypes.h for a complete list of defined types. An example of calling one of the C-
Motion functions with the pre-defined types is shown below:

PMDSetBreakpoint(&Axis2, PMDBreakpoint1, PMDAxis2, PMDBreakpointActionAbruptStop,
PMDBreakpointActualPositionCrossed);

In a few cases commands must be directed explicitly to the Atlas amplifier associated with a Magellan control axis,
examples are the GetVersion and Reset commands. In order to do so an axis handle must be opened for the Atlas
amplifier itself, to do so for axis 2 the following call may be used:

PMDAxisHandle hAxis2, hAtlas2;
PMDGetAtlasAxisHandle(&hAxis2, &hAtlas2);
C-Motion Magellan Programming Reference 9

Introduction1
1.3.4 C-Motion Functions

The table below describes the functions that are provided by C-Motion in addition to the standard chip command set.

C-Motion functions Arguments Function description
PMDSetupAxisInterface_PCI axis_handle

axis_number
board_number

Used to setup an axis interface connection for communicat-
ing over a PCI bus.

PMDSetupAxisInterface_Serial axis_handle
axis_number
port_number

Used to setup an axis interface connection for communicat-
ing over a RS232 or RS485 serial bus.

PMDSerial_SetConfig transport_data
baud_rate
parity

Used for setting baud rate and parity for a serial axis. trans-
port_data is a member of the axis handle struct, which must
be cast to (PMDSerialIOData *). baud_rate is an integer.
parity takes the same enumerated values as the Parity mem-
ber of the Windows DCB struct.

PMDSetupAxisInterface_CAN axis_handle
axis_number
board_number

Used to setup an axis interface connection for communicat-
ing over a CAN bus.

PMDSetupAxisInterface_Parallel axis_handle
axis_number
board_address

Low level function used to setup an axis interface for paral-
lel communications in an embedded system.

PMDSetupAxisInterface_SPI axis_handle
axis_number
device

Used to setup an axis interface connection for communicat-
ing over an SPI bus.

PMDCloseAxisInterface axis_handle Should be called to terminate an interface connection.
PMDCopyAxisInterface dest_axis_handle

src_axis_handle
axis_number

Used for opening an axis interface connection to the same
device as used by src_axis_handle, but a different axis.

PMDGetErrorMessage ErrorCode Returns a character string representation of the corre-
sponding PMD chip or C-Motion error code.

GetCMotionVersion MajorVersion
MinorVersion

Returns the major and minor version number of C-Motion.

PMDHardReset axis_handle This function causes a “hard” reset of the motion control
IC. Unlike all other card-specific commands, this command
is processed directly through the bus interface.

PMDReadDPRAM axis_handle
data
offset_in_dwords
words_to_read

This function reads directly from the onboard dual-port
RAM via the bus interface (if applicable).

PMDWriteDPRAM axis_handle
data
offset_in_dwords
words_to_write

This function writes directly to the onboard dual-port RAM
via the bus interface (if applicable).
10 C-Motion Magellan Programming Reference

Introduction 1
1.3.5 Prodigy Motion Card Specific Functions

Several auxiliary functions are included in addition to the standard Magellan API commands for use with the Magellan-
based Prodigy Motion Cards only. The functions are for configuring functions on the motion control board. The follow-

ing table describes the functions. For more information, see the user guide for your motion control card.

1.4 Microsoft .NET Programming

1.4.1 Visual Basic Classes

The file PMDLibrary.vb defines a Visual Basic class for each of the opaque data types used in the PMD library:

PMDPeripheral, PMDDevice, PMDAxis, and PMDMemory. PMDPeripheral is inherited by a set of de-
rived classes for each peripheral type: PMDPeripheralCOM, PMDPeripheralCAN, PMDPeripheralPCI,
and
PMDPeripheralTCP. Each class takes care of allocating and freeing the memory used for the “handle” structures
used in the C language interface.

The following example illustrates how to obtain a Magellan axis object connected to a serial port.

Public Class Examples
Public Sub Example2()

Dim periph As PMDPeripheral
Dim Magellan As PMDDevice
Dim axis2 As PMDAxis

C-Motion function Arguments Function description
PMDMBWriteDigitalOutput axis_handle,

write_value
This function writes to the eight general-purpose digital I/
O signals (digitalOut0-7). Write_value holds the eight sig-
nals in its low order 8 bits.

PMDMBReadDigitalInput axis_handle, read_value This function reads the value of the signals DigitalIn0-7, and
returns them in the low order 8 bits of read_value.

PMDMBReadDigitalOutput axis_handle, read_value This function reads the value of the signals DigitalOut0-7,
and returns them in the low order 8 bits of read_value.

PMDMBSetAmplifierEnable axis handle, mask,
write_value

This function writes to the 4 amplifier enable signals (Amp-
Enable1-4) using mask and write_value. When a 1 appears
in mask, the corresponding bit position in write_value is
written to the corresponding signal. The values for mask
and write_value are all 0- shifted; that is, they are stored in
the lowest order 4 bits.

PMDMBGetAmplifierEnable axis_handle, read_value This function reads the values of AmpEnable 1-4, and
returns them in the low order 4 bits of read_value.

PMDMBSetDACOutputEnable axis handle, write_value This function sets the DACOutputEnable status. A written
value of 1 enables DAC output, while a written value of 0
disables DAC output.

PMDMBGetDACOutputEnable axis_handle, read_value This function reads the value of the DACOutputEnable
function. A value of 1 indicates DAC output enabled; a
value of 0 indicates DAC output disabled.

PMDMBSetWatchDog axis handle This function writes to the correct value to the watchdog
register, so that for the next 104 milliseconds the card will
not be reset by the watchdog circuitry.

PMDMBGetResetCause axis_handle,
reset_cause

This function returns the reset cause in the variable reset_-
cause, reset_cause and also clears the reset condition.

PMDMBReadCardID axis_handle,
card_ID

This function returns the card ID, encoded as defined in
the preceeding table.
C-Motion Magellan Programming Reference 11

Introduction1
' Open the connection on COM1, using appropriate serial port parameters
periph = New PMDPeripheralCOM(1, PMDSerialBaud.Baud57600, _
PMDSerialParity.None, PMDSerialStopBits.Bits1)

' Obtain a Magellan device object using the peripheral.
Magellan = New PMDDevice(periph, PMDDeviceType.MotionProcessor)

' Finally instantiate an axis object for axis number 2.
axis2 = New PMDAxis(Magellan, PMDAxisNumber.Axis2)

' Example VB-Motion operation: Get the event status
Dim status As UInt16
status = axis2.EventStatus

End Sub
End Class

1.4.2 Visual Basic Programming

The Visual Basic PMD Library is the interface from Microsoft Visual Basic .NET to the PMD C-Motion library for
control of Magellan Motion Control ICs, which is documented in the Magellan Motion Control IC Programming Reference.
The Visual Basic interface documented in that manual is similar to but not identical to that used for PRP devices. Basic
language programming is supported only for Microsoft Windows hosts, C-Motion Engine programming must be done
in the C language.

There are two parts to the Visual Basic interface code:

1 C-Motion.dll is a dynamically loadable library of all documented procedures in the PMD host libraries,
including all C-Motion procedures.

2 PMDLibrary.vb is Visual Basic source code containing definitions and declarations for DLL procedures,
enumerated types, and data structures supporting the use of C-Motion.dll from Visual Basic. PMDLibrary.vb
should be included in any Visual Basic project for PRP or Magellan device control.

Both debug and release versions of C-Motion.dll are provided in directories CMESDK\HostCode\Debug and
CMESDK\HostCode\Release, respectively. The library input file C-Motion.lib is also provided so that C-Motion.dll may
be used with C/C++ language programs. When compiling C/C++ programs to be linked against the DLL the
preprocessor symbol PMD_IMPORTS must be defined.

C-Motion.dll must be in the executable path when using it, either from a C or a Visual Basic program. Frequently the
easiest and safest way of doing this is to put it in the same directory as the executable file.

PMDLibrary.vb is located in the directory CMESDK\HostCode\DotNet.

1.4.3 Visual Basic Classes

The file PMDLibrary.vb defines a Visual Basic class for each of the opaque data types used in the PMD library:
PMDPeripheral, PMDDevice, PMDAxis, and PMDMemory. PMDPeripheral is inherited by a set of derived classes
for each peripheral type: PMDPeripheralSerial, PMDPeripheralMultiDrop, PMDPeripheralPRP,
PMDPeripheralCAN, PMDPeripheralSPI, and PMDPeripheralTCP.

Each class takes care of allocating and freeing the memory used for the “handle” structures used in the C language
interface. The first pointer argument to, for example, a PMDPeriphHandle in a C language procedure call is not
needed because a method call for a particular PMDPeripheral object is used instead, and each object manages its own
PMDPeriphHandle.
12 C-Motion Magellan Programming Reference

Introduction 1
The “Open” procedures used in the C language interface are replaced in Visual Basic with constructor methods that
take the same arguments in the same order, with the exception that the first pointer argument is not needed. “Close”
methods are provided that call the C language “Close” procedures, however these procedures may also be called
automatically as part of the finalization process when objects are garbage collected.

The following example demonstrates how to open a peripheral connection to a PRP device accessible by TCP/IP, and
to access the resources of that device.

Public Class Examples
 Public Sub Example1()

' Allocate and open a peripheral connection to a PRP device using TCP/IP.
' Note that the arguments for the PMDPeripheralTCP object are the same as for the
' C language call PMDDeviceOpenPeriphTCP, except that the first argument for the peripheral
' struct pointer and the second argument for the device are not used.
' The standard .NET class for IP addresses is used instead of a numeric IP address.
' DEFAULT_ETHERNET_PORT is a constant defined in PMDLibrary.vb for the default
' TCP port used for commands by the PRP device.
' 1000 is a timeout value in milliseconds.
Dim periph As New PMDPeripheralTCP(System.Net.IPAddress.Parse("192.168.0.27"), _
 DEFAULT_ETHERNET_PORT, _
 1000)

' Now allocate and connect a device object using the newly opened peripheral.
' Instead of using two different names the second argument specifies whether a
' PRP device or attached Magellan device is expected.
Dim DevCME As New PMDDevice(periph, PMDDeviceType.ResourceProtocol)

' Once the PRP device is open we can obtain an axis object, which may be used
' for any C-Motion commands. Notice that the enumerated value used to specify the axis is
' called "Axis1" instead of "PMDAxis1" because the enumeration name already includes
‘ the “PMD” prefix.
Dim axis1 As New PMDAxis(DevCME, PMDAxisNumber.Axis1)

' C-Motion procedures returning a single value become class properties, and may be
' retrieved or set by using an assignment. The "Get" or "Set" part of the name is dropped.
Dim pos As Int32
pos = axis1.ActualPosition

' The following line sets the actual position of the axis to zero.
axis1.ActualPosition = 0

' Properties may accept parameters, for example the CurrentLoop parameter is used to set
' control gains for the current loops, and takes two parameters. This example sets
' the proportional gain for phaseA to 1000
axis1.CurrentLoop(PMDCurrentLoopNumber.PhaseA, _
PMDCurrentLoopParameter.ProportionalGain) = 1000

' C-Motion procedures returning multiple values become Sub methods, and return their
' values using ByRef parameters. The "Get" and "Set" parts of the names are the same as
' in the C language binding.
Dim MPmajor, MPminor, NumberAxes, special, custom, family As UInt16
Dim MotorType As PMDMotorTypeVersion
axis1.GetVersion(family, MotorType, NumberAxes, special, custom, MPmajor, MPminor)

' If the objects opened here are not explicitly closed they will be closed by the
' garbage collector.
 End Sub
End Class

Several general points about the translation from C to Visual Basic are shown in the example:

• Argument type and order are the same, except that the initial “handle” pointer argument is not needed.
The null device pointer used to indicate that a peripheral is opened on the local device is also not needed.

• “Get/Set” procedures returning a single argument become object properties, with parameters if needed.
The property name does not contain “Get” or “Set”, or the “PMD” prefix.

• Procedures returning or setting multiple values are implemented as Sub methods, returning values via
ByRef parameters. “Get” or “Set” is retained in the names, but the “PMD” prefix is not.
C-Motion Magellan Programming Reference 13

Introduction1
• Enumerated value names do not use the “PMD” prefix, but the enumeration names do.

• Procedures reading or writing array data through C pointers instead take Visual Basic arrays of the
appropriate type.

1.4.4 C# Programming

The C# language is very similar to the VB language. A C# PMD program uses the PMDLibrary.dll created by the
ClassLibrary project located in CMESDK\HostCode\DotNet\ClassLibrary. An example C# PMD program can be
found in CMESDK\HostCode\DotNet\CSTestApp.

1.4.5 Error Handling

Almost all of the PMD C language library procedures return an error code to indicate success or failure. The Visual
Basic versions of these procedures instead throw an exception if the wrapped DLL procedures return an error code.
The exception message will contain the error number and a short description of the error. The Data member of the
exception will contain the error number as an enumeration of type PMDresult, associated with the key “PMDresult”,
so that structured exception handling may be used to appropriately handle errors.

The following example commands a PRP device to reset, and then ignores the expected error return on the next
command:

dev.Reset()
Try
 Dim major, minor As UInt32
 dev.Version(major, minor)
Catch ex As Exception When ex.Data("PMDresult").Equals(PMDresult.ERR_RP_Reset)
' Ignore the expected error
 End Try

Any errors that are not caught will cause the application to display a popup window displaying an error message,
including the error number and description, and a stack trace with file names and line numbers. The popup window
allows a user to continue, ignoring the error, or to abort the application.

While popup windows are useful for debugging, any application controlling motors should be designed to recover
gracefully and safely from any foreseeable error condition, and it is recommended to use Try blocks liberally to make
applications more robust.
14 C-Motion Magellan Programming Reference

2

2. Instruction Reference

2.1 How to Use This Reference
The instructions are arranged alphabetically, except that all “Set/Get” pairs (for example, SetVelocity and GetVelocity)
are described together. Each description begins on a new page and most occupy no more than a single page. Each page
is organized as follows:

Name The instruction mnemonic is shown at the left, its hexadecimal code at the right.
Syntax The instruction mnemonic (in bold) and its required arguments (in italic) are shown with all

arguments separated by spaces. Note that depending on the product being used the axis argument
may or may not be needed.

Buffered Certain parameters and other data written to the motion control IC are buffered. That is, they are
not acted upon until the next Update or MultiUpdate command is executed. These parameters
are identified by the word “buffered” in the instruction heading.

Motor Types The motor types to which this command applies. Supported motor types are printed in black;
unsupported motor types for the command are greyed out.

Arguments There are two types of arguments: encoded-field and numeric.
Encoded-field arguments are packed into a single 16-bit data word, except for axis, which occupies
bits 8–9 of the instruction word. The name of the argument (in italic) is that shown in the generic
syntax. Instance (in italic) is the mnemonic used to represent the data value. Encoding is the value
assigned to the field for that instance.
For numeric arguments, the parameter value, the type (signed or unsigned integer), and the range of
acceptable values are given. Numeric arguments may require one or two data words. For 32-bit
arguments, the high-order part is transmitted first.

Packet Structure This is a graphic representation of the 16-bit words transmitted in the packet: the instruction, which
is identified by its name, followed by 1, 2, or 3 data words. Bit numbers are shown directly below
each word. For each field in a word, only the high and low bits are shown. For 32-bit numeric data,
the high-order bits are numbered from 16 to 31, the low-order bits from 0 to 15.
The hex code of the instruction is shown in boldface.
Argument names are shown in their respective words or fields.
For data words, the direction of transfer—read or write—is shown at the left of the word's diagram.
Unused bits are shaded. All unused bits must be 0 in data words and instructions sent (written) to
the motion control IC.
In the case of a Magellan controlling an Atlas amplifier, an axis field with bit 5 set is used to indicate
that a command should be passed directly to the Atlas connected to the axis indicated by the lower
4 axis bits, and the result returned.

Description Describes what the instruction does and any special information relating to the instruction.
Atlas Describes any communication to an associated Atlas amplifier as a result of the instruction. Atlas

operation is quite transparent, but extra SPI communication can significantly slow down Magellan
command processing because a result must be received from Atlas before it is passed on to the
Magellan host. Any comments in this section do not apply to any Magellan axis not connected to an
Atlas amplifier. This section will not be present in the case of commands without any Atlas
implications. For more information on the behavior of Atlas commands, see the Atlas Digital Amplifier
Complete Technical Reference.

Restrictions Describes the circumstances in which the instruction is not valid, that is, when it should not be
issued. For example, velocity, acceleration, deceleration, and jerk parameters may not be issued
while an S-curve profile is being executed.

C-Motion API The syntax of the C function call in the PMD C-Motion library that implements this motion control
IC command.

VB-Motion API The Visual Basic syntax for the function in the PMD VB-Motion library that implements this motion
control IC command. Properties and methods are shown with their associated root object name
separated by a period.

see Refers to related instructions.
C-Motion Magellan Programming Reference 15

16

2
 AdjustActualPosition F5h
Syntax AdjustActualPosition axis position

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
position signed 32 bits –231 to 231–1 unity counts

microsteps

Packet
Structure

Description The position specified as the parameter to AdjustActualPosition is summed with the actual position
register (encoder position) for the specified axis. This has the effect of adding or subtracting an
offset to the current actual position. At the same time, the commanded position is replaced by the
new actual position value minus the position error. This prevents a servo “bump” when the new
axis position is established. The destination position (see SetPosition (p. 172)) is also modified by
this amount so that no trajectory motion will occur when a trajectory update is performed. In effect,
this command establishes a new reference position from which subsequent positions can be
calculated. It is commonly used to set a known reference position after a homing procedure.

On axes configured for stepping and microstepping motors, the position error is zeroed by this
command.

AdjustActualPosition takes effect immediately; it is not buffered.

Restrictions

C-Motion API PMDresult PMDAdjustActualPosition(PMDAxisInterface axis_intf,
 PMDint32 position)

VB-Motion API MagellanAxis.AdjustActualPosition([in] position)

see GetPositionError (p. 51), GetActualVelocity (p. 27), Set/GetActualPositionUnits (p. 87),
Set/GetActualPosition (p. 85)

DC Brush Brushless DC Microstepping Pulse & Direction

AdjustActualPosition
0 axis F5h

15 12 11 8 7 0

First data word
write position (high-order part)

31 16

Second data word
write position (low-order part)

15 0
C-Motion Magellan Programming Reference

2
CalibrateAnalog 6Fh
Syntax CalibrateAnalog axis position

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

option leg currents 0
(Reserved) 1-3
sin/cos 4

Returned data None

Packet
Structure

Description The CalibrateAnalog command is used to adjust the adjustable offsets for some analog input channels.
The option argument controls the set of analog channels calibrated.

The CalibrateAnalog command clears the calibrated bit (bit 0) in the drive status register. The bit is set
when the calibration process is complete.

For leg currents the calibration process assumes that the actual input to the analog channels will be zero.
For the leg current sensors it is generally sufficient to set the motor command to zero and ensure that
the motor is not moving. Whether motor output should be enabled or not depends on external circuitry.
Calibration is accomplished by averaging a number of readings. 100 ms after sending the command the
process may be assumed to be complete.

For sin/cos encoders the encoder should be moving during the calibration process; multiple complete
electrical rotations are required to complete the calibration. The time taken depends on encoder motion.
The GetDriveStatus command should be called repeatedly to determine when calibration is complete.

Restrictions This command is supported only by products with leg current sensing or sin/cos encoder input.
Consult the appropriate product user guide.

C-Motion API PMDresult PMDCalibrateAnalog(PMDAxisInterface axis_intf,
PMDuint16 option);

VB-Motion AP MagellanAxis.CalibrateAnalog([in] option)

see GetDriveStatus (p. 38), Set/GetAnalogCalibration (p. 88), ReadAnalog (p. 71)

DC Brush Brushless DC Microstepping

axis 6Fh
15 12 11 8 7 0

First data word
write option

15 0
C-Motion Magellan Programming Reference 17

18

2
 ClearDriveFaultStatus 6Ch
Syntax ClearDriveFaultStatus axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Packet
Structure

Description ClearDriveFaultStatus clears all bits in the Drive Fault Status register. For ION, it should be
executed after power-up, after using GetDriveFaultStatus to examine if any hard faults caused the
power cycle. For other products, ClearDriveFaultStatus should be used after determining the
cause of a Drive Exception event, before re-enabling output.

Atlas This command is relayed to any attached Atlas amplifier before being applied to internal Magellan
state.

Note that the Atlas Motor Type Mismatch bit, which is maintained by Magellan, may not be cleared
by this command. That bit may be cleared by SetMotorType.

Restrictions This command is not available in products that do not include drive amplifier support.

For ION, this command can only be executed when motor output is disabled (e.g., immediately
after power-up or reset).

C-Motion API PMDresult PMDClearDriveFaultStatus (PMDAxisInterface axis_intf)

VB-Motion API MagellanAxis.ClearDriveFaultStatus()

see GetDriveFaultStatus (p. 36)
SetMotorType (p. 154)

DC Brush Brushless DC Microstepping Pulse & Direction

ClearDriveFaultStatus
0 axis 6Ch

15 12 11 8 7 0
C-Motion Magellan Programming Reference

2
ClearInterrupt ACh
Syntax ClearInterrupt axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Packet
Structure

Description ClearInterrupt resets the /HostInterrupt signal to its inactive state. If interrupts are still pending, the
/HostInterrupt line will return to its active state within one chip cycle. See Set/GetSampleTime (p. 180)

for information on chip cycle timing. This command is used after an interrupt has been recognized and
processed by the host; it does not affect the Event Status register. The ResetEventStatus command should
be issued prior to the ClearInterrupt command to clear the condition that generated the interrupt. The
ClearInterrupt command has no effect if it is executed when no interrupts are pending.

When communicating using CAN, this command resets the interrupt message sent flag. When an
interrupt is triggered on an axis, a single interrupt message is sent and no further messages will be sent
by that axis until this command is issued.

When serial or parallel communication is used, the axis number is not used.

Restrictions For products without a /HostInterrupt line, this command is still applicable to the CAN
communications. For products without a /HostInterrupt line or CAN communications, this command
is not used.

C-Motion API PMDresult PMDClearInterrupt (PMDAxisInterface axis_intf)

VB-Motion API MagellanAxis.ClearInterrupt()

see GetInterruptAxis (p. 49), Set/GetInterruptMask (p. 146), ResetEventStatus (p. 80).

DC Brush Brushless DC Microstepping Pulse & Direction

ClearInterrupt
0 axis 4Ch

15 12 11 8 7 0
C-Motion Magellan Programming Reference 19

20

2
 ClearPositionError buffered 47h
Syntax ClearPositionError axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Packet
Structure

Description ClearPositionError sets the profile’s commanded position equal to the actual position (encoder
input), thereby clearing the position error for the specified axis. This command can be used when
the axis is at rest, or when it is moving.

Restrictions ClearPositionError is a buffered command. The new value set will not take effect until the next
Update or MultiUpdate command, with the Trajectory bit set in the update mask commands.

This command should not be sent while the chip is executing a move using the S-curve profile
mode.

C-Motion API PMDresult PMDClearPositionError (PMDAxisInterface axis_intf)

VB-Motion API MagellanAxis.ClearPositionError()

see GetPositionError (p. 51), MultiUpdate (p. 65), Set/GetPositionErrorLimit (p. 173), Update (p.
215)

DC Brush Brushless DC Microstepping Pulse & Direction

ClearPositionError
0 axis 47h

15 12 11 8 7 0
C-Motion Magellan Programming Reference

2
ExecutionControl 35h
Syntax ExecutionControl axis option value

Motor Types

Arguments Name Instance Encoding
axis Axis1 0
condition delay 0

— (Reserved) 1-7
event status 8
activity status 9
signal status 10
drive status 11
— (Reserved) 12-255

timeScale multiply by 2 0
multiply by 256 (28) 1
multiply by 32768 (215) 2
multiply by 4194034 (222) 3

timeValue unsigned 6 bit 0-63 51.2 µs
value unsigned 32bit see below

Packet
Structure

Description ExecutionControl is used to delay execution during NVRAM initialization, usually so that some
hardware external to the Magellan IC may become ready. In all cases the timeout value is measured in
units of the 51.2 µs commutation time.

If the condition is delay, then a pure delay for a fixed time. In this case the value argument is an unsigned
count of commutation cycles to wait. The exit status in this case is always zero, or no error. In this case
the timeScale and timeValue arguments must both be zero.

If the condition is event status, activity status, signal status, or drive status, then execution will be delayed
until either a specified condition becomes true for the specified register, or a timeout expires. The
condition is defined by the supplied value – the high order part is a selection mask for the register value,
and the low order part is a sense mask. The wait will end successfully when the register value, logically
ANDed with the selection mask is equal to the sense mask.

For example, to wait for phase initialization to complete, the condition should be activity status, because
bit 0 of the activity status register is defined as Phasing Initialized. The selection mask in this case would
be 0001h, and the sense mask also 00001h.

Brush DC Brushless DC Microstepping

ExecutionControl
0 axis 1h

15 12 11 8 7 0

write timeScale timeValue condition
15 14 13 8 7 0

write value (high-order part)
15 0

write value (low-order part)
15 0
C-Motion Magellan Programming Reference 21

22

2
 ExecutionControl (cont.) 35h
Description
(cont.)

As another example, to wait until the ~Enable signal is low (active), one should wait until bit 13 of
the Signal Status register is clear. The condition should be signal status, the selection mask 2000h,
and the sense mask 0000h.

When waiting conditionally on a register value, the timeScale and timeValue arguments specify a
timeout period in commutation cycles. If the timeout period elapses before the condition becomes
true then the command will exit with an error status of Wait Timed Out, NVRAM command
processing will stop, and motor output will be disabled. The Instruction Error bit of the event status
register will be set, and the GetInstructionError command may be used to read the error status.

A timeValue of zero means “wait forever”; a timeout will never occur.

timeValue is multiplied by timeScale, to give a wider range. The minimum timeout is 2 commutation

cycles, the maximum value is 63 x 222 = 264,241,152, or approximately 3.7 hours.

Magellan does not normally accept host input on the serial, CAN, or SPI channels until NVRAM
initialization has completed, however if an ExecutionControl wait is started then the host interfaces
will be initialized and host commands accepted. In this situation it is possible for NVRAM
commands to be executed after outside host commands, changing Magellan state. In all cases only
one command, from any source, is executed at a time.

The script interface combines the condition, timeValue and timeScale arguments into a single option
argument as shown below. For example, if the condition is event status (8), and the desired timeout
value is 768 commutation cycles, then the timeScale x256 (1) and the timeValue is 3. The option
argument should be 8 + 256*3 + 16384*1 = 17160

Restrictions Valid only when executed from NVRAM.

Errors Invalid Parameter: Condition is not a supported value, tvalue or tscale nonzero for pure delay.

Initialization Only: Command was sent using serial, CAN, or SPI host channel.

Wait Timed Out: Timeout elapsed before condition became true.

C-Motion API PMDresult PMDExecutionControl(PMDAxisInterface axis_intf, PMDuint8
condition, PMDuint8 timeScale, PMDuint16
timeValue, PMDint32 value);

Script API ExecutionControl option value
where option = condition + 256*timeValue + 16384*timeScale

C# API PMDAxis.ExecutionControl(Int16 condition, Int16 timeValue,
Int16 timeScale, Int32 value);

Visual Basic
API

PMDAxis.ExecutionControl(ByVal condition As Int16, ByVal timeValue
As Int16,ByVal timeScale As Int16,ByVal
value as Int32)

see NVRAM (p. 68), GetEventStatus (p. 42), GetActivityStatus (p. 25), GetDriveStatus (p. 38),
GetSignalStatus (p. 55), GetInstructionError (p. 46)
C-Motion Magellan Programming Reference

2
GetActiveMotorCommand 3Ah
Syntax GetActiveMotorCommand axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned data Type Range Scaling Units
command signed 16 bits –215 to 215–1 100/215 % output

Packet
Structure

Description GetActiveMotorCommand returns the value of the motor output command for the specified axis. This
is the input to the commutation or FOC current control. Its source depends on the motor type, as well
as the operating mode of the axis.

For brushless DC and DC brush motors: If position loop is enabled, it is the output of the position servo
filter. If trajectory generator is enabled without the position loop, it is the output of the trajectory
generator. If both trajectory generator and position loop are disabled, it is the contents of the motor
output command register.

For microstepping motors: It is the contents of the motor output command register, subject to holding
current reduction.

Atlas

Restrictions

C-Motion API PMDresult PMDGetActiveMotorCommand (PMDAxisInterface axis_intf,
 PMDint16* command)

VB-Motion API Dim command as Short
command = MagellanAxis.ActiveMotorCommand

see Set/GetMotorCommand (p. 151), Set/GetOperatingMode (p. 156),
GetActiveOperatingMode (p. 24)

DC Brush Brushless DC Microstepping

GetActiveMotorCommand
0 axis 3Ah

15 12 11 8 7 0

Data
read command

15 0
C-Motion Magellan Programming Reference 23

24

2
 GetActiveOperatingMode 57h
Syntax GetActiveOperatingMode axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned Data Type
mode unsigned 16 bits bit field

Packet
Structure

Description GetActiveOperatingMode gets the actual operating mode that the axis is currently in. This may or
may not be the same as the static operating mode, as safety responses or programmable conditions
may change the Active Operating Mode. When this occurs, the Active Operating Mode can be
changed to the programmed static operating mode using the RestoreOperatingMode command.
The bit definitions of the operating mode are given below.

When the axis is disabled, no processing will be done on the axis, and the axis outputs will be at
their reset states. When the axis motor output is disabled, the axis will function normally, but its
motor outputs will be in their disabled state. When a loop is disabled (position or current loop), it
operates by passing its input directly to its output, and clearing all internal state variables (such as
integrator sums, etc.). When the trajectory generator is disabled, it operates by commanding zero
(0) velocity.

Atlas Note that the current control bit is meaningful whenever an axis is connected to an Atlas amplifier.

Restrictions The possible modes of an axis are product specific, and in some cases axis specific. See the product
user guide for a description of what modes are supported on each axis.

C-Motion API PMDresult PMDGetActiveOperatingMode(PMDAxisInterface axis_intf,
PMDuint16* mode)

VB-Motion API Dim mode as Short
mode = MagellanAxis.ActiveOperatingMode

see GetOperatingMode (p. 156), RestoreOperatingMode (p. 82), Set/GetEventAction (p. 135),
Set/GetBreakpoint (p. 94)

DC Brush Brushless DC Microstepping Pulse & Direction

GetActiveOperatingMode
0 axis 57h

15 12 11 8 7 0

First data word
read mode

15 0

Name Bit Description
Axis Enabled 0 0: No axis processing, axis outputs in Reset state. 1: axis active.
Motor Output Enabled 1 0: axis motor outputs disabled. 1: axis motor outputs enabled.
Current Control Enabled 2 0: axis current control bypassed. 1: axis current control active.
— 3 Reserved
Position Loop Enabled 4 0: axis position loop bypassed. 1: axis position loop active.
Trajectory Enabled 5 0: trajectory generator disabled. 1: trajectory generator enabled.
— 6–15 Reserved
C-Motion Magellan Programming Reference

2
GetActivityStatus A6h
Syntax GetActivityStatus axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned Data Type
status unsigned 16 bits see below

Packet
Structure

Description GetActivityStatus reads the 16-bit Activity Status register for the specified axis. Each of the bits in this
register continuously indicate the state of the motion control IC without any action on the part of the
host. There is no direct way to set or clear the state of these bits, since they are controlled by the motion
control IC.

The following table shows the encoding of the data returned by this command.

DC Brush Brushless DC Microstepping Pulse & Direction

GetActivityStatus
0 axis A6h

15 12 11 8 7 0

Data
read 0

15 13 12 11 10 9 8 7 6 5 3 2 1 0

Name Bit(s) Description
Phasing Initialized 0 Set to 1 if phasing is initialized (brushless DC axes only).
At Maximum Velocity 1 Set to 1 when the trajectory is at maximum velocity. This bit is

determined by the trajectory generator, not the actual encoder
velocity.

Tracking 2 Set to 1 when the axis is within the tracking window.
Current Profile Mode 3–5 Contains trajectory mode encoded as follows:

bit 5 bit 4 bit 3 Profile Mode
0 0 0 Trapezoidal
0 0 1 Velocity Contouring
0 1 0 S-curve
0 1 1 Electronic Gear

— 6 Reserved; not used; may be 0 or 1.
Axis Settled 7 Set to 1 when the axis is settled.
Position Loop Enabled 8 Set to 1 when position loop or trajectory is enabled.
Position Capture 9 Set to 1 when a value has been captured by the high speed

position capture hardware but has not yet been read.
C-Motion Magellan Programming Reference 25

26

2
 GetActivityStatus (cont.) A6h
Description
(cont.)

Restrictions

C-Motion API PMDresult PMDGetActivityStatus(PMDAxisInterface axis_intf,
 PMDuint16* status)

VB-Motion API Dim status as Short
status = MagellanAxis.ActivityStatus

see GetEventStatus (p. 42), GetSignalStatus (p. 55), GetDriveStatus (p. 38)

Name Bit(s) Description
In-motion 10 Set to 1 when the trajectory generator is executing a

profile.
In Positive Limit 11 Set to 1 when the positive limit switch is active.
In Negative Limit 12 Set to 1 when the negative limit switch is active.
Profile Segment 13–15 When the profile mode is S-curve, it contains the profile

segment number 1–7 while profile is in motion, and
contains a value of 0 when the profile is at rest. This field
is undefined when using the Trapezoidal and Velocity
Contouring profile modes.
C-Motion Magellan Programming Reference

2
GetActualVelocity ADh
Syntax GetActualVelocity axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned Data Type Range Scaling Units
actual velocity signed 32 bits –231 to 231–1 1/216 counts/cycle

Packet
Structure

Description GetActualVelocity reads the value of the actual velocity for the specified axis. The actual velocity is
derived by subtracting the actual position during the previous chip cycle from the actual position for this
chip cycle. The result of this subtraction will always be integer because position is always integer. As a
result the value returned by GetActualVelocity will always be a multiple of 65,536 since this represents
a value of one in the 16.16 number format. The low word is always zero (0). This value is the result of
the last encoder input, so it will be accurate to within one cycle.

Scaling example: If a value of 1,703,936 is retrieved by the GetActualVelocity command (high word:
01Ah, low word: 0h), this corresponds to a velocity of 1,703,936/65,536 or 26 counts/cycle.

Restrictions

C-Motion API PMDresult PMDGetActualVelocity(PMDAxisInterface axis_intf,
 PMDint32* velocity)

VBI-Motion API Dim velocity as Long
velocity = MagellanAxis.ActualVelocity

see GetCommandedVelocity (p. 33), GetActualPosition (p. 85)

DC Brush Brushless DC Microstepping Pulse & Direction

GetActualVelocity
0 axis ADh

15 12 11 8 7 0

First data word
read actual velocity (high-order part)

31 16

Second data word
read actual velocity (low-order part)

15 0
C-Motion Magellan Programming Reference 27

28

2
 GetBusVoltage 40h
Syntax GetBusVoltage axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned Data Type Range Scaling

voltage unsigned 16 bits 0 to 216–1 product specific

Packet
Structure

Description GetBusVoltage gets the most recent bus voltage reading from the axis. Consult specific product
documentation for scaling information.

Atlas This command is relayed to any connected Atlas amplifier.

Restrictions GetBusVoltage is only available in products equipped with bus voltage sensors.

C-Motion API PMDresult PMDGetBusVoltage(PMDAxisInterface axis_intf,
PMDuint16* voltage)

VB-Motion API Dim voltage as Short
voltage = MagellanAxis.BusVoltage

see Get/SetDriveFaultParameter (p. 126)

DC Brush Brushless DC Microstepping Pulse & Direction

GetBusVoltage
0 axis 40h

15 12 11 8 7 0

First data word
read voltage

15 0
C-Motion Magellan Programming Reference

2
GetCaptureValue 36h
Syntax GetCaptureValue axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned data Type Range Scaling Units
position signed 32 bits –231 to 231–1 unity counts

microsteps

Packet
Structure

Description GetCaptureValue returns the contents of the position capture register for the specified axis. This
command also resets bit 9 of the Activity Status register, thus allowing another capture to occur.

If actual position units is set to steps, the returned position will be in units of steps.

Restrictions

C-Motion API PMDresult PMDGetCaptureValue(PMDAxisInterface axis_intf,
 PMDint32* position)

VBI-Motion API Dim position as Long
position = MagellanAxis.CaptureValue

see Set/GetCaptureSource (p. 108), Set/GetActualPositionUnits (p. 87), GetActivityStatus (p. 25)

DC Brush Brushless DC Microstepping Pulse & Direction

GetCaptureValue
0 axis 36h

15 12 11 8 7 0

First data word
read position (high-order part)

31 16

Second data word
read position (low-order part)

15 0
C-Motion Magellan Programming Reference 29

30

2
 GetChecksum F8h
Syntax GetChecksum

Motor Types

Arguments None

Returned data Name Type
checksum unsigned 32 bits

Packet
Structure

Description GetChecksum reads the chips internal 32-bit checksum value. The return value is dependent on the
silicon revision number of the motion control IC.

Restrictions

C-Motion API PMDresult PMDGetChecksum(PMDAxisInterface axis_intf,
 PMDuint32* checksum)

VB-Motion API Dim checksum as Long
checksum = MagellanObject.Checksum

see

DC Brush Brushless DC Microstepping Pulse & Direction

GetChecksum
0 F8h

15 8 7 0

First data word
read checksum (high-order part)

31 16

Second data word
read checksum (low-order part)

15 0
C-Motion Magellan Programming Reference

2
GetCommandedAcceleration A7h
Syntax GetCommandedAcceleration axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned data Type Range Scaling Units
acceleration signed 32 bits –231 to 231–1 1/216 counts/cycle2

microsteps/cycle2

Packet
Structure

Description GetCommandedAcceleration returns the commanded acceleration value for the specified axis.
Commanded acceleration is the instantaneous acceleration value output by the trajectory generator.

Scaling example: If a value of 114,688 is retrieved using this command then this corresponds to

114,688/65,536 = 1.750 counts/cycle2 acceleration value.

Restrictions

C-Motion API PMDresult PMDGetCommandedAcceleration(PMDAxisInterface axis_intf,
PMDint32* acceleration)

VB-Motion API Dim acceleration as Long
acceleration = MagellanAxis.CommandedAcceleration

see GetCommandedPosition (p. 32), GetCommandedVelocity (p. 33)

DC Brush Brushless DC Microstepping Pulse & Direction

GetCommandedAcceleration
0 axis A7h

15 12 11 8 7 0

First data word
read acceleration (high-order part)

31 16

Second data word
read acceleration (low-order part)

15 0
C-Motion Magellan Programming Reference 31

32

2
 GetCommandedPosition 1Dh
Syntax GetCommandedPosition axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned data Type Range Scaling Units
position signed 32 bits –231 to 231–1 unity counts

microsteps

Packet
Structure

Description GetCommandedPosition returns the commanded position for the specified axis. Commanded
position is the instantaneous position value output by the trajectory generator.

This command functions in all profile modes.

Restrictions

C-Motion API PMDresult PMDGetCommandedPosition(PMDAxisInterface axis_intf,
 PMDint32* position)

VB-Motion API Dim position as Long
position = MagellanAxis.CommandedPosition

see GetCommandedAcceleration (p. 31), GetCommandedVelocity (p. 33)

DC Brush Brushless DC Microstepping Pulse & Direction

GetCommandedPosition
0 axis 1Dh

15 12 11 8 7 0

First data word
read position (high-order part)

31 16

Second data word
read position (low-order part)

15 0
C-Motion Magellan Programming Reference

2
GetCommandedVelocity 1Eh
Syntax GetCommandedVelocity axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned data Type Range Scaling Units
velocity signed 32 bits –231 to 231–1 1/216 counts/cycle

microsteps/cycle

Packet
Structure

Description GetCommandedVelocity returns the commanded velocity value for the specified axis. Commanded
velocity is the instantaneous velocity value output by the trajectory generator.

Scaling example: If a value of –1,234,567 is retrieved using this command (FFEDh in high word,
2979h in low word) then this corresponds to –1,234,567/65,536 = –18.8380 counts/cycle velocity value.

Restrictions

C-Motion API PMDresult PMDGetCommandedVelocity(PMDAxisInterface axis_intf,
 PMDint32* velocity)

VB-Motion API Dim velocity as Long
velocity = MagellanAxis.CommandedVelocity

see GetCommandedAcceleration (p. 31), GetCommandedPosition (p. 32)

DC Brush Brushless DC Microstepping Pulse & Direction

GetCommandedVelocity
0 axis 1Eh

15 12 11 8 7 0

First data word
read velocity (high-order part)

31 16

Second data word
read velocity (low-order part)

15 0
C-Motion Magellan Programming Reference 33

34

2
 GetCurrentLoopValue 71h
Syntax GetCurrentLoopValue axis phase_node

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

phase Phase A 0
Phase B 1

node Reference 0
Actual Current 1
Error 2
Integrator Sum 3
— (Reserved) 4
Integrator Contribution 5
Output 6
I2t Energy 10

Returned data Type Range/Scaling
value signed 32 bits see below

Packet
Structure

Description GetCurrentLoopValue is used to read the value of a node in one of the digital current loops. See
the product user guide for more information on the location of each node in the current loop
processing. Though the data returned is signed 32 bits regardless of the node, the range and format
vary depending on the node, as follows:

DC Brush Brushless DC Microstepping

GetCurrentLoopValue
0 axis 71h

15 12 11 8 7 0

First data word
write 0 phase node

15 12 11 8 7 0

Second data word
read value (high-order part)

31 16

Third data word
read value (low-order part)

15 0

Node Range Scaling Units
Reference –215 to 215–1 100/214 % max current

Actual Current –215 to 215–1 100/214 % max current

Error –215 to 215–1 100/214 % max current

Integrator Sum –231 to 231–1 100/214 (% max current)*

current loop cycles
Integrator Contribution –231 to 231–1 100/214 % max current

Output –215 to 215–1 100/214 % max current

I2t Energy –231 to 231–1 100/230 % max energy
C-Motion Magellan Programming Reference

2
GetCurrentLoopValue (cont.) 71h
Description
(cont.)

All of the nodes have units of % maximum current, and most have scaling of 100/214. That is, a value of

214 corresponds to 100% maximum current. The range is extended to allow for overshoot in excess of
maximum peak current, and thus values can be more than 100% of the maximum output current.

The Integrator Sum is a signed 32-bit number, with scaling of 100/214. That is, a current error of 100%

maximum, present for 16 current loop cycles, will result in an integrator sum of 16*(100%)*214/100 =

218. Current loop cyles are not the same as position loop servo cycles. The current loop runs at 20 kHz,
regardless of the servo cycle time.

Atlas This command is relayed to any connected Atlas amplifier.

Restrictions This command is only supported in products that include digital current control, and when the current
control mode is Phase A /B.

C-Motion API PMDresult PMDGetCurrentLoopValue(PMDAxisInterface axis_intf,
PMDuint8 phase,
PMDuint8 node,
PMDint32* value)

VB-Motion API MagellanAxis.CurrentLoopValue

see Set/GetCurrentLoop (p. 120), Set/GetCurrentControlMode (p. 115)
Set/Get Current Foldback ((p. 117)

([in] phase,
[in] node,
[out] value
C-Motion Magellan Programming Reference 35

36

2
 GetDriveFaultStatus 6Dh
Syntax GetDriveFaultStatus axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned Data Type
status unsigned 16 bits see below

Packet
Structure

Description GetDriveFaultStatus reads the Drive Fault Status register, which contains a bitmap showing all
hard faults that have occurred since the Drive Fault Status register was last cleared. In the ION
products, this register is kept in non-volatile memory, so that a record of hard faults is retained even
through power cycles, which must be done upon any hard fault event.

The table below shows the bit definitions of the Drive Fault Status register.

ION products enforce a “hard fault” for events 0, 1, 2, and 4, meaning that if one of these occur
the unit will shut down, and power must be cycled before it will accept any communication. Upon
power-up, GetDriveFaultStatus should be used to check which, if any, hard fault may have caused
the previous power cycle. After querying the Drive Fault Status register, it should be cleared using
ClearDriveFaultStatus. If this is not done, the bits will be retined in non-volatile memory, which
will make it difficult to detect the cause of any subsequent hard faults.

DC Brush Brushless DC Microstepping Pulse & Direction

GetDriveFaultStatus
0 axis 6Dh

15 12 11 8 7 0

First data word
read 0 Status

15 7 6 0

Name Bit
Overcurrent Fault 0
Ground Fault 1
External Logic Fault 2
Atlas Operating Mode Mismatch 3
Internal Logic Fault 4
Overvoltage Fault 5
Undervoltage Fault 6
Atlas Disabled by /Enable Signal 7
Current Foldback 8
Overtemperature Fault (non-Atlas) 9
Atlas Detected SPI Checksum Error 10
Atlas Watchdog Timeout 11
— (Reserved) 12
Disabled by ~PWMOutputDisable signal 13
Magellan Detected SPI Checksum Error 14
Atlas Motor Type Mismatch 15
C-Motion Magellan Programming Reference

2
GetDriveFaultStatus (cont.) 6Dh
For all other events, and for non-ION products, there is no non-volatile storage of the Drive Fault Status
register, and a power cycle is not required to recover from a fault.

Events 5 and 6 will not cause the system to shut down. Instead, they will cause the system to change to
the disabled state, and will cause the Drive Fault bit in GetEventStatus to be set. Normally, the Drive
Fault Status register does not need to be monitored. In the case of a Drive Fault event, however, the
Drive Fault Status register can be used to determine the particular fault that occurred. The Overvoltage
Fault and Undervoltage Fault bits are cleared upon power-up.

Event 13 indicates that motor output was disabled by the ~PWMOutputDisable signal, in which case the
DriveException bit will be set in the Event Status register. Not all products support this signal, check
your product user guide for more information.

Event 8 indicates that the current foldback limit was exceeded. If current control is not enabled this will
result in output being disabled. If current control is enabled then the action taken may be specified using
SetEventAction. ION does not use this event bit.

Atlas This command is relayed to any connected Atlas amplifier, and the result combined with bits 14 and 15
from internal Magellan state to form the result.

The Atlas amplifier does not implement hard faults; events 3, 7, 9 and 11 will unconditionally cause Atlas
to disable output, and raise a Drive Exception event. The Drive Exception event is transmitted to the
Magellan using the Atlas SPI status word, which is received with every torque command sent, and will
cause the Magellan axis to disable output as well. Event 8 may similarly disable output depending on
the current foldback event action.

Events 10 and 14 are not handled by Magellan, but indicate a problem with SPI communication, which
may seriously affect Atlas amplifier operation. Event status bit 7 (Instruction Error), will also be set
whenever one of the SPI checksum fault bits is set.

Event 15 indicates that the Magellan motor type and an attached Atlas amplifier motor type are not
compatible. This bit may be cleared only by using SetMotorType.

Restrictions This command is not available in products without drive amplifier support.

C-Motion API PMDresult PMDGetDriveFaultStatus(PMDAxisInterface axis_intf,
PMDuint16* status)

VB-Motion API Dim status as Short
status = MagellanAxis.DriveFaultStatus

see ClearDriveFaultStatus (p. 18)
GetEventStatus (p. 42)
SetMotorType (p. 154)
SetEventAction (p. 135)
C-Motion Magellan Programming Reference 37

38

2
 GetDriveStatus 0Eh
Syntax GetDriveStatus axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned data Type
status unsigned 16 bits see below

Packet
Structure

Description GetDriveStatus reads the Drive Status register for the specified axis. All of the bits in this status
word are set and cleared by the motion control IC. They are not settable or clearable by the host.
The bits represent states or conditions in the motion control IC that are of a transient nature.

Atlas This command does not require any additional Atlas communication, all of the required data is
transmitted in the Atlas SPI Status Word received when sending torque commands.

Restrictions The bits available in this register depend upon the products. See the product user guide.

DC Brush Brushless DC Microstepping Pulse & Direction

GetDriveStatus
0 axis 0Eh

15 12 11 8 7 0

First Data Word
read Status

15 0

Name Bit(s) Description
Calibrated 0 Set to 0 when calibration is started, set to 1 when

calibration is complete.
In Foldback 1 Set to 1 when the unit is in the current foldback state–

the output current is limited by the foldback limit.
Overtemperature 2 Set to 1 when the overtemperature condition is

present.
Shunt active 3 The bus voltage limiting shunt PWM is active.
In Holding 4 Set to 1 when the unit is in the holding current state–

the output current is limited by the holding current
limit.

Overvoltage 5 Set to 1 when the overvoltage condition is present.
Undervoltage 6 Set to 1 when the undervoltage condition is present.
Atlas Disabled 7 The attached Atlas amplifier is disabled by an inactive

/Enable signal.
— 8–11 Reserved; not used; may be 0 or 1.
Output Clipped 12 Drive output is limited because it has reached 100%, or

the Drive PWM limit, or the current loop integrator
limit.

— 13, 14 Reserved; not used; may be 0 or 1.
Atlas not connected 15 The output mode is Atlas, but SPI communication has

not been established.
C-Motion Magellan Programming Reference

2
GetDriveStatus (cont.) 0Eh
C-Motion API PMDresult PMDGetDriveStatus(PMDAxisInterface axis_intf,
 PMDuint16* status)

VB-Motion API Dim status as Short
status = MagellanAxis.DriveStatus

see
C-Motion Magellan Programming Reference 39

40

2
 GetDriveValue 70h
Syntax GetDriveValue axis node

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

node Bus Voltage 0
Temperature 1
Bus Current Supply 2
Bus Current Return 3

Returned data Type Range/Scaling
value signed or unsigned see below

16 bits

Packet
Structure

Description GetDriveValue is used to read values associated with drive output or state, and enumerated by
node. Some of the functionality provided by GetDriveValue is duplicated by GetTemperature
and GetBusVoltage, however GetDriveValue is preferred for future use.

The following nodes are supported:

Bus Voltage is the most recent bus voltage reading from the axis, returned as an unsigned 16 bit
value. The scaling depends on the product and on the external bus voltage sensing circuit.

Temperature is the most recent temperature reading from temperature sensor monitoring axis,
returned as a signed 16 bit value. The scaling depends on the product and on the external
temperature sensing circuit. For MC58113, if the temperature limit set by SetDriveFaultParameter
is negative then the sense of the temperature is inverted by subtracting the measured value from
32768.

Bus Current Supply is the most recent reading from the bus current supply sensor, returned as an
unsigned 16 bit value. Scaling depends on the product and the external current sensing circuit.

Bus Current Return is the most recent current return reading computed from all leg current
readings and PWM duty cycles, returned as a signed 16 bit number. The scaling depends on the
product and on the external leg current sensing circuit; it is the same as the leg current scaling.

Restrictions GetDriveValue is currently supported only by MC58113 series motion control ICs.

DC Brush Brushless DC Microstepping

GetDriveValue
0 axis 70h

15 12 11 8 7 0

First Data Word
write node

15 0

Second Data Word
read value

15 0
C-Motion Magellan Programming Reference

2
GetDriveValue (cont.) 70h
C-Motion API PMDresult PMDGetDriveValue(PMDAxisInterface axis_intf,
PMDuint8 node,
PMDuint16 * value);

VB-Motion API MagellanAxis.DriveValue([in] node,
[out] value)

see GetTemperature (p. 57), GetBusVoltage (p. 28), SetDriveFaultParameter (p. 126)
C-Motion Magellan Programming Reference 41

42

2
 GetEventStatus 31h
Syntax GetEventStatus axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned data Type

status unsigned 16 bits see below

Packet
Structure

Description GetEventStatus reads the Event Status register for the specified axis. All of the bits in this status word
are set by the motion control IC and cleared by the host. To clear these bits, use the ResetEventStatus
command. The following table shows the encoding of the data returned by this command.

DC Brush Brushless DC Microstepping Pulse & Direction

GetEventStatus
0 axis 31h

15 12 11 8 7 0

Data
read 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name Bit(s) Description
Motion Complete 0 Set to 1 when motion has completed.

SetMotionCompleteMode determines if this bit is based on the
trajectory generator position or the encoder position.

Wrap-around 1 Set to 1 when the actual (encoder) position has wrapped from
maximum allowed position to minimum, or vice versa.

Breakpoint 1 2 Set to 1 when breakpoint 1 has been triggered.
Capture Received 3 Set to 1 when a position capture has occurred.
Motion Error 4 Set to 1 when a motion error has occurred.
Positive Limit 5 Set to 1 when the axis has entered a positive limit switch.
Negative Limit 6 Set to 1 when the axis has entered a negative limit switch.
Instruction Error 7 Set to 1 when an instruction error has occurred. This bit is also

set when an Atlas checksum error is detected. In that case either
the Magellan Detected SPI Checksum or the Atlas Detected SPI
Checksum error bits will be set in the Drive Fault status register.

Disable 8 Set to 1 when “disable” due to user /Enable line has occurred.
Overtemperature Fault 9 Set to 1 when overtemperature condition has occurred.
Drive Exception 10 An drive event occurred causing output to be disabled. This bit is

used on ION products to indicate a bus voltage fault, and with an
attached Atlas amplifier to indicate any disabling drive event.

Commutation error 11 Set to 1 when a commutation error has occurred.
Current Foldback 12 Set to 1 when current foldback has occurred.
— 13 Reserved; not used; may be 0 or 1.
Breakpoint 2 14 Set to 1 when breakpoint 2 has been triggered.
— 15 Reserved; not used; may be 0 or 1.
C-Motion Magellan Programming Reference

2
GetEventStatus (cont.) 31h
Atlas This command does not require any additional Atlas communication, all of the required data is
transmitted in the Atlas SPI Status Word received when sending torque commands.

In the case of Drive Exception or Instruction Error, more precise information may be obtained by using
the GetDriveFaultStatus command. It should be noted that the Overtemperature event bit is not used
for Atlas axes.

Restrictions Bits 8, 9, 10, and 12 are not implemented in products that do not include drive amplifier support. In this
case, they are reserved—may be 0 or 1.

C-Motion API PMDresult PMDGetEventStatus(PMDAxisInterface axis_intf,
 PMDuint16* status)

VB-Motion API Dim status as Short
status = MagellanAxis.EventStatus

see GetActivityStatus (p. 25), GetSignalStatus (p. 55), GetDriveStatus (p. 38),
GetDriveFaultStatus (p. 36)
C-Motion Magellan Programming Reference 43

44

2
 GetFOCValue 5Ah
Syntax GetFOCValue axis loop_node

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

loop Direct (D) 0
Quadrature (Q) 1

node Reference (D,Q) 0
Feedback (D,Q) 1
Error (D,Q) 2
Integrator Sum (D,Q) 3
— (Reserved) 4
Integrator Contribution (D,Q) 5
Output (D,Q) 6
FOC Output (Alpha,Beta) 7
Actual Current (A,B) 8
I2t Energy 10

Returned data Type Range/Scaling
value signed 32 bits see below

Packet
Structure

Description GetFOCValue is used to read the value of a node of the FOC current control. See the product user
guide for more information on the location of each node in the FOC current control algorithm.

Brushless DC Microstepping

GetFOCValue
0 axis 5Ah

15 12 11 8 7 0

First data word
write 0 loop node

15 12 11 8 7 0

Second data word
read value (high-order part)

31 16

Third data word
read value (low-order part)

15 0
C-Motion Magellan Programming Reference

2
GetFOCValue (cont.) 5Ah
Description
(cont.)

Though the data returned is signed 32 bits regardless of the node, the range and format vary depending
on the node, as follows:

Most of the nodes have units of % maximum current, and most have a scaling of 100/214. That is, a value

of 214 corresponds to 100% maximum current. The range is extended to allow for overshoot in excess
of maximum peak current, and thus values can be more than 100% of the maximum output current.

The Integrator Sum is a signed 32-bit number, with scaling of 100/214. That is, a current of 100%

maximum, present for 16 current loop cycles, will result in an integrator sum of 16*(100%)*214/100 = 218.
Current loop cycles are not the same as position loop servo cycles. The current loop runs at 20 kHz,
regardless of the servo cycle time.

Atlas This command is relayed to an attached Atlas amplifier.

Restrictions This command is only supported in products that include digital current control, and when the current
control mode is set to FOC.

C-Motion API PMDresult PMDGetFOCValue (PMDAxisInterface axis_intf,
PMDuint8 loop,
PMDuint8 node,
PMDint32* value)

VB-Motion API MagellanAxis.FOCValue ([in] loop,
[in] node,
[out] value)

see Set/GetFOC (p. 141), Set/GetCurrentControlMode (p. 115)
Set/Get Current Foldback ((p. 117)

Node Range Scaling Units
Reference (D,Q) –215 to 215–1 100/214 % max current

Feedback (D,Q) –218 to 218 –1 100/214 % max current

Error (D,Q) –215 to 215–1 100/214 % max current

Integrator Sum (D,Q) –231 to 231–1 100/214 (% max current)*
current loop cycles

Integrator Contribution (D,Q) –231 to 231–1 100/214 % max current

Output (D,Q) –215 to 215–1 100/214 % PWM

FOC Output (Alpha,Beta) –215 to 215–1 100/214 % PWM

Actual Current (A,B) –215 to 215–1 100/214 % max current

I2t Energy –231 to 231–1 100/230 % max energy
C-Motion Magellan Programming Reference 45

46

2
 GetInstructionError A5h
Syntax GetInstructionError

Motor Types

Arguments None

Returned data Type Range
error unsigned 16 bits 0 to 11h

Packet
Structure

Description GetInstructionError returns the code for the first instruction error since the last read operation,
and then resets the error to zero (0). Generally, this command is issued only after the instruction
error bit in the Event Status register indicates there was an instruction error. It also resets the
Instruction error bit in the I/O status read word to zero (0).

The Atlas and MC58113 series products will return both the first and second errors after the last
read operation. This is especially helpful in debugging initialization commands executed at startup
from non-volatile RAM, since the first error is always a Processor reset (1). For other Magellan
products the second error field will always be zero.

DC Brush Brushless DC Microstepping Pulse & Direction

GetInstructionError
0 A5h

15 12 11 8 7 0

Data
read second error first error

15 8 7 0
C-Motion Magellan Programming Reference

2
GetInstructionError (cont.) A5h
Description
(cont’d)

The error codes are encoded as defined below:

Atlas This command does not require any additional Atlas communication. In case a command error is
signaled by an Atlas amplifier during the processing of a Magellan command the Magellan instruction
error register will be set to the error code returned by Atlas. The error code is maintained separately by
the Atlas amplifier and may be cleared by reading directly from Atlas; it is not reset by reading the
Magellan instruction error code.

Restrictions

Error Code Encoding
No error 0
Processor reset 1
Invalid instruction 2
Invalid axis 3
Invalid parameter 4
Trace running 5
— (Reserved) 6
Block out of bounds 7
Trace buffer zero (0) 8
Bad serial checksum 9
— (Reserved) 10
Invalid negative value 11
Invalid parameter change 12
Invalid move after event-triggered stop 13
Invalid move into limit 14
Invalid Operating Mode restore after event-triggered change 16
Invalid Operating Mode for command 17
Invalid register state for command 18
ION/CME hard fault 19
Command invalid without Atlas amplifier 20
Incorrect Atlas command checksum 21
Invalid Atlas command protocol 22
Invalid Atlas command timing 23
Invalid Atlas torque command detected 24
— (Reserved) 25
Atlas command invalid in flash mode 26
— (Reserved) 27
Atlas command valid only for initialization 28
Wrong command data count 28
Attempted move with motion error event signaled 30
Wait timed out 31
NVRAM initialization busy 32
Invalid clock signal 33
NVRAM initialization skipped 34
Invalid interface for command 35
Encoder error 36
Value representation error 37
-- (Reserved) 38
NVRAM format error 39
C-Motion Magellan Programming Reference 47

48

2
 GetInstructionError (cont.) A5h
C-Motion API PMDresult PMDGetInstructionError (PMDAxisInterface axis_intf,
 PMDuint16* error)

VB-Motion API Dim error as Short
error = MagellanObject.InstructionError

see GetEventStatus (p. 42), ResetEventStatus (p. 80)
C-Motion Magellan Programming Reference

2
GetInterruptAxis E1h
Syntax GetInterruptAxis

Motor Types

Arguments None

Returned data Name Instance Encoding
mask None 0

Axis1 Mask 1
Axis2 Mask 2
Axis3 Mask 4
Axis4 Mask 8

Packet
Structure

Description GetInterruptAxis returns a field that identifies all axes with pending interrupts. Axis numbers are
assigned to the low-order four bits of the returned word, with bits corresponding to interrupting axes
set to 1. If there are no pending interrupts, the returned word is zero (0). If any axis has a pending
interrupt, the /HostInterrupt signal will be in an active state.

Restrictions This command is only useful for products with /HostInterrupt pin. When using CAN events for
interrupt event notification, the interrupting axis is sent as part of the CAN event.

C-Motion API PMDresult PMDGetInterruptAxis(PMDAxisInterface axis_intf,
PMDuint16* mask)

VB-Motion API Dim mask as Short
mask = MagellanObject.InterruptAxis

see ClearInterrupt (p. 19), Set/GetInterruptMask (p. 146)

DC Brush Brushless DC Microstepping Pulse & Direction

GetInterruptAxis
0 E1h

15 8 7 0

Data
read 0 mask

15 4 3 0
C-Motion Magellan Programming Reference 49

50

2
 GetPhaseCommand EAh
Syntax GetPhaseCommand axis phase

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

phase Phase A 0
Phase B 1
Phase C 2

Returned data Type Range Scaling Units
command signed 16 bits –215 to 215–1 100/215 % output

Packet
Structure

Description GetPhaseCommand returns the value of the commutated phase command for phase A, B, or C of
the specified axis. These are the phase command values directly output to the current loop or motor
after commutation.

Scaling example: If a value of –4,489 is retrieved (EE77h) for a given axis and phase, then this
corresponds to –4,489*100/32,767 = –13.7% of full-scale output.

Restrictions Phase C is only valid when the motor type has been set for a 3-phase commutation.

This command has no meaning when current control mode is set to FOC whether or not the
current loops are enabled.

When the current control mode is set to Phase A /B current loops, the values are the inputs to the
current loops. When current loops are disabled, the value is the motor output command.

C-Motion API PMDresult PMDGetPhaseCommand(PMDAxisInterface axis_intf,
PMDuint16 phase,
PMDint16* command)

VB-Motion API Dim command as Short
command = MagellanAxis.PhaseCommand(phase)

see SetCurrentControlMode (p. 115)

Brushless DC Microstepping

GetPhaseCommand
0 axis EAh

15 12 11 8 7 0

First data word
write 0 phase

15 2 1 0

Second data word
read command

15 0
C-Motion Magellan Programming Reference

2
GetPositionError 99h
Syntax GetPositionError axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned data Type Range Scaling Units

error signed 32 bits –231 to 231–1 unity counts
microsteps

Packet
Structure

Description GetPositionError returns the position error of the specified axis. The error is the difference between
the actual position (encoder position) and the commanded position (instantaneous output of the
trajectory generator). When used with the motor type set to microstepping or pulse & direction, the
error is defined as the difference between the encoder position (represented in microsteps or steps) and
the commanded position (instantaneous output of the trajectory generator).

Restrictions

C-Motion API PMDresult PMDGetPositionError(PMDAxisInterface axis_intf,
PMDint32* error)

VB-Motion API Dim error as Long
error = MagellanAxis.PositionError

see Set/GetPosition (p. 172), Set/GetPositionErrorLimit (p. 173)

DC Brush Brushless DC Microstepping Pulse & Direction

GetPositionError
0 axis 99h

15 12 11 8 7 0

First data word
read error (high-order part)

31 16

Second data word
read error (low-order part)

15 0
C-Motion Magellan Programming Reference 51

52

2
 GetPositionLoopValue 55h
Syntax GetPositionLoopValue axis node

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

node Integrator Sum 0
Integrator Contribution 1
Derivative 2
Biquad1 Input 3
Biquad2 Input 4

Returned data Type Range/Scaling
value signed 32 bits see below

Packet
Structure

Description GetPositionLoopValue is used to find the value of a node in the position loop. See the product user
guide for more information on the location of each node in the position loop processing. Though
the data returned is signed 32 bits regardless of the node, the range and format varies depending on
the node, as follows:

Restrictions

C-Motion API PMDresult PMDGetPositionLoopValue (PMDAxisInterface axis_intf,
PMDuint16 node,
PMDint32* value)

VB-Motion API Dim value as Long
value = MagellanAxis.PositionLoopValue(node)

see Set/GetPositionLoop (p. 174)

DC Brush Brushless DC

GetPositionLoopValue
0 axis 55h

15 12 11 8 7 0

First data word
write node

15 0

Second data word
read value (high-order part)

31 16

Third data word
read value (low-order part)

15 0

Node Range Scaling Units
Integrator Sum –231 to 231–1 unity (counts)*cycles

Integrator Contribution –231 to 231–1 100*Kout/(231) % Output

Derivative –215 to 215–1 unity (counts)/cycles

Biquad1 Input –215 to 215–1 unity counts

Biquad2 Input –215 to 215–1 unity counts
C-Motion Magellan Programming Reference

2
GetProductInfo 1h
Syntax GetProductInfo axis index

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

index firmware state 0
version 1
product class 2
checksum 3
— (Reserved) 4
part number 3:0 5
part number 7:4 6
part number 11:8 7
part number 15:12 8
— (Reserved) 9-12
RAM size 13
NVRAM size 14
— (Reserved) 15-256
boot version 257
boot product class 258
boot checksum 259
boot part number 3:0 261
boot part number 7:4 262
boot part number 11:8 263
boot part number 15:12 264

Returned Data Type
value unsigned 32 bits

Packet
Structure

Description GetProductInfo is used to retrieve fixed information about the Magellan IC. All data is read in 32-bit
units, most of the values are split into fields as explained below.

The firmware state is a an enumerated value, 0 means that the normal application firmware is running, and
1 indicates that the boot firmware, which is used for programming NVRAM, is running.

The version, and boot version consist of four 8-bit bytes, the least significant byte numbered zero. Byte 1 is
the firmware major version, byte 0 is the minor version. Byte 2 is a custom code, zero for standard
products. Byte 3 is reserved.

DC Brush Brushless DC Microstepping

GetProductInfo
0 axis 1h

15 12 11 8 7 0

write index
15 0

read value (high-order part)
31 16

read value (low-order part)
15 0
C-Motion Magellan Programming Reference 53

54

2
 GetProductInfo (cont.) 1h
Description
(cont.)

The checksum and boot checksum are 32 bit numbers that may be used to verify the identity of a
product. The checksum values are documented in product release notes.

The part number and boot part number are 16 character strings indicating the IC and boot firmware part
numbers . There is one ASCII character per 8-bit byte. The first character is stored in the least
significant byte of part number 3:0, the second character in bits 15:8 of part number 3:0. The fourth
character is stored in the least significant byte of part number 7:4, and so forth. Any unused
characters at the end of the string are encoded as zero, ASCII null, but the string may not be null
terminated.

The RAM size is the number of 32-bit words available for trace RAM.

The NVRAM size is the number of 16-bit words of non-volatile storage available.

GetProductInfo replaces and extends the Magellan commands GetVersion and GetChecksum.
Magellan supports GetVersion, but that command always returns zero.

A value of zero returned by GetVersion should be taken to mean that GetProductInfo is
supported.

Errors Invalid parameter: index is not a supported value.

C-Motion API PMDresult PMDGetProductInfo (PMDAxisInterface axis_intf, PMDuint16 in-
dex, PMDuint32* value);

Script API GetProductInfo index

C# API Int32 value = PMDAxis.GetProductInfo(PMDProductInfo index);

Visual Basic
API

Int32 value = PMDAxis.GetProductInfo(ByVal index As PMDProductInfo)

see NVRAM (p. 68), SetBufferStart (p. 104), SetBufferLength (p. 101), ReadBuffer (p. 72),
ReadBuffer16 (p. 73), GetVersion (p. 62)
C-Motion Magellan Programming Reference

2
GetSignalStatus A4h
Syntax GetSignalStatus axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned data Type
see below unsigned 16 bits

Packet
Structure

Description GetSignalStatus returns the contents of the Signal Status register for the specified axis. The Signal Status
register contains the value of the various hardware signals connected to each axis of the motion control
IC. The value read is combined with the Signal Sense register (see SetSignalSense (p. 186)) and then
returned to the user. For each bit in the Signal Sense register that is set to 1, the corresponding bit in the
GetSignalStatus command will be inverted. Therefore, a low signal will be read as 1, and a high signal
will be read as a 0. Conversely, for each bit in the Signal Sense register that is set to 0, the corresponding
bit in the GetSignalStatus command is not inverted. Therefore, a low signal will be read as 0, and a high
signal will be read as a 1.

All of the bits in the GetSignalStatus command are inputs, except for AxisOut and FaultOut. The value
read for these bits is equal to the value output by the AxisOut and FaultOut mechanisms. See
SetAxisOutMask (p. 92) and SetFaultMask (p. 137) for more information. The bit definitions are as
follows:

Atlas Note that the /Enable In and FaultOut signals are not the Atlas signals. In order to read the Atlas amplifier
signal status the command must be directed to Atlas.

Restrictions Depending on the product, some signals may not be present. See the product user guide. In ION
products, when the capture source is set to Index, the Encoder Index input will be present as both the
Encoder Index and the Capture Input bits. In MC58113 products the Capture Input bit is always used
for the Home signal, regardless of the capture source.

DC Brush Brushless DC Microstepping Pulse & Direction

GetSignalStatus
0 axis A4h

15 12 11 8 7 0

Data
read 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Description Bit Number Description Bit Number
Encoder A 0 Hall B 8
Encoder B 1 Hall C 9
Encoder Index 2 AxisOut 10
Capture Input 3 — (Reserved) 11–12
Positive Limit 4 /Enable In 13
Negative Limit 5 FaultOut 14
AxisIn 6 — (Reserved) 15
Hall A 7
C-Motion Magellan Programming Reference 55

56

2
 GetSignalStatus (cont.) A4h
C-Motion API PMDresult PMDGetSignalStatus(PMDAxisInterface axis_intf,
 PMDuint16* status)

VB-Motion API Dim status as Short
status = MagellanAxis.SignalStatus

see GetActivityStatus (p. 25), GetEventStatus (p. 42), GetSignalSense (p. 186)
C-Motion Magellan Programming Reference

2
GetTemperature 53h
Syntax GetTemperature axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned Data Type Range Scaling

temperature signed 16 bits –215 to 215–1 product specific

Packet
Structure

Description GetTemperature gets the most recent temperature reading from the temperature sensor(s) monitoring
the axis. Consult specific product documentation for scaling information.

Atlas This command is relayed to an attached Atlas amplifier.

Restrictions GetTemperature is only available in products equipped with temperature sensors. If axis has more than
one temperature sensor, the temperature returned will be the average value of all sensor readings.

C-Motion API PMDresult PMDGetTemperature(PMDAxisInterface axis_intf,
PMDint16* temperature)

VB-Motion API Dim temperature as Short
temperature = MagellanAxis.Temperature

see Get/SetOvertemperatureLimit (p. 159)

DC Brush Brushless DC Microstepping Pulse & Direction

GetTemperature
0 axis 53h

15 12 11 8 7 0

First data word
read temperature

15 0
C-Motion Magellan Programming Reference 57

58

2
 GetTime 3Eh
Syntax GetTime

Motor Types

Arguments None

Returned data Name Type Range Scaling Units
time unsigned 32 bits 0 to 232–1 unity cycles

Packet
Structure

Description GetTime returns the number of cycles which have occurred since the motion control IC was last
reset. The time per cycle is determined by SetSampleTime. The time count is not recalculated
when setting the sample time. The time count is reset to zero whenever the synchronization mode
is set.

Restrictions Time stops advancing when no axes are enabled.

C-Motion API PMDresult PMDGetTime(PMDAxisInterface axis_intf,
 PMDuint32* time)

VB-Motion API Dim time as Long
time = MagellanObject.Time

see Set/GetSampleTime (p. 180)
Set/GetSynchronizationMode (p. 192)

DC Brush Brushless DC Microstepping Pulse & Direction

GetTime
0 3Eh

15 8 7 0

First data word
read time (high-order part)

31 16

Second data word
read time (low-order part)

15 0
C-Motion Magellan Programming Reference

2
GetTraceCount BBh
Syntax GetTraceCount

Motor Types

Arguments None

Returned data Name Type Range Scaling Units
count unsigned 32 bits 0 to 232–1 unity samples

Packet
Structure

Description GetTraceCount returns the number of points (variable values) stored in the trace buffer since the
beginning of the trace.

Restrictions In non-MC58113 products, if the trace mode is set to “rolling” and the buffer wraps, GetTraceCount
returns the number of samples in the filled buffer.

C-Motion API PMDresult PMDGetTraceCount(PMDAxisInterface axis_intf,
PMDuint32* count)

VB-Motion API Dim count as Long
count = MagellanObject.TraceCount

see ReadBuffer (p. 72), Set/GetTraceStart (p. 196), Set/GetTraceStop (p. 199),
Set/GetBufferLength (p. 101)

DC Brush Brushless DC Microstepping Pulse & Direction

GetTraceCount
0 BBh

15 8 7 0

First data word
read count (high-order part)

31 16

Second data word
read count (low-order part)

15 0
C-Motion Magellan Programming Reference 59

60

2
 GetTraceStatus BAh
Syntax GetTraceStatus

Motor Types

Arguments None

Returned data Name Type
see below unsigned 16 bits

Packet
Structure

Description GetTraceStatus returns the trace status. The definitions of the individual status bits are as follows:

Restrictions

C-Motion API PMDresult PMDGetTraceStatus(PMDAxisInterface axis_intf,
 PMDuint16* status)

VB-Motion API Dim status as Short
status = MagellanObject.TraceStatus

see Set/GetTraceStart (p. 196), Set/GetTraceMode (p. 193)

DC Brush Brushless DC Microstepping Pulse & Direction

GetTraceStatus
0 BAh

15 8 7 0

Data
read 0 0

15 9 8 3 2 1 0

Name Bit Number Description
Wrap Mode 0 Set to 0 when trace is in one-time mode, 1 when in rolling mode.
Activity 1 Set to 1 when trace is active (currently tracing), 0 if trace not

active.
Data Wrap 2 Set to 1 when trace has wrapped, 0 if it has not wrapped. If 0, the

buffer has not yet been filled, and all recorded data is intact. If 1,
the trace has wrapped to the beginning of the buffer; any previous
data may have been overwritten if not explicitly retrieved by the
host using the ReadBuffer command while the trace is active.

— 3-7 — (Reserved)
Trigger Mode 8 Set to 0 when in Internal Trigger mode, 1 when in External Trigger

mode. See SetTraceMode (p. 193) for explanation.
— 9-15 — (Reserved)
C-Motion Magellan Programming Reference

2
GetTraceValue 28h
Syntax GetTraceValue variableID

Motor Types

Arguments Name Type Encoding
variableID unsigned 8 bit see below

Returned data Value Type Range/Scaling
32 bit see below

Packet
Structure

Description GetTraceValue returns a single sample of any trace variable, without using the trace mechanism. The
variableID encoding is the same as for SetTraceVariable. The use of this command does not change
or depend upon any of the trace parameters.

C-Motion API PMDresult PMDGetTraceValue(PMDAxisInterface axis_intf,
 PMDuint8 variable, PMDuint32 *value)

VB-Motion API MagellanAxis.TraceValue([in] variable
[out] value)

see PMDSetTraceVariable (p. 202)

DC Brush Brushless DC Microstepping Pulse & Direction

GetTraceValue
0 28h

15 8 7 0

write 0
15 8 7 0

read Value (high order part)
15 0

read Value (low order part)
15 0
C-Motion Magellan Programming Reference 61

62

2
 GetVersion 8Fh
Syntax GetVersion

Motor Types

Arguments None

Returned data Name Type
version unsigned 32 bits

Packet
Structure

Description GetVersion returns product information encoded as shown in the preceding packet structure
diagram. Individual data fields are encoded as defined in the following table.

As a special case, when the number of chips field is zero, the number of axes field should be
interpreted as a sub-product specification. This scheme is used for the MC58113 series motion
control ICs, which use a number of axes/sub-product field of 1. For example, the version number
returned by an MC58113 processor version 1.0 is 0x58100010.

Restrictions Note that in the C-Motion function PMDGetVersion, the special attributes value and the chip
count values are combined and returned in a single parameter (special_and_chip_count).
Chip count is encoded in bits 0–1 of this value; special is encoded in bits 2–3. Likewise for the
major parameter. The major version is encoded in bits 0-1 and the product version is encoded
in bits 2-3.

DC Brush Brushless DC Microstepping Pulse & Direction

GetVersion
0 8Fh

15 8 7 0

First data word
read product family motor type number of axes special # chips

31 28 27 24 23 20 19 18 17 16

Second data word

read customization code
product
version

major
version minor version

15 8 7 6 5 4 3 0

Name Description Encoding
product family Navigator 2

Pilot 3
Magellan 5
ION 9

motor type Servo 1
Brushless 3
Microstepping 4
Pulse & Direction 5
All Motor Types 8
ION–Any Motor Type 9

number of axes Maximum number of supported axes 1 to 15
special (Reserved) 0 to 3
 # chips 0 to 3
customization code None

Other
0
1 to 255

product version 0 to 3
major s/w version 0 to 3
minor s/w version 0 to 15
C-Motion Magellan Programming Reference

2
GetVersion (cont.) 8Fh
C-Motion API PMDresult PMDGetVersion(PMDAxisInterface axis_intf,
PMDuint16* family,
PMDuint16* motorType,
PMDuint16* numberAxes,
PMDuint16* special_and_chip_count,
PMDuint16* custom,
PMDuint16* major,
PMDuint16* minor)

VB-Motion API Dim version as Long
version = MagellanObject.Version

see
C-Motion Magellan Programming Reference 63

64

2
 InitializePhase 7Ah
Syntax InitializePhase axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Returned data None

Packet
Structure

Description InitializePhase initializes the phase angle for the specified axis using the mode (Hall-based or
algorithmic) specified by the SetPhaseInitializationMode command.

Restrictions Warning: If the phase initialization mode has been set to algorithmic, then, after this command
is sent, the motor may suddenly move in an uncontrolled manner.

C-Motion API PMDresult PMDInitializePhase(PMDAxisInterface axis_intf)

VB-Motion API MagellanAxis.InitializePhase()

see GetPhaseCommand (p. 50), Set/GetCommutationMode (p. 109)

Brushless DC

InitializePhase
0 axis 7Ah

15 12 11 8 7 0
C-Motion Magellan Programming Reference

2
MultiUpdate 5Bh
Syntax MultiUpdate mask

Motor Types

Arguments Name Instance Encoding
mask None 0

Axis1 Mask 1
Axis2 Mask 2
Axis3 Mask 4
Axis4 Mask 8

Returned data None

Packet
Structure

Description MultiUpdate causes an update to occur on all axes whose corresponding bit is set to 1 in the mask argument.
After this command is executed, all axes which are selected using the mask will perform an Update. The
paramater groups that are copied from their buffered versions into the corresponding run-time registers is
determined by the update mask of each axis, as shown in the table below.

Each axis will be updated in turn, from the lowest numbered to the highest. If an error occurs during
the update of an axis, for example a move into an active limit switch, then that update will be aborted,
the error code returned, and no higher-numbered axes will be updated. The InstructionError bit of the
event status register for each axis may be tested to discover which axis had an update failure.

DC Brush Brushless DC Microstepping Pulse & Direction

MultiUpdate
0 5Bh

15 8 7 0

Data
write 0 mask

15 4 3 0

Group Command/Parameter
Trajectory Acceleration

Deceleration
Gear Ratio
Jerk
Position
Profile Mode
Stop Mode
Velocity
ClearPositionError

Position Servo Derivative Time
Integrator Sum Limit
Kaff
Kd
Ki
Kp
Kvff
Kout
Motor Command

Current Loops Integrator Sum Limit
Ki
Kp
C-Motion Magellan Programming Reference 65

66

2
 MultiUpdate (cont.) 5Bh
Atlas This command does not require any additional Atlas communication. It may cause an Atlas update
by using the update bit in the Atlas torque command, see Atlas Digital Amplifier Complete Technical
Reference for more information.

Restrictions

C-Motion API PMDresult PMDMultiUpdate(PMDAxisInterface axis_intf,
 PMDuint16 mask)

VB-Motion API MagellanObject.MultiUpdate([in] mask)

see GetEventStatus (p. 42), Update (p. 215), Set/GetUpdateMask (p. 211)
C-Motion Magellan Programming Reference

2
NoOperation 00h
Syntax NoOperation

Motor Types

Arguments None

Returned data None

Packet
Structure

Description The NoOperation command has no effect on the motion control IC.

Restrictions

C-Motion API PMDresult PMDNoOperation(PMDAxisInterface axis_intf)

VB-Motion API MagellanObject.NoOperation()

see

DC Brush Brushless DC Microstepping Pulse & Direction

NoOperation
0 00h

15 8 7 0
C-Motion Magellan Programming Reference 67

68

2
 NVRAM
Syntax NVRAM axis option value

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

option Atlas NVRAM mode 0
Magellan NVRAM mode 256
Erase NVRAM 1
Write 2
Block Write Begin 3
Block Write End 4
Skip 8
— (Reserved) 9
— (Reserved) 10
Open NVRAM 11

Type Range
value unsigned 16 bit see below

Packet
Structure

Description The NVRAM command is used to write the non-volatile RAM (NVRAM) used for initialization on
products that support it, including MC58113 series motion controllers, N-series ION digital drives,
and Atlas digital amplifiers. The NVRAM command is first used to put the processor to be
programmed into NVRAM mode, which supports only the commands necessary for its purpose.
Once the processor is in NVRAM mode more NVRAM commands are used to erase and re-
program NVRAM. NVRAM mode is exited by using the reset command; when programming Atlas
this command must be sent to the Atlas axis. Even when programming Atlas all NVRAM
commands should be sent to the Magellan axis, otherwise spurious SPI checksum errors will be
signaled.

Changing to NVRAM mode, erasing, or writing NVRAM data may take more time than the other
commands. When programming the MC58113 NVRAM the timeout period should be increased to
at least 10 seconds; after each operation fully completes the return status may be read to confirm
that the operation succeeded.

NVRAM
0 axis 30h

15 12 11 8 7 0

write option
15 0

write value
15 0
C-Motion Magellan Programming Reference

2
NVRAM (cont.)
Description
(cont’d)

When programming Atlas a different procedure is required. Atlas will return command status after
checking arguments but before beginning an NVRAM operation, and will not respond to SPI
commands while busy programming NVRAM. The Magellan controlling Atlas should be polled using
GetDriveStatus after sending a NVRAM command, until the Atlas Not Connected bit is clear. If a flash
error has occurred then the Instruction Error bit of the Event Status register will be set, and the
GetInstructionError command may be sent to Atlas for more information. When writing NVRAM data
one word at a time it is not necessary to check for error status after each write, the error status is latched,
and may be checked periodically.

The option argument to NVRAM specifies the particular operation to perform:

NVRAM mode (256) will put an MC58113 series motion control IC into NVRAM mode. Motor output
must be disabled.

Atlas NVRAM mode (0) will put an attached Atlas amplifier into NVRAM mode. Motor output must
be disabled. All erase or program commands are sent to the Atlas amplifier unless the Magellan
processor itself is in NVRAM mode. The value argument should be zero for this command.

The remaining operations will succeed only if either the Magellan processor itself or an attached Atlas
amplifier is in NVRAM mode, otherwise an Invalid register state for command error will be raised. The
value argument should be zero for this command.

Erase NVRAM (1) will erase the entire non-volatile memory, meaining that all bits will be set. NVRAM
must be completely erased before any words may be written. The value argument should be zero for
this command.

Open NVRAM (11) will allow writing to the non-volatile memory without erasing it. In this case the
Skip option must be used to begin writing after the last previously written word. The memory may be
read using ReadBuffer16 in order to determine what has been written, but this must be done before
entering NVRAM mode, which does not support the buffer commands.

Write (2) will write a single word of NVRAM, which is specified by the value argument. Words are
written in sequence, from the beginning.

Skip (8) may be used to leave the number of words specified in the value argument unwritten, that is,
with a value of 0xFFFF. Writing may resume afterwards. It is not necessary to use this command in the
usual case.

Block Write Begin (3) and Block Write End (4) may be used to speed up NVRAM operations that are
limited by communication bandwidth; their use is not required.

A block write operation is begun by using the BlockWriteBegin command, with the number of words
that will be sent as a block specified in the value argument. A block may be at most 32 words. No polling
procedure is required after a Block Write Begin command.

The next step is to send the data words. These are sent without the usual Magellan command format,
therefore no other commands may be sent until the entire block is transmitted.

If using serial communications the words are sent as is, high byte first.

If using CANBus, the words are sent without any additional formatting. At most four words may be
sent per CAN packet.

If using SPI communications, the words are sent without any additional formatting. at most four words
may be sent for each cycle of the ~HostSPIEnable signal.
C-Motion Magellan Programming Reference 69

70

2
 NVRAM (cont.)
Description
(cont’d)

If using parallel communications the words are sent without any additional formatting, with the
~HostWrite signal high, that is, as though they were command words. At most one word may be sent
per ~HostWrite cycle.

The block write operation is concluded by sending a BlockWriteEnd comamnd. The value
argument to this command must be the 16-bit ones complement checksum of all words sent since
the BlockWriteBegin command. If the checksum matches then the processor will write all words
to NVRAM, in order. When programming MC58113 NVRAM a long wait may be required. When
programming Atlas NVRAM the polling procedure described above for NVRAM writes should be
followed.

Atlas This command will be relayed to an attached Atlas amplifier unless the NVRAM mode (256) option
is selected or it is sent to an MC58113 series motion control IC which is in NVRAM mode.

Restrictions Once put in NVRAM mode an Atlas amplifier or MC58113 series motion control IC will accept
only a restricted set of commands. There is no way to enable motor output, and Atlas will not
accept torque commands.

VB-Motion API MagellanAxis.NVRAM([in] option, [in] value)

C-Motion API PMDresult PMDNVRAM (PMDAxisInterface axis_intf,
 PMDuint16 option,

PMDuint16 value);

see GetDriveStatus (p. 38), GetEventStatus (p. 42), GetInstructionError (p. 46), Reset (p. 75)
C-Motion Magellan Programming Reference

2
ReadAnalog EFh
Syntax ReadAnalog portID

Motor Types

Arguments Name Type Range Scaling Units
portID unsigned 16 bits 0 to 7 unity -

Returned data Type Range Scaling Units
value unsigned 16 bits 0 to 216–1 100/216 % input

Packet
Structure

Description ReadAnalog returns a 16-bit value representing the voltage presented to the specified analog input. See
the product user guide for more information on analog input and scaling.

Restrictions

C-Motion API PMDresult PMDReadAnalog(PMDAxisInterface axis_intf, PMDuint16 portID,
PMDuint16* value)

VB-Motion API Dim value as Short
value = MagellanObject.Analog(portID)

see

DC Brush Brushless DC Microstepping Pulse & Direction

ReadAnalog
0 EFh

15 8 7 0

First data word
write 0 portID

15 3 2 0

Second data word
read value

15 0
C-Motion Magellan Programming Reference 71

72

2
 ReadBuffer C9h
Syntax ReadBuffer bufferID

Motor Types

Arguments Name Type Range
bufferID unsigned 16 bits 0 to 31

Returned data Type Range
data signed 32 bits –231 to 231–1

Packet
Structure

Description ReadBuffer returns the 32-bit contents of the location pointed to by the read buffer index in the
specified buffer. After the contents have been read, the read index is incremented by 1. If the result
is equal to the buffer length (set by SetBufferLength), the index is reset to zero (0). The read index
for buffer zero is automatically changed at the completion of a trace when in rolling trace mode.

Restrictions

C-Motion API PMDresult PMDReadBuffer16(PMDAxisInterface axis_intf, PMDuint16 buffer-
ID,

 PMDint32* data)

VB-Motion API Dim data as Long
Data = MagellanObject.ReadBuffer16(bufferID)

see Set/GetBufferReadIndex (p. 103), Set/GetBufferStart (p. 104), Set/GetBufferLength (p. 101)

DC Brush Brushless DC Microstepping Pulse & Direction

ReadBuffer
0 C9h

15 8 7 0

First data word
write 0 bufferID

15 5 4 0

Second data word
read data (high-order part)

31 16

Third data word
read data (low-order part)

15 0
C-Motion Magellan Programming Reference

2
ReadBuffer16 CDh
Syntax ReadBuffer16 bufferID

Motor Types

Arguments Name Type Range
bufferID unsigned 16 bits 0 to 31

Returned data Type Range
data signed 16 bits –215 to 215–1

Packet
Structure

Description ReadBuffer16 returns the 16-bit contents of the location pointed to by the read buffer index in the
specified buffer. After the contents have been read, the read index is incremented by 1. If the result is
equal to the buffer length (set by SetBufferLength), the index is reset to zero (0). This command is
intended to read from a buffer located in non-volatile RAM, which has a 16-bit word size. ReadBuffer
should be used for all other buffers.

Restrictions This command is only available on products that support non-volatile RAM.

C-Motion API PMDresult PMDReadBuffer(PMDAxisInterface axis_intf, PMDuint16 bufferID,
 PMDint32* data)

VB-Motion API Dim data as Long
Data = MagellanObject.ReadBuffer(bufferID)

see Set/GetBufferReadIndex (p. 103), WriteBuffer (p. 216), Set/GetBufferStart (p. 104),
Set/GetBufferLength (p. 101)

DC Brush Brushless DC Microstepping Pulse & Direction

ReadBuffer
0 CDh

15 8 7 0

First data word
write 0 bufferID

15 5 4 0

Second data word
read data

31 16
C-Motion Magellan Programming Reference 73

74

2
 ReadIO 83h
Syntax ReadIO address

Motor Types

Arguments Name Type Range
address unsigned 16 bits 0 to 255

Returned data Type Range
data unsigned 16 bits 0 to 216–1

Packet
Structure

Description ReadIO reads one 16-bit word of data from the device at address. The address is an offset from
location 1000h of the motion control IC's peripheral device address space.

The format and interpretation of the 16-bit data word are dependent on the user-defined device
being addressed. User-defined I/O can be used to implement a number of features, including
additional parallel I/O, flash memory for non-volatile configuration information storage, or display
devices such as LED arrays.

Restrictions This command is not available in products without a parallel I/O port.

C-Motion API PMDresult PMDReadIO(PMDAxisInterface axis_intf, PMDuint16 address,
PMDuint16* data);

VB-Motion API Dim data as Short
data = MagellanObject.IO(address)

see WriteIO (p. 217)

DC Brush Brushless DC Microstepping Pulse & Direction

ReadIO
0 83h

15 8 7 0

First data word
write 0 address

15 8 7 0

Second data word
read data

15 0
C-Motion Magellan Programming Reference

2
Reset 39h
Syntax Reset

Motor Types

Arguments None

Returned data None

Packet
Structure

Description Reset restores the motion control IC to its initial condition, setting all motion control IC variables to their
default values. Most variables are motor-type independent; however several default values depend upon the
configured motor type of the axis. Some of the default values also depend on the state of Magellan pin
OutputMode0 when power is applied, if this pin is grounded, Magellan will be in an “Atlas-compatible”
state, if it is floating, “backwards-compatible.” MC58113 series products always behave in an Atlas-

compatible way. The motor-type independent values are listed here.

DC Brush Brushless DC Microstepping Pulse & Direction

Reset
0 39h

15 8 7 0

Default Value Buffered
Breakpoints and Interrupts
Breakpoint 1 0 NO
Breakpoint 2 0 NO
Breakpoint Value 1 0 NO
Breakpoint Value 2 0 NO
Breakpoint 1 Update Mask 0Bh (products with

current control)
03h (products
without)

NO

Breakpoint 2 Update Mask 0Bh (products with
current control)
03h (products
without)

NO

Interrupt Mask 0 NO
Commutation
Commutation Mode motor dependent NO
Phase Angle 0 NO
Phase Counts motor dependent NO
Phase Offset –1 NO
Phase Prescale 0 NO
Phase Initialize Mode 0 NO
Phase Initialize Time 0 NO
Phase Correction Mode motor dependent NO
Current Control
Current Control Mode 0 YES-Current Loop
Current Loop Kp (both A and B loops) 0 YES-Current Loop
Current Loop Ki (both A and B loops) 0 YES-Current Loop
Current Loop Integrator Sum Limit
(both A and B loops)

0 YES-Current Loop

FOC Kp (both D and Q loops) 0 YES-Current Loop
FOC Ki (both D and Q loops) 0 YES-Current Loop
C-Motion Magellan Programming Reference 75

76

2
 Reset (cont.) 39h
Default Value Buffered
Current Control (cont.)
FOC Integrator Sum Limit 0 YES-Current Loop
Holding Motor Limit 32767 NO
Holding Delay motor dependent NO
Digital Servo Filter
Position Error Limit 65535 NO
Position Loop Biquad Coeffs All 0 YES-PositionLoop
Position Loop Biquad Enables Both 0 YES-Position Loop
Position Loop Kvff 0 YES-Position Loop
Position Loop Kaff 0 YES-Position Loop
Position Loop Kp 0 YES-Position Loop
Position Loop Ki 0 YES-Position Loop
Position Loop Kd 0 YES-Position Loop
Position Loop Integrator Sum Limit 0 YES-Position Loop
Position Loop Derivative Time 1 YES-Position Loop
Position Loop Kout 65535 YES-Position Loop
Motor Limit 32767 NO
Motor Bias 0 NO
Motor Command 0 YES-Position Loop
Auxiliary Encoder Source 0 NO
Encoder
Actual Position 0 NO
Actual Position Units motor dependent NO
Capture Source 0 NO
Encoder Modulus 0 NO
Encoder Source motor dependent NO
Encoder To Step Ratio 00010001h NO
Motor Output
Operating Mode 0033h (Magellan backwards-compatible)

0001h (ION, Magellan Atlas-compatible)
NO

Active Operating Mode 0033h (Magellan backwards-compatible)
0001h (ION, Magellan Atlas-compatible)

NO

Output Mode motor dependent NO
Motor Type product dependent NO
PWM Frequency motor dependent NO
Step Range 1 NO
Position Servo Loop Control
Motion Complete Mode 0 NO
Sample Time see Notes NO
Settle Time 0 NO
Settle Window 0 NO
Tracking Window 0 NO
Profile Generation
Acceleration 0 YES-Trajectory
Deceleration 0 YES-Trajectory
Gear Master 0 NO
Gear Ratio 0 YES-Trajectory
Jerk 0 YES-Trajectory
Position 0 YES-Trajectory
C-Motion Magellan Programming Reference

2
Reset (cont.) 39h
Default Value Buffered
Profile Generation (cont.)
Profile Mode 0 YES-Trajectory
Start Velocity 0 NO
Stop Mode 0 YES-Trajectory
Velocity 0 YES-Trajectory
RAM Buffer
Buffer Length 0-Magellan

0180h-ION
NO

Buffer Read Index 0 NO
Buffer Start 0 NO
Buffer Write Index 0 NO
Safety
Positive Limit Event Action 8 NO
Negative Limit Event Action 8 NO
Motion Error Event Action motor dependent NO
Current Foldback Event Action 7 NO
OvervoltageThreshold see specific product manual NO
Undervoltage Threshold see specific product manual NO
OvertemperatureThreshold see specific product manual NO
FaultOut Mask 0600h NO
Continuous Current Limit see specific product manual
Energy Limit see specific product manual
Status Registers and AxisOut Indicator
AxisOut Source Axis 0 NO
AxisOut Register 0 NO
AxisOut Selection Mask 0 NO
AxisOut Sense Mask 0 NO
Signal Sense motor dependent NO
Traces
Trace Mode 0 NO
Trace Period 1 NO
Trace Start 0 NO
Trace Stop 0 NO
Trace Variables all are 0 NO
Miscellaneous
Update Mask 0Bh (products with current control)

03h (products without)
NO

CAN Mode C000h (see Notes) NO
Serial Port Mode 0004h (see Notes) NO
C-Motion Magellan Programming Reference 77

78

2
 Reset (cont.) 39h
The motor-type dependent default values are listed in the following tables.

Notes All axes supported by the motion control IC are enabled at reset.

In some products, CAN Mode and Serial Port Mode defaults are defined at reset by a parallel bus
read.

In ION products, the reset defaults for CAN Mode and the Serial Port Mode used for RS485 can
be over-ridden using the SetDefault command. See the ION Digital Drive User Manual.

See Set/GetSampleTime (p. 180) for more information regarding SampleTime.

Atlas The Magellan reset command does not cause any attached Atlas amplifiers to be reset. When
Magellan re-connects to any such Atlas amplifiers it will check their motor types, set their operating
mode, and set their current foldback event actions.

Restrictions The typical time before the device is ready for communication after a reset is 20ms for Magellan
products, and 100ms for ION products.

Variable DC Brush
Brushless DC
(3 phase)

Brushless DC
(2 phase)

Actual Position Units 0 0 0
Commutation Mode - 0 0
Encoder Source 0 0 0
Motion Error Event Action 5 5 5
Output Mode 1-Magellan

2-ION
10-MC58113

2 2

Phase Correction Mode - 1 1
PWM Frequency (kHz) 20 20 20
SPI Mode 0 - -
Phase Counts - 1 1
Holding Delay - - -
Signal Sense 0 (backwards-

compatible),
0800h (Atlas-
compatible)

0 (backwards-
compatible), 0800h
(Atlas-compatible)
0 (MC58113)

0

Variable
Microstepping
(3 phase)

Microstepping
(2 phase)

Pulse &
Direction

Actual Position Units 1 1 1
Commutation Mode 0 0 -
Encoder Source 2 2 3
Motion Error Event Action 0 0 0
Output Mode 2 1-Magellan

2-ION
-

Phase Correction Mode - - -
PWM Frequency (kHz) 20 80-Magellan

20-ION
20-MC58113

-

SPI Mode - - -
Phase Counts 256 256 -
Holding Delay 32767 32767 20
Signal Sense 0 0 0800h
C-Motion Magellan Programming Reference

2
Reset (cont.) 39h
The MC55110 and the MC58110 have a maximum Step Range of 100 ksteps/sec, which cannot be
changed.

Not all of the listed variables are available on all products. See the product user guide.

C-Motion API PMDresult PMDReset(PMDAxisInterface axis_intf)

VB-Motion API MagellanObject.Reset()

see SetDefault (p. 123)
C-Motion Magellan Programming Reference 79

80

2
 ResetEventStatus 34h
Syntax ResetEventStatus axis mask

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

mask Motion Complete FFFEh
Wrap-around FFFDh
Breakpoint 1 FFFBh
Capture Received FFF7h
Motion Error FFEFh
Positive Limit FFDFh
Negative Limit FFBFh
Instruction Error FF7Fh
Disable FEFFh
Overtemperature Fault FDFFh
Drive Exception FBFFh
Commutation Error F7FFh
Current Foldback EFFFh
Breakpoint 2 BFFFh

Returned data None

Packet
Structure

Description ResetEventStatus clears (sets to 0), for the specified axis, each bit in the Event Status register that
has a value of 0 in the mask sent with this command. All other Event Status register bits (bits that
have a mask value of 1) are unaffected.

Events that cause changes in operating mode or trajectory require, in general, that the
corresponding bit in Event Status be cleared prior to returning to operation. That is, prior to
restoring the operating mode (in cases where the event caused a change in it) or prior to performing
another trajectory move (in cases where the event caused a trajectory stop). The one exception to
this is Motion Error, which is not required to be cleared if the event action for it includes disabling
of the position loop.

Atlas When clearing bits 10 (Drive Exception), or 12 (Current Foldback), this command will be sent to
an attached Atlas amplifier before being applied to the local Magellan register.

Note that bit 9 (Overtemperature Fault) is not used for Atlas axes.

Restrictions Not all bits in ResetEventStatus are supported in some products. See the product user manual.

DC Brush Brushless DC Microstepping Pulse & Direction

ResetEventStatus
0 axis 34h

15 12 11 8 7 0

Data
write mask

15 0
C-Motion Magellan Programming Reference

2
ResetEventStatus (cont.) 34h
C-Motion API PMDresult PMDResetEventStatus(PMDAxisInterface axis_intf,
PMDuint16 status)

VB-Motion API MagellanAxis.ResetEventStatus(mask)

see GetEventStatus (p. 42)
C-Motion Magellan Programming Reference 81

82

2
 RestoreOperatingMode 2Eh
Syntax RestoreOperatingMode axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Packet
Structure

Description RestoreOperatingMode is used to command the axis to return to its static operating mode. It
should be used when the active operating mode has changed due to actions taken from safety events
or other programmed events. Calling RestoreOperatingMode will re-enable all loops that were
disabled as a result of events.

Atlas This command will be sent to an attached Atlas amplifier before being applied to the local Magellan
register.

Restrictions Before using RestoreOperatingMode to return to the static operating mode, the event status bits
should all be cleared. If a bit in event status that caused a change in operating mode is not cleared, this
command will return an error. The exceptions to this are Motion Error and the breakpoint events,
which do not have to be cleared prior to restoring the operating mode.

Though RestoreOperatingMode will re-enable the trajectory generator (if it was disabled as a result
of an event action), it will not resume a move. This must be done through an Update or
MultiUpdate.

C-Motion API PMDresult PMDRestoreOperatingMode(PMDAxisInterface axis_intf)

VB-Motion API MagellanAxis.RestoreOperatingMode()

see GetActiveOperatingMode (p. 24), Set/GetOperatingMode (p. 156), Set/GetEventAction (p.
135), Set/GetBreakpoint (p. 94)

DC Brush Brushless DC Microstepping Pulse & Direction

RestoreOperatingMode
0 axis 2Eh

15 12 11 8 7 0
C-Motion Magellan Programming Reference

2

SetAcceleration buffered 90h
GetAcceleration 4Ch
Syntax SetAcceleration axis acceleration
GetAcceleration axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
acceleration unsigned 32 bits 0 to 231–1 1/216 counts/cycle2

microsteps/cycle2

Packet
Structure

Description SetAcceleration loads the maximum acceleration buffer register for the specified axis. This command
is used with the Trapezoidal, Velocity Contouring, and S-curve profiling modes.

GetAcceleration reads the maximum acceleration buffer register.

Scaling example: To load a value of 1.750 counts/cycle2, multiply by 65,536 (given 114,688) and load
the resultant number as a 32-bit number, giving 0001 in the high word and C000h in the low word.
Values returned by GetAcceleration must correspondingly be divided by 65,536 to convert to units of
counts/cycle2 or steps/cycle2.

DC Brush Brushless DC Microstepping Pulse & Direction

SetAcceleration
0 axis 90h

15 12 11 8 7 0

First data word
write acceleration (high-order part)

31 16

Second data word
write acceleration (low-order part)

15 0

GetAcceleration
0 axis 4Ch

15 12 11 8 7 0

First data word
read acceleration (high-order part)

31 16

Second data word
read acceleration (low-order part)

15 0
C-Motion Magellan Programming Reference 83

84

2

SetAcceleration (cont.) buffered 90h
GetAcceleration 4Ch
Restrictions SetAcceleration may not be issued while an axis is in motion with the S-curve profile.

SetAcceleration is not valid in Electronic Gear profile mode.

SetAcceleration is a buffered command. The value set using this command will not take effect until
the next Update or MultiUpdate command, with the Trajectory Update bit set in the update mask.

C-Motion API PMDresult PMDSetAcceleration(PMDAxisInterface axis_intf,
PMDuint32 acceleration)

PMDresult PMDGetAcceleration(PMDAxisInterface axis_intf,
PMDuint32* acceleration)

VB-Motion API Dim acceleration as Long
MagellanAxis.Acceleration = acceleration
acceleration = MagellanAxis.Acceleration

see Set/GetDeceleration (p. 122), Set/GetJerk (p. 148), Set/GetPosition (p. 172),
Set/GetVelocity (p. 213), MultiUpdate (p. 65), Update (p. 215)
C-Motion Magellan Programming Reference

2

SetActualPosition 4Dh
GetActualPosition 37h
Syntax SetActualPosition axis position
GetActualPosition axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
position signed 32 bits –231 to 231–1 unity counts

microsteps
Packet
Structure

Description SetActualPosition loads the position register (encoder position) for the specified axis. At the same time,
the commanded position is replaced by the loaded value minus the position error. This prevents a servo
“bump” when the new axis position is established. The destination position (see SetPosition (p. 172))
is also modified by this amount so that no trajectory motion will occur when the Update instruction is
issued. In effect, this instruction establishes a new reference position from which subsequent positions
can be calculated. It is commonly used to set a known reference position after a homing procedure.

Note: For axes configured as pulse & direction or microstepping motor types, actual position units
determines if the position is specified and returned in units of counts or steps. Additionally, for these
motor types, the position error is zeroed when the SetActualPosition command is sent.
SetActualPosition takes effect immediately, it is not buffered.

GetActualPosition reads the contents of the encoder’s actual position register. This value will be
accurate to within one cycle (as determined by Set/GetSampleTime).

Restrictions

C-Motion API PMDresult PMDSetActualPosition(PMDAxisInterface axis_intf,
PMDint32 position)

PMDresult PMDGetActualPosition(PMDAxisInterface axis_intf,
PMDint32* position)

DC Brush Brushless DC Microstepping Pulse & Direction

SetActualPosition
0 axis 4Dh

15 12 11 8 7 0

First data word
write position (high-order part)

31 16

Second data word
write position (low-order part)

15 0

GetActualPosition
0 axis 37h

15 12 11 8 7 0

First data word
read position (high-order part)

31 16

Second data word
read position (low-order part)

15 0
C-Motion Magellan Programming Reference 85

86

2

SetActualPosition (cont.) 4Dh
GetActualPosition 37h
VB-Motion API Dim position as Long
MagellanAxis.ActualPosition = position
position = MagellanAxis.ActualPosition

see GetPositionError (p. 51), Set/GetActualPositionUnits (p. 87), AdjustActualPosition (p. 16)
C-Motion Magellan Programming Reference

2

SetActualPositionUnits BEh
GetActualPositionUnits BFh
Syntax SetActualPositionUnits axis mode
GetActualPositionUnits axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

mode Counts 0
Steps 1

Packet
Structure

Description SetActualPositionUnits determines the units used by the Set/GetActualPosition, AdjustActualPosition
and GetCaptureValue for the specified axis. It also affects the trace variable Actual Position. When set to
Counts, position units are in encoder counts. When set to Steps, position units are in steps/microsteps. The
step position is calculated using the ratio as set by the SetEncoderToStepRatio command.

GetActualPositionUnits returns the position units for the specified axis.

Restrictions The trace variable, capture value, is not affected by this command. The value is always in counts.

C-Motion API PMDresult PMDSetActualPositionUnits(PMDAxisInterface axis_intf,
 PMDuint16 mode)

PMDresult PMDGetActualPositionUnits(PMDAxisInterface axis_intf,
 PMDuint16* mode)

VB-Motion API Dim mode as Short
MagellanAxis.ActualPositionUnits = mode
mode = MagellanAxis.ActualPositionUnits

see Set/GetActualPosition (p. 85), Set/GetEncoderToStepRatio (p. 134), AdjustActualPosition (p. 16),
GetCaptureValue (p. 29), Set/GetTraceVariable (p. 202)

Microstepping Pulse & Direction

SetActualPositionUnits
0 axis BEh

15 12 11 8 7 0

Data
write 0 mode

15 1 0

GetActualPositionUnits
0 axis BFh

15 12 11 8 7 0

Data
read 0 mode

15 1 0
C-Motion Magellan Programming Reference 87

88

2

SetAnalogCalibration 29h
GetAnalogCalibration 2Ah
Syntax SetAnalogCalibration axis channel offset
GetAnalogCalibration axis channel

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

coefficient current leg A offset 0
current leg B offset 1
current leg C offset 2
current leg D offset 3
encoder cos offset 0x300
encoder sin offset 0x301
encoder cos gain 0x302
encoder sin gain 0x303
encoder phase gain 0x304
encoder sin/cos interpolation factor 0x30D
encoder sin/cos correction table enable 0x30F
encoder sin/cos correction table 0x310 - 0x32F

value see below

Packet
Structure

Description The SetAnalogCalibration command sets offsets and gains that are used to correct analog inputs
for the vagaries of external amplification circuitry.

It is frequently convenient to use the CalibrateAnalog command to compute the appropriate
coefficients, which may later be read using GetAnalogCalibration, and modified if needed by
SetAnalogCalibration.

DC Brush Brushless DC Microstepping

SetAnalogCalibration
axis 29h

15 12 11 8 7 0

First data word
write coefficient

15 0

Second data word
write value

15 0

GetAnalogCalibration
axis 2Ah

15 12 11 8 7 0

write coefficient
15 0

read value
15 0
C-Motion Magellan Programming Reference

2

SetAnalogCalibration (cont.) 29h
GetAnalogCalibration 2Ah
Description
(cont.)

The four leg current offsets are subtracted from the raw analog readings, as returned by the ReadAnalog

command. They are signed 16-bit numbers ranging from -215 to 215 - 1

The encoder calibration coefficients are currently used for the N-series ION, which supports analog
sin/cos encoders. Please consult the users guide for an overview of sin/cos encoder operation.

The encoder sin and cos offsets are signed 16-bit numbers that are added to the raw analog readings
after subtracting a bias of 0x8000 (32768). The raw analog sin and cos values may be read using trace or
the GetTraceValue command.

The encoder sin and cos gains are unsigned 16-bit numbers scaled by 214, that is 16384 corresponds to
1.0. The sin gain multiplies the raw sin input after the offset and bias are added, the cos gain multiplies
the raw cos input after the offset and bias are added.

The phase gain is a signed 16-bit number scaled by 214, that is 16384 corresponds to 1.0. This coefficient
is used to compute a correction for non-orthogonality between sin and cos signals.

The encoder sin, cos, and phase gains are signed 16-bit numbers scaled by 214, that is 16384 corresponds
to 1.0. The sin gain multiplies the raw sin input after the offset and bias are added, the cos gain multiplies
the raw cos input after the offset and bias are added. The phase gain is used to compute a correction for
non-orthogonality between sin and cos signals.

The encoder sin/cos interpolation factor controls the scaling and precision of the analog interpolation
between digital quadrature positions. This coefficient is an unsigned 16-bit number with units of
counts/electrical revolution.The minimum value is 4, or no interpolation, the maximum value is 16384.
Currently only interpolation by a factor of 2 is supported; if the specified interpolation factor is not a
factor of 2 it will be rounded down.

The N-series ION supports a 32-entry table for fine correction of the angle computed using sin and cos
analog readings. This table is enabled by setting the encoder sin/cos correction table enable to 1, the
default value of 0 means disabled. The table should be disabled whenever entries are being written.

Each table entry may be written using the encoder sin/cos correction table coefficient codes, 0x310
means entry 0, 0x311 means entry 1, and so forth. Each table entry is a signed 16-bit number scaled by
360°/16384 that is added to the raw angle computed from the sin and cos analog inputs. Linear
interpolation is used to compute the actual value added.

Restrictions This command is not supported by all Magellan products. MC58113 and N-series ION support the leg
current offsets. N-series ION supports the sin/cos encoder calibration coefficients.

C-Motion API PMDresult PMDSetAnalogCalibration(PMDAxisInterface axis_intf,
PMDuint16 channel,
PMDint16 offset);

PMDresult PMDGetAnalogCalibration(PMDAxisInterface axis_intf,
PMDuint16 channel,
PMDint16 *offset);

VB-Motion API MagellanAxis.AnalogCalibrationSet([in] channel, [in] offset)
MagellanAxis.AnalogCalibrationGet([in] channel, [out] offset)

see ReadAnalog (p. 71), CalibrateAnalog (p. 17)
C-Motion Magellan Programming Reference 89

90

2

SetAuxiliaryEncoderSource 08h
GetAuxiliaryEncoderSource 09h
Syntax SetAuxiliaryEncoderSource axis mode_auxiliaryAxis
GetAuxiliaryEncoderSource axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

mode None 0
Quadrature 1
Pulse & Direction2

auxiliaryAxis Axis1 0
Axis2 1
Axis3 2
Axis4 3

Packet
Structure

Description SetAuxiliaryEncoderSource controls the motion control IC’s dual encoder loop feature. The mode
either disables or specifies the format for the secondary encoder loop for axis. The auxilaryAxis
selects which axis encoder input is to be interpreted as the damping term (Kd) of the servo equation
for axis. To determine the actual position of the auxiliary encoder, use
GetActualPosition(auxiliaryAxis). The auxiliary axis encoder input is used for commutation of
brushless DC motors. The SetPhaseOffset, SetPhaseAngle, and SetPhaseCounts commands
should still be applied to the main axis, even when dual encoder loop is enabled.

Restrictions To avoid a potentially unstable operating condition in dual loop mode, the auxiliary encoder should
have resolution greater than or equal to that of the main encoder. Not all products support pulse &
direction input.

C-Motion API PMDresult PMDSetAuxiliaryEncoderSource(PMDAxisInterface axis_intf,
 PMDuint8 mode,
 PMDAxis auxiliaryAxis)

PMDresult PMDGetAuxiliaryEncoderSource(PMDAxisInterface axis_intf,
 PMDuint8* mode,
 PMDAxis* auxiliaryAxis)

DC Brush Brushless DC Microstepping Pulse & Direction

SetAuxiliaryEncoderSource
0 axis 08h

15 12 11 8 7 0

Data
write 0 mode 0 auxiliaryAxis

15 9 8 7 2 1 0

GetAuxiliaryEncoderSource
0 axis 09h

15 12 11 8 7 0

Data
read 0 mode 0 auxiliaryAxis

15 9 8 7 2 1 0
C-Motion Magellan Programming Reference

2

SetAuxiliaryEncoderSource (cont.) 08h
GetAuxiliaryEncoderSource 09h
VB-Motion API MagellanAxis.AuxiliaryEncoderSourceSet([in] mode, [in] auxiliaryAxis)
MagellanAxis.AuxiliaryEncoderSourceGet([out] mode, [out] auxiliaryAxis)
C-Motion Magellan Programming Reference 91

92

2

SetAxisOutMask 45h
GetAxisOutMask 46h
Syntax SetAxisOutMask axis sourceAxis_sourceRegister selectionMask senseMask
GetAxisOutMask axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

sourceAxis Axis1 0
Axis2 1
Axis3 2
Axis4 3

sourceRegister Disabled 0
Event Status 1
Activity Status 2
Signal Status 3
Drive Status 4

selectionMask see below bitmask

senseMask see below bitmask

Packet
Structure

Description SetAxisOutMask configures what will drive the AxisOut pin of the axis. The sourceRegister and
sourceAxis arguments specify which register, from which axis, will be used to drive AxisOut of the
specified axis.

DC Brush Brushless DC Microstepping Pulse & Direction

SetAxisOutMask
0 axis 45h

15 12 11 8 7 0

First Data Word
write 0 sourceRegister sourceAxis

15 12 11 8 7 0

Second Data Word
write selectionMask

15 0

Third Data Word
write senseMask

15 0

GetAxisOutMask
0 axis 46h

15 12 11 8 7 0

First Data Word
read 0 sourceRegister sourceAxis

15 12 11 8 7 0

Second Data Word
read selectionMask

15 0

Third Data Word
read senseMask

15 0
C-Motion Magellan Programming Reference

2

SetAxisOutMask (cont.) 45h
GetAxisOutMask 46h
Description
(cont.)

For each bit in the selectionMask that is set to 1, the corresponding bit of the specified sourceRegister is
selected to set AxisOut active. The senseMask bit determines which state of each bit causes AxisOut to be
active—a zero (0) in the senseMask means that a 0 in the corresponding bit will cause AxisOut to be active,
and a 1 in the senseMask means that a 1 in the corresponding bit will cause AxisOut to be active. If multiple
bits are selected in the sourceRegister, AxisOut will be active if any of the selected bits, combined with their
sense, require it to be. The following table shows the available bits in each register.

For example, assume it is desired to have the AxisOut pin of Axis1 driven active whenever motion
complete of Axis2 is 1, or commutation error of Axis2 is 0. In this case, axis would be 0 (Axis1), sourceAxis
would be 1 (Axis2), sourceRegister would be 1 (Event Status), selectionMask would be 0801h
(commutation error and motion complete) and senseMask would be 0001h.

When the source register is set to Disabled, AxisOut will be active.

GetAxisOutMask returns the mapping of the AxisOut pin of axis.

Restrictions Depending on the product features, some bits may not be supported. See the product user guide.

C-Motion API PMDresult PMDSetAxisOutMask(PMDAxisInterface axis_intf,
PMDAxis sourceAxis,
PMDuint8 sourceRegister,
PMDuint16 selectionMask,
PMDuint16 senseMask)

PMDresult PMDGetAxisOutMask(PMDAxisInterface axis_intf,
PMDAxis* sourceAxis,
PMDuint8* sourceRegister,
PMDuint16* selectionMask,
PMDuint16* senseMask)

VB-Motion API MagellanAxis.AxisOutMaskSet([in] sourceAxis,
[in] sourceRegister,
[in] selectionMask,
[in] senseMask)

MagellanAxis.AxisOutMaskGet([out] sourceAxis,
[out] sourceRegister,
[out] selectionMask,
[out] senseMask)

see

Bit
Event Status
Register

Activity
Status
Register

Signal
Status
Register

Drive Status
Register

0 Motion Complete Phasing Initialized Encoder A
1 Wrap-around At Maximum

Velocity
Encoder B In Foldback

2 Breakpoint 1 Tracking Encoder Index Overtemperature
3 Position Capture Capture Input
4 Motion Error Positive Limit In Holding
5 Positive Limit Negative Limit Overvoltage
6 Negative Limit AxisIn Undervoltage
7 Instruction Error Axis Settled Hall Sensor A
8 Disable Motor Mode Hall Sensor B
9 Overtemperature Fault Position Capture Hall Sensor C
0Ah Bus Voltage Fault In Motion
0Bh Commutation Error In Positive Limit
0Ch Current Foldback In Negative Limit
0Dh /Enable Input
0Eh Breakpoint 2 FaultOut
0Fh
C-Motion Magellan Programming Reference 93

94

2

SetBreakpoint D4h
GetBreakpoint D5h
Syntax SetBreakpoint axis breakpointID sourceAxis_action_trigger
GetBreakpoint axis breakpointID

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

breakpointID Breakpoint1 0
Breakpoint2 1

sourceAxis Axis1 0
Axis2 1
Axis3 2
Axis4 3

action None 0
Update 1
Abrupt Stop 2
Smooth Stop 3
— (Reserved) 4
Disable Position Loop & Higher Modules 5
Disable Current Loop & Higher Modules 6
Disable Motor Output & Higher Modules 7
Abrupt Stop with Position Error Clear 8

trigger None 0
Greater Or Equal Commanded Position 1
Lesser Or Equal Commanded Position 2
Greater Or Equal Actual Position 3
Lesser Or Equal Actual Position 4
Commanded Position Crossed 5
Actual Position Crossed 6
Time 7
Event Status 8
Activity Status 9
Signal Status Ah
Drive Status Bh

Packet
Structure

DC Brush Brushless DC Microstepping Pulse & Direction

SetBreakpoint
0 axis D4h

15 12 11 8 7 0

First data word
write 0 breakpointID

15 1 0

Second data word
write trigger action sourceAxis

15 8 7 4 3 0
C-Motion Magellan Programming Reference

2

SetBreakpoint (cont.) D4h
GetBreakpoint D5h
Packet
Structure
(cont.)

Description SetBreakpoint establishes a breakpoint for the specified axis to be triggered by a condition or event on
sourceAxis, which may be the same as or different from axis. Up to two concurrent breakpoints can be
set for each axis, each of which may have its own breakpoint type and comparison value. The
breakpointID field specifies which breakpoint the SetBreakpoint and GetBreakpoint commands will
address.

The six position breakpoints are threshold-triggered; the breakpoint occurs when the indicated value
reaches or crosses a threshold. The status breakpoints are level-triggered; the breakpoint occurs when a
specific bit or combination of bits in the indicated status register changes state. The time breakpoint is
triggered when the current time, which may be read using GetTime, is equal to the breakpoint value.
Thresholds and bit specifications are both set by the SetBreakpointValue instruction.

The action determines what the motion control IC does when the breakpoint occurs, as follows:

GetBreakpoint returns the trigger, action, and sourceAxis for the specified breakpoint (1 or 2) of the
indicated axis. When a breakpoint occurs, the trigger value will be reset to zero (0). The Commanded
Position Crossed and the Actual Position Crossed triggers are converted to one of the position trigger types
1–4, depending on the current position when the command is issued.

Restrictions Always load the breakpoint comparison value (SetBreakpointValue command) before setting a new
breakpoint condition (SetBreakpoint command). Failure to do so will likely result in unexpected
behavior.

Breakpoint trigger options may be limited depending on the resources of the sourceAxis. See the product
user guide.

GetBreakpoint
0 axis D5h

15 12 11 8 7 0

First data word
write 0 breakpointID

15 1 0

Second data word
read trigger action sourceAxis

15 8 7 4 3 0

Action Description
None No action
Update Transfer the double buffered registers specified by the Breakpoint Update

Mask into the active registers.
Abrupt Stop Causes an instantaneous halt of the trajectory generator. Trajectory

velocity is zeroed.
Smooth Stop Causes a smooth stop to occur at the active deceleration rate.
Abrupt Stop with Position
Error Clear

Abrupt stop of the trajectory, and additionally zero the position error to
the servo.

Disable Position Loop &
Higher Modules

Disables Trajectory generator and position loop modules.

Disable Current Loop &
Higher Modules

Disables Trajectory generator, position loop, and current loop modules.

Disable Motor Output &
Higher Modules

Disables all modules, including the motor output.
C-Motion Magellan Programming Reference 95

96

2

SetBreakpoint (cont.) D4h
GetBreakpoint D5h
C-Motion API PMDresult PMDSetBreakpoint(PMDAxisInterface axis_intf,
PMDuint16 breakpointID, PMDAxis sourceAxis,
PMDuint8 action, PMDuint8 trigger)

PMDresult PMDGetBreakpoint(PMDAxisInterface axis_intf,
PMDuint16 breakpointID, PMDAxis* sourceAxis,
PMDuint8* action, PMDuint8* trigger)

VB-Motion API MagellanAxis.BreakpointSet([in] breakpointID,
[in] sourceAxis,
[in] action,
[in] trigger)

MagellanAxis.BreakpointGet([in] breakpointID,
[out] sourceAxis,
[out] action,
[out] trigger)

see Set/GetBreakpointValue (p. 99), Set/GetBreakpointUpdateMask (p. 97)
C-Motion Magellan Programming Reference

2

SetBreakpointUpdateMask 32h
GetBreakpointUpdateMask 33h
Syntax SetBreakpointUpdateMask axis breakPointID mask
GetBreakpointUpdateMask axis breakPointID

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

breakpointID Breakpoint1 0
Breakpoint2 1

Type Scaling
mask unsigned 16 bit bitmask

Packet
Structure

Description SetBreakpointUpdateMask configures what loops are updated upon the update action of a breakpoint.
If the bitmask for a given loop is set in the mask, the operating parameters for that loop will be updated
from the buffered values when the breakpoint is hit, and update is the breakpoint action. Each
breakpoint has its own update mask. The bitmask encoding is given below.

For example, if the update mask for breakpoint 1 is set to hexadecimal 0001h, and the action for
breakpoint 1 is set to update, the trajectory for the given axis will be updated from its buffered
parameters when breakpoint 1 is hit.

DC Brush Brushless DC Microstepping Pulse & Direction

SetBreakpointUpdateMask
0 axis 32h

15 12 11 8 7 0

First data word
write 0 breakpointID

15 1 0

Second data word
write mask

15 0

GetBreakpointUpdateMask
0 axis 33h

15 12 11 8 7 0

First data word
write 0 breakpointID

15 1 0

Second data word
read mask

15 0

Name Bit(s) Description
Trajectory 0 Set to 1 to update trajectory from buffered parameters.
Position Loop 1 Set to 1 to update position loop from buffered parameters.
— 2 Reserved
Current Loop 3 Set to 1 to update current loop from buffered parameters.
— 4–15 Reserved
C-Motion Magellan Programming Reference 97

98

2

SetBreakpointUpdateMask (cont.) 32h
GetBreakpointUpdateMask 33h
Description
(cont.)

The Current Loop bit applies regardless of the active current control mode. When it is set, a
breakpoint action of update will update either the active FOC parameters or the active digital
current loop parameters, depending on which Current Control mode is active.

GetBreakpointUpdateMask gets the update mask for the indicated breakpoint.

Restrictions The Current Loop bit is only valid for products that include a current loop.

C-Motion API PMDresult PMDSetBreakpointUpdateMask(PMDAxisInterface axis_intf,
 PMDuint16 breakPointID,
PMDuint16 mask)

PMDresult PMDGetBreakpointUpdateMask(PMDAxisInterface axis_intf,
 PMDuint16 breakPointID,
PMDuint16* mask)

VB-Motion API Dim mask as Short
MagellanAxis.BreakpointUpdateMask(breakpointID) = mask
mask = MagellanAxis.BreakpointUpdateMask(breakpointID)

see Set/GetBreakpoint (p. 94), Set/GetUpdateMask (p. 211)
C-Motion Magellan Programming Reference

2

SetBreakpointValue D6h
GetBreakpointValue D7h
Syntax SetBreakpointValue axis breakpointID value
GetBreakpointValue axis breakpointID

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

breakpointID Breakpoint1 0
Breakpoint2 1

value (see below)

Packet
Structure

Description SetBreakpointValue sets the breakpoint comparison value for the specified axis. For the position
breakpoints, this is a threshold comparison value. For the time breakpoint it is an equality comparison
value.

DC Brush Brushless DC Microstepping Pulse & Direction

SetBreakpointValue
0 axis D6h

15 12 11 8 7 0

First data word
write 0 breakpointID

15 1 0

Second data word
write value (high-order part)

31 16

Third data word
write value (low-order part)

15 0

GetBreakpointValue
0 axis D7h

15 12 11 8 7 0

First data word
write 0 breakpointID

15 1 0

Second data word
read value (high-order part)

31 16

Third data word
read value (low-order part)

15 0
C-Motion Magellan Programming Reference 99

100

2

SetBreakpointValue (cont.) D6h
GetBreakpointValue D7h
Description
(cont.)

The value parameter is interpreted according to the trigger condition for the selected breakpoint;
see SetBreakpoint (p. 94). The data format for each trigger condition is as follows:

For level-triggered breakpoints, the high-order part of value is the selection mask, and the low-order
word is the sense mask. For each selection bit that is set to 1, the corresponding bit of the specified
status register is conditioned to cause a breakpoint when it changes state. The sense mask bit
determines which state causes the break. If it is 1, the corresponding status register bit will cause a
break when it is set to 1. If it is 0, the status register bit will cause a break when it is set to 0.

For example, assume it is desired that the breakpoint type will be set to Event Status and that a
breakpoint should be recognized whenever the motion complete bit (bit 0 of Event Status register)
is set to 1, or the commutation error bit (bit 11 of Event Status register) is set to 0. In this situation
the high and low words for value would be high word: 0801h and low word: 0001h.

GetBreakpointValue returns the breakpoint value for the specified breakpointID.

Two completely separate breakpoints are supported, each of which may have its own breakpoint type
and comparison value. The breakpointID field specifies which breakpoint the SetBreakpointValue
and GetBreakpointValue commands will address.

Restrictions Always load the breakpoint comparison value (SetBreakpointValue command) before setting a
new breakpoint condition (SetBreakpoint command). Failure to do so will likely result in
unexpected behavior.

Depending on the product features, not all bits of all registers are supported. See the product user
guide.

C-Motion API PMDresult PMDSetBreakpointValue(PMDAxisInterface axis_intf,
PMDuint16 breakpointID,
PMDint32 value)

PMDresult PMDGetBreakpointValue(PMDAxisInterface axis_intf,
PMDuint16 breakpointID,
PMDint32* value)

VB-Motion API MagellanAxis.BreakpointValueSet([in] breakpointID, [in] value)
MagellanAxis.BreakpointValueGet([in] breakpointID, [out] value)

see Set/GetBreakpoint (p. 94)

Breakpoint Trigger Value Type Range Units
Greater Or Equal Commanded Position signed 32-bit –231 to 231–1 counts

Lesser Or Equal Commanded Position signed 32-bit –231 to 231–1 counts

Greater Or Equal Actual Position signed 32-bit –231 to 231–1 counts

Lesser Or Equal Actual Position signed 32-bit –231 to 231–1 counts

Commanded Position Crossed signed 32-bit –231 to 231–1 counts

Actual Position Crossed signed 32-bit –231 to 231–1 counts

Time unsigned 32-bit 0 to 232–1 cycles

Event Status 2 word mask - boolean status values
Activity Status 2 word mask - boolean status values
Signal Status 2 word mask - boolean status values
Drive Status 2 word mask - boolean status values
C-Motion Magellan Programming Reference

2

SetBufferLength C2h
GetBufferLength C3h
Syntax SetBufferLength bufferID length
GetBufferLength bufferID

Motor Types

Arguments Name Type Range
bufferID unsigned 16 bits 0 to 31
length unsigned 32 bits 1 to 230 – 1

Packet
Structure

Description SetBufferLength sets the length, in numbers of 32-bit elements, of the buffer in the memory block
identified by bufferID. For buffers pointing to non-volatile RAM, the length should be specified in 16-
bit words.

Note: The SetBufferLength command resets the buffers read and write indexes to 0.

The GetBufferLength command returns the length of the specified buffer.

Restrictions The buffer length plus the buffer start address cannot exceed the memory size of the product. See the
product user guide.

When the buffer start is changed in such a way that the word size changes, the buffer length will change.
An error may result if the new buffer start plus the new buffer length is outside the legal range. If the
current state of the buffer is not known it is safer to set the buffer length to zero before changing the
buffer start.

C-Motion API PMDresult PMDSetBufferLength(PMDAxisInterface axis_intf,
 PMDuint16 bufferID, PMDuint32 length)

PMDresult PMDGetBufferLength(PMDAxisInterface axis_intf,
 PMDuint16 bufferID, PMDuint32* length)

DC Brush Brushless DC Microstepping Pulse & Direction

SetBufferLength
0 C2h

15 8 7 0

First data word
write 0 bufferID

15 5 4 0

Second data word
write length (high-order part)

31 16

Third data word
write length (low-order part)

15 0

GetBufferLength
0 C3h

15 8 7 0

First data word
write 0 bufferID

15 5 4 0

Second data word
read length (high-order part)

31 16

Third data word
read length (low-order part)

15 0
C-Motion Magellan Programming Reference 101

102

2

SetBufferLength (cont.) C2h
GetBufferLength C3h
VB-Motion API Dim length as Long
MagellanObject.BufferLength(bufferID) = length
length = MagellanObject.BufferLength(bufferID)

see Set/GetBufferReadIndex (p. 103), Set/GetBufferStart (p. 104), Set/GetBufferWriteIndex (p.
106)
C-Motion Magellan Programming Reference

2

SetBufferReadIndex C6h
GetBufferReadIndex C7h
Syntax SetBufferReadIndex bufferID index
GetBufferReadIndex bufferID

Motor Types

Arguments Name Type Range Scaling Units
bufferID unsigned 16 bits 0 to 31 unity -
index unsigned 32 bits 0 to buffer unity double words

length - 1

Packet
Structure

Description SetBufferReadIndex sets the address of the read index for the specified bufferID. For buffers pointing
to non-volatile RAM, the read index should be specified in 16-bit words.

GetBufferReadIndex returns the current read index for the specified bufferID.

Restrictions If the read index is set to an address beyond the length of the buffer, the command will not be executed
and will return host I/O error code 7, buffer bound exceeded.

C-Motion API PMDresult PMDSetBufferReadIndex(PMDAxisInterface axis_intf,
PMDuint16 bufferID,
PMDuint32 index)

PMDresult PMDGetBufferReadIndex(PMDAxisInterface axis_intf,
PMDuint16 bufferID,
PMDuint32* index)

VB-Motion API Dim index as Long
MagellanObject.BufferReadIndex(bufferID) = index
index = MagellanObject.BufferReadIndex(bufferID)

see Set/GetBufferLength (p. 101), Set/GetBufferStart (p. 104), Set/GetBufferWriteIndex (p. 106)

DC Brush Brushless DC Microstepping Pulse & Direction

SetBufferReadIndex
0 C6h

15 8 7 0

First data word
write 0 bufferID

15 5 4 0

Second data word
write index (high-order part)

31 16

Third data word
write index (low-order part)

15 0

GetBufferReadIndex
0 C7h

15 8 7 0

First data word
write 0 bufferID

15 5 4 0

Second data word
read index (high-order part)

31 16

Third data word
read index (low-order part)

15 0
C-Motion Magellan Programming Reference 103

104

2

SetBufferStart C0h
GetBufferStart C1h
Syntax SetBufferStart bufferID address
GetBufferStart bufferID

Motor Types

Arguments Name Type Range Units
bufferID unsigned 16 bits 0 to 31 -
address unsigned 32 bits 0 to 231 – 1 double words

Packet
Structure

Description SetBufferStart sets the starting address for the specified buffer, in double-words, of the buffer in
the memory block identified by bufferID. In products with non-volatile RAM (NVRAM), the
address range beginning at 20000000h is used for NVRAM. Buffers pointing to NVRAM use a
word size of 16 bits, unlike buffers pointing to DRAM, which use a word size of 32 bits. For
NVRAM buffers the start should be specified in 16-bit words pluse 20000000h.

Note: The SetBufferStart command resets the buffers read and write indexes to 0.

The GetBufferStart command returns the starting address for the specified bufferID.

Restrictions The buffer start address plus the buffer length cannot exceed the memory size of the product. See
the product user guide.

When the buffer start is changed in such a way that the word size changes, the buffer length will
change. An error may result if the new buffer start plus the new buffer length is outside the legal
range. If the current state of the buffer is not known it is safer to set the buffer length to zero before
changing the buffer start.

DC Brush Brushless DC Microstepping Pulse & Direction

SetBufferStart
0 C0h

15 8 7 0

First data word
write 0 bufferID

15 5 4 0

Second data word
write address (high-order part)

31 16

Third data word
write address (low-order part)

15 0

GetBufferStart
0 C1h

15 8 7 0

First data word
write 0 bufferID

15 5 4 0

Second data word
read address (high-order part)

31 16

Third data word
read address (low-order part)

15 0
C-Motion Magellan Programming Reference

2

SetBufferStart (cont.) C0h
GetBufferStart C1h
C-Motion API PMDresult PMDSetBufferStart(PMDAxisInterface axis_intf, PMDuint16 bufferID,
 PMDuint32 address)

PMDresult PMDGetBufferStart(PMDAxisInterface axis_intf, PMDuint16 bufferID,
 PMDuint32* address)

VB-Motion API Dim address as Long
MagellanObject.BufferStart(bufferID) = address
address = MagellanObject.BufferStart(bufferID)

see Set/GetBufferLength (p. 101), Set/GetBufferReadIndex (p. 103), Set/GetBufferWriteIndex (p. 106)
C-Motion Magellan Programming Reference 105

106

2

SetBufferWriteIndex C4h
GetBufferWriteIndex C5h
Syntax SetBufferWriteIndex bufferID index
GetBufferWriteIndex bufferID

Motor Types

Arguments Name Type Range Scaling Units
bufferID unsigned 16 bits 0 to 31 unity -
index unsigned 32 bits 0 to buffer unity double words

length - 1

Packet
Structure

Description SetBufferWriteIndex sets the write index for the specified bufferID. For buffers pointing to non-
volatile RAM, the write index should be specified in 16-bit words.

GetBufferWriteIndex returns the write index for the specified bufferID.

Restrictions

C-Motion API PMDresult PMDSetBufferWriteIndex(PMDAxisInterface axis_intf,
 PMDuint16 bufferID, PMDuint32 index);

PMDresult PMDGetBufferWriteIndex(PMDAxisInterface axis_intf,
 PMDuint16 bufferID, PMDuint32* index)

VB-Motion API Dim index as Long
MagellanObject.BufferWriteIndex(bufferID) = index
index = MagellanObject.BufferWriteIndex(bufferID)

see Set/GetBufferLength (p. 101), Set/GetBufferReadIndex (p. 103), Set/GetBufferStart (p. 104)

DC Brush Brushless DC Microstepping Pulse & Direction

SetBufferWriteIndex
0 C4h

15 8 7 0

First data word
write 0 bufferID

15 4 3 0

Second data word
write index (high-order part)

31 16

Third data word
write index (low-order part)

15 0

GetBufferWriteIndex
0 C5h

15 8 7 0

First data word
write 0 bufferID

15 4 3 0

Second data word
read index (high-order part)

31 16

Third data word
read index (low-order part)

15 0
C-Motion Magellan Programming Reference

2

SetCANMode 12h
GetCANMode 15h
Syntax SetCANMode mode
GetCANMode

Motor Types

Arguments Name Type Encoding
mode unsigned 16 bits see below

Packet
Structure

Description SetCANMode sets the CAN 2.0B communication parameters for the motion control IC. After
completion of this command, the motion control IC will respond to a CAN receive message addressed
to 600h + nodeID. CAN responses are sent to 580h + nodeID. The CAN transmission rate will be as
specified in the transmission rate parameter. Note that when this command is used to change to a new
nodeID, the command response (for this command) will be sent to the new nodeID. The following table
shows the encoding of the data used by this command.

Restrictions

C-Motion API

VB-Motion API

PMDresult PMDSetCANMode(PMDAxisHandle axis_handle, PMDuint8 nodeID,
PMDuint8 transmission_rate)

PMDresult PMDGetCANMode(PMDAxisHandle axis_handle, PMDuint8* nodeID,
 PMDuint8* transmission_rate)

CommunicationCAN.CANModeSet([in] nodeID, [in] transmission_rate)

see

DC Brush Brushless DC Microstepping Pulse & Direction

SetCANMode
0 12h

15 8 7 0

Data
write transmission rate 0 nodeID

15 13 12 7 6 0

GetCANMode
0 15h

15 8 7 0

Data
read transmission rate 0 nodeID

15 13 12 7 6 0

Bits Name Instance Encoding
0–6 CAN NodeID Address 0

Address 1
...
Address 127

0
1
...
127

7–12 — (Reserved)
13–15 Transmission Rate 1,000,000 baud

800,000
500,000
250,000
125,000
50,000
20,000
10,000

0
1
2
3
4
5
6
7

C-Motion Magellan Programming Reference 107

108

2

SetCaptureSource D8h
GetCaptureSource D9h
Syntax SetCaptureSource axis source
GetCaptureSource axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

source Index 0
Home 1
High Speed Capture 2

Packet
Structure

Description SetCaptureSource determines which of three signals—Index, Home, or High Speed Capture—is
used to trigger the capture of the actual axis position for the specified axis. GetCaptureSource
returns the capture signal source for the selected axis.

Restrictions High Speed Capture is not available as a capture source in all products. See the product user guide.

C-Motion API PMDresult PMDSetCaptureSource(PMDAxisInterface axis_intf,
PMDuint16 source)

PMDresult PMDGetCaptureSource(PMDAxisInterface axis_intf,
PMDuint16* source)

VB-Motion API Dim source as Short
MagellanAxis.CaptureSource = source
source = MagellanAxis.CaptureSource

see GetCaptureValue (p. 29)

DC Brush Brushless DC Microstepping Pulse & Direction

SetCaptureSource
0 axis D8h

15 12 11 8 7 0

Data
write 0 source

15 3 2 0

GetCaptureSource
0 axis D9h

15 12 11 8 7 0

Data
read 0 source

15 3 2 0
C-Motion Magellan Programming Reference

2

SetCommutationMode E2h
GetCommutationMode E3h
Syntax SetCommutationMode axis mode
GetCommutationMode axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

mode Sinusoidal 0
Hall-based 1

Packet
Structure

Description SetCommutationMode sets the phase commutation mode for the specified axis.

When set to Sinusoidal, as the motor turns, the encoder input signals are used to calculate the phase
angle. This angle is in turn used to generate sinusoidally varying outputs to each motor winding.

When set to Hall-based, the Hall effect sensor inputs are used to commutate the motor windings using
a “six-step” or “trapezoidal” waveform method.

When using FOC current control, this command is used to define the method used for motor phase
determination.

GetCommutationMode returns the value of the commutation mode.

Restrictions

C-Motion API PMDresult PMDSetCommutationMode(PMDAxisInterface axis_intf,
PMDuint16 mode)

PMDresult PMDGetCommutationMode(PMDAxisInterface axis_intf,
PMDuint16* mode)

VB-Motion API Dim mode as Short
MagellanAxis.CommutationMode = mode
mode = MagellanAxis.CommutationMode

see Set/GetPhasePrescale (p. 171), Set/GetPhaseCounts (p. 164)

Brushless DC

SetCommutationMode
0 axis E2h

15 12 11 8 7 0

Data
write 0 mode

31 1 0

GetCommutationMode
0 axis E3h

15 12 11 8 7 0

Data
read 0 mode

31 1 0
C-Motion Magellan Programming Reference 109

110

2

SetCommutationParameter 63h
GetCommutationParameter 64h
Syntax SetCommutationParameter axis parameter value
GetCommutationParameter axis parameter value

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

parameter phase counts 0
phase angle 1
phase offset 2
phase denominator3

Type Range Scaling/Units

value unsigned 32-bits 0 to 231-1 counts

Packet
Structure

Description SetCommutationParameter is used to set several 32-bit quantities used for motor commutation
or microstep generation.

For brushless DC motors, the PhaseCounts and PhaseDenominator registers specify the number
of encoder counts per electrical revolution. If this number is an integer, PhaseDenominator may
be left at its default value of 1, and PhaseCounts set to the counts per electrical revolution.
Alternatively, PhaseDenominator may be set to the number of motor pole pairs, and PhaseCounts
to the number of encoder counts per mechanical revolution.

Brushless DC Microstepping

SetCommutationParameter
0 axis 33h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

write parameter
15 0

write value (high-order part)
15 0

write value (low-order part)
15 0

GetCommutationParameter
0 axis 64h

15 12 11 8 7 0

write parameter
15 0

read value (high-order part)
15 0

read value (low-order part)
15 0
C-Motion Magellan Programming Reference

2

SetCommutationParameter (cont.) 63h
GetCommutationParameter 64h
For example, for a six pole motor using an encoder with 1024 counts per revolution there are 341 1/3
encoder counts per electrical revolution, PhaseCounts may be set to 1024, and PhaseDenominator to 3.

PhaseAngle and PhaseOffset are both values that may be set by command but are normally altered by
the commutation process. PhaseAngle gives the current position in the electrical cycle; to convert to
degrees divide PhaseAngle by PhaseCounts and multiply by 360. For example, for the motor in the
example above, a PhaseAngle of 256 corresponds to an angle of (256/1024)*360 = 90 degrees.

PhaseOffset is the non-negative offset from the index mark to the internal zero phase angle. Setting
PhaseOffset has no immediate effect, but, if phase correction is enabled, sets the phase angle when an
index pulse is detected. The default value of PhaseOffset is -1, which means that at the first index pulse
the PhaseOffset should be set equal to the current phase angle. If phase initialization is correctly set up
it is normally not necessary to set PhaseOffset.PhaseOffset may be read to determine whether an index
pulse has been detected since phase initialization.

Setting the PhaseAngle has the side-effect of setting PhaseOffset to the default value of -1.

The maximum value for PhaseOffset is 231- 1, any value with bit 31 set is interpreted as negative, and
equivalent to -1. If set by command PhaseOffset should be less than PhaseCounts, but that condition
is not checked.

For microstep motors PhaseCounts sets the number of microsteps per electrical revolution, and
PhaseAngle the current position in the electrical cycle. Each electrical revolution is four full steps. The
maximum supported value is 1024 microsteps per electrical revolution, or 256 microsteps per full step.
The PhaseDenominator parameter is ignored for microstep motors.

For microstep motors PhaseOffset, which is zero by default, specifies an offset to be added to
PhaseAngle to produce the current electrical phase angle. 08000h corresponds to 360 degrees for
PhaseOffset.

To obtain traditional full-stepping both phases are always driven at full output, either positive or
negative, set PhaseCounts to 4, and set Offset to 01000h or 45 degrees.

The minimum value for PhaseCounts, for either step or BLDC motors, is 4. The minimum value for
PhaseDenominator is 1, and the maximum possible value is 32767. For proper commutation
PhaseCounts must be greater than PhaseDenominator, although that condition is not checked.

Restrictions Not all Magellan products support these commands, or any 32-bit interface to the commutation
parameters. The older 16-bit interface uses the commands SetPhaseCounts, SetPhaseAngle,
SetPhaseOffset, and SetPhasePrescale. Products supporting the 32-bit interface may not support
SetPhasePrescale.

It is possible to specify commutation parameters using the 32-bit interface that may not be represented
using the 16-bit interface. In this case, if a 16-bit get command is invoked then a value representation
error (37) will be raised. It is recommended that the 16-bit and 32-bit interfaces not be used together.

Errors Invalid Parameter: Unrecognized parameter or value out of bounds.
C-Motion Magellan Programming Reference 111

112

2

SetCommutationParameter (cont.) 63h
GetCommutationParameter 64h
C-Motion API PMDresult PMDGetCommutationParameter (PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDint32* value);

PMDresult PMDSetCommutationParameter (PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDint32 value);

Script API GetCommutationParameter parameter
SetCommutationParameter paramter value

C# API Int32 value = PMDAxis.GetCommutationParameter(PMDCommutationParameter
parameter);

PMDAxis.SetCommutationParameter(PMDCommutationParameter parameter,
Int32 value);

Visual Basic
API

Int32 value = PMDAxis.GetCommutationParameter(ByVal parameter
As PMDCommutationParame-

ter)
PMDAxis.SetCommutationParameter(ByVal parameter

As PMDCommutationParameter,
ByVal value As Int32)

see Set/GetPhaseAngle (p. 161), Set/GetPhaseCorrectionMode (p. 163), Set/GetPhaseCounts (p.
164), Set/GetPhaseOffset (p. 168), Set/GetPhasePrescale (p. 171)
C-Motion Magellan Programming Reference

2

SetCurrent 5Eh
GetCurrent 5Fh
Syntax SetCurrent axis parameter value
GetCurrent axis parameter

Motor Types

Arguments Name Instance Encoding Units
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

parameter Holding Motor Limit 0 %
Holding Delay 1 trajectory generator cycles
Drive Current 2 %

Type Range/Scaling
value unsigned 16-bit see below

Packet
Structure

Description SetCurrent configures some aspects of step motor current control. The Holding Motor Limit is the
maximum commanded current when in holding. The Holding Delay is the number of cycles to wait after
end of move before going into holding. The Drive Current is the commanded current when not in
holding.

The Holding Motor Limit is in units of % maximum current, with scaling of 100/215. Its range is 0 to

215–1. It defines the value to which the current will be limited when in the holding state. This limit is
applied as an additional limit to the motor limit, so the lower of the two will affect the true limit.

The Holding Delay is in units of trajectory generator cycles, with unity scaling and a range of 0 to 215–2. It
defines the wait time between ending a move and switching to the holding current limit. That is, there will
be a delay of Holding Delay trajectory cycles after Motion Complete, after which the In Holding bit in the
Drive Status register will be set, and the motor command will be limited by the Holding Motor Limit. When

the Holding Delay is set to 215–1 (its default), the axis will never go into holding current.

Microstepping Pulse & Direction

SetCurrent
0 axis 5Eh

15 12 11 8 7 0

First Data Word
write parameter

15 0

Second Data Word
write value

15 0

GetCurrent
0 axis 5Fh

15 12 11 8 7 0

First Data Word
write parameter

15 0

Second Data Word
read value

15 0
C-Motion Magellan Programming Reference 113

114

2

SetCurrent (cont.) 5Eh
GetCurrent 5Fh
Description
(cont.)

The Drive Current is in units of % maximum current, with a scaling of 100/215. Its range is 0 to

215- 1. It defines the value used for the active motor command when driving a step motor, that is,
when not in a holding state. This setting is used only by Atlas amplifiers driving step motors. It is not
used by ION or MC58113, which use SetMotorCommand instead.

GetCurrent gets the indicated holding current parameter.

These commands were documented as SetHoldingCurrent and GetHoldingCurrent in previous
versions of this manual. The name has been changed for clarity, but the command remains
backwards compatible.

Atlas When setting Holding Current or Drive Current this command will be relayed to an attached Atlas
amplifier.

Restrictions For pulse & direction motor types, only the Holding Delay is used. It delays the assertion of the At
Rest output by the indicated number of cycles after a move is complete.

C-Motion API PMDresult PMDSetCurrent (PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDuint16 value)

PMDresult PMDGetCurrent (PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDuint16* value)

VB-Motion API MagellanAxis.CurrentSet([in] parameter, [in] value)
MagellanAxis.CurrentGet([in] parameter, [out] value)

see GetDriveStatus (p. 38), Set/GetSampleTime (p. 180), SetMotorCommand (p. 151)
C-Motion Magellan Programming Reference

2

SetCurrentControlMode buffered 43h
GetCurrentControlMode 44h
Syntax SetCurrentControlMode axis mode
GetCurrentControlMode axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

mode Phase A /B Current Loops 0
FOC 1
Third leg floating 2

Packet
Structure

Description SetCurrentControlMode configures the axis to use either the Phase A/B method or the FOC method
for current control.

For three-phase brushless DC motors some products also support the third leg floating method, in
which only two of the three motor terminals is actively driven at any time, the remaining terminal being
left floating. This method may be appropriate for motors intended for commutation by Hall effect
sensors.

GetCurrentControlMode gets the buffered current loop mode for the indicated axis.

Atlas These commands will be relayed to an attached Atlas amplifier. Atlas does not buffer the current control
mode.

Restrictions This command is only available on products that include a digital current loop.

SetCurrentControlMode is a buffered command. It will not take effect until an update is done on the
current loop (through Update command, MultiUpdate command, or update action on breakpoint). The
value read by GetCurrentControlMode is the buffered setting.

C-Motion API PMDresult PMDSetCurrentControlMode(PMDAxisInterface axis_intf,
PMDuint16 mode)

PMDresult PMDGetCurrentControlMode(PMDAxisInterface axis_intf,
PMDuint16* mode)

Brushless DC Microstepping

SetCurrentControlMode
0 axis 43h

15 12 11 8 7 0

First data word
write mode

15 0

GetCurrentControlMode
0 axis 44h

15 12 11 8 7 0

First data word
read mode

15 0
C-Motion Magellan Programming Reference 115

116

2

SetCurrentControlMode (cont.) buffered 43h
GetCurrentControlMode 44h
VB-Motion API Dim mode as Short
MagellanAxis.CurrentControlMode = mode
mode = MagellanAxis.CurrentControlMode

see Update (p. 215), Set/GetUpdateMask (p. 211), MultiUpdate (p. 65),
Set/GetBreakpointUpdateMask (p. 97), GetFOCValue (p. 44), Get/SetFOC (p. 141),
GetCurrentLoopValue (p. 34), Get/SetCurrentLoop (p. 120)
C-Motion Magellan Programming Reference

2

SetCurrentFoldback 41h
GetCurrentFoldback 42h
Syntax SetCurrentFoldback axis parameter value
GetCurrentFoldback axis parameter

Motor Types

Arguments Name Instance Encoding Units
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

parameter Continuous Current Limit 0 A
Energy Limit 1 A2s

Type Range/Scaling
value unsigned 16-bit see below

Packet
Structure

Description SetCurrentFoldback is used to set various I2t foldback-related parameters. Two parameters can be set,
the Continuous Current Limit, and the Energy Limit. The units of Continuous Current Limit are

convertible to milliAmps, and represent percentage of maximum peak current, with scaling of 100/215.
The range is from 0% to the factory default continuous current limit setting.

The maximum current is the largest current that can be represented rather than the maximum that can
be sourced or sensed. The maximum current can be calculated via the formula

Max = Current Scaling * 0x8000

For example for the high power Altas, using the scale factor from Section 3.11, “Atlas Conversion
Factors,” of the Atlas Complete Technical Reference the maximum current = 1.526mA * 0x8000 = 50A.

When using this command with the ION drive, check the ION Digital Drive User Manual for exact scaling
values. Different drives have different scaling values and default limit settings.

DC Brush Brushless DC Microstepping

SetCurrentFoldback
0 axis 41h

15 12 11 8 7 0

First data word
write parameter

15 0

Second data word
write value

15 0

GetCurrentFoldback
0 axis 42h

15 12 11 8 7 0

First data word
write parameter

15 0

Second data word
read value

15 0
C-Motion Magellan Programming Reference 117

118

2

SetCurrentFoldback (cont.) 41h
GetCurrentFoldback 42h
Description
(cont.)

When using this command with the MC58113, the current scaling depends on the circuit used to
sense current, the current limit range extends to 100%.

The units of Energy Limit are convertible to Amp2s. The range is from 0% to the factory default
energy limit setting. When using this command with the ION drive, check the ION Digital Drive User
Manual for exact scaling values. For Atlas, use the Atlas Complete Technical Reference. Different drives
have different scaling values and default limit settings.

For MC58113, the time unit is one current control period of 51.2 µs, and an additional scaling factor

of 231 is applied. If the current conversion factor is k A/count, then the energy conversion factor is:

k2 A2 * 51.2e-6 s * 231

For example, for a current conversion factor of 1.526 mA/count, the energy conversion factor is:

1.526e-3 A * 1.526e-3 A * 51.2e-6 s * 231 = 0.2560 A2s/count
The Continuous Current Limit is used by the current foldback algorithm. When the current output

of the drive exceeds this setting, accumulation of the I2 energy above this setting begins. Once the

accumulated excess I2 energy exceeds the value specified by the Energy Limit parameter, a current
foldback condition exists and the commanded current will be limited to the specified Continuous
Current Limit. When this occurs, the Current Foldback bit in the Event Status and Drive Status

registers will be set. When the accumulated I2 energy above the Continuous Current Limit drops to
zero (0), the limit is removed, and the Current Foldback bit in the Drive Status register is cleared.

SetEventAction can be used to configure a change in operating mode when current foldback
occurs. Doing this does not interfere with the basic operation of Current Foldback described above.
If this is done, the Current Foldback bit in the Event Status register must be cleared prior to
restoring the operating mode, regardless of whether the system is in current foldback or not.

When current control is not active, a current foldback event always causes a change to the disabled
state (all loops and motor output are disabled), regardless of the programmed Event Action.
Changing the operating mode from disabled requires clearing of the Current Foldback bit in Event
Status.

GetCurrentFoldback gets the maximum continuous current setting.

Atlas These commands will be relayed to an attached Atlas amplifier.

Restrictions This command is only available on products that support digital current control.

Values of Continuous Current Limit greater than the factory setting for maximum continuous current
are not allowed.

C-Motion API PMDresult PMDSetCurrentFoldback(PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDuint16 value)

PMDresult PMDGetCurrentFoldback(PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDuint16* value)

VB-Motion API MagellanAxis.CurrentFoldbackSet([in] parameter, [in] value)
MagellanAxis.CurrentFoldbackGet([in] parameter, [out] value)
C-Motion Magellan Programming Reference

2

SetCurrentFoldback (cont.) 41h
GetCurrentFoldback 42h
see GetActiveOperatingMode (p. 24), GetEventStatus (p. 42), GetDriveStatus (p. 38),
ResetEventStatus (p. 80), RestoreOperatingMode (p. 82), Set/GetEventAction (p. 135)
C-Motion Magellan Programming Reference 119

120

2

SetCurrentLoop buffered 73h
GetCurrentLoop 74h
Syntax SetCurrentLoop axis phase_parameter value
GetCurrentLoop axis phase_parameter

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

phase Phase A 0
Phase B 1
Both (A and B) 2

parameter Proportional Gain (KpCurrent) 0
Integrator Gain (KiCurrent) 1
Integrator Sum Limit (ILimitCurrent) 2

Type Range/Scaling
value unsigned 16 bits see below

Packet
Structure

Description Set/GetCurrentLoop is used to configure the operating parameters of the Phase A/B PI digital current
loops. See the product user guide for more information on how each parameter is used in the current loop
processing. The value written/read is always an unsigned 16-bit value, with the parameter-specific scaling
shown below:

A setting of 64 for KpCurrent corresponds to a gain of 1. That is, an error signal of 30% maximum
current will cause the proportional contribution of the current loop output to be 30% of maximum
output. Similarly, setting KiCurrent to 256 gives it a gain of 1, and the value of the integrator sum
would become the integrator contribution to the output. The units of time for the integrator sum
are cycles.

DC Brush Brushless DC Microstepping

SetCurrentLoop
0 axis 73h

15 12 11 8 7 0

First data word
write 0 phase parameter

15 12 11 8 7 0

Second data word
write value

15 0

GetCurrentLoop
0 axis 74h

15 12 11 8 7 0

First data word
write 0 phase parameter

15 12 11 8 7 0

Second data word
read value

15 0

Parameter Range Scaling Units
Proportional Gain (KpCurrent) 0 to 215–1 1/64 gain

Integer Gain (KiCurrent) 0 to 215–1 1/256 gain/cycles

Integrator Sum Limit (ILimitCurrent) 0 to 215–1 1/100 % current * cycles
C-Motion Magellan Programming Reference

2

SetCurrentLoop (cont.) buffered 73h
GetCurrentLoop 74h
Description
(cont.)

ILimitCurrent is used to limit the contribution of the integrator sum at the output. Its effect depends on
the value of KiCurrent. Setting ILimitCurrent to 1000 when KiCurrent is 10 means that the maximum

contribution to the output is 1000 x 10 = 10,000 out of 215 - 1 or approximately 30.5%

The phase argument can be used to set the operating parameters for the A and B loops independently.
In most cases, the A and B loops will not require different operating parameters, so SetCurrentLoop
can be used with a phase of 2, which sets both the A and B loops in a single API command. For
GetCurrentLoop, a phase of 2 is not valid.

Atlas These commands will be relayed to an attached Atlas amplifier.

Restrictions Set/GetCurrentLoop are buffered commands. All parameters set are buffered, and will not take effect
until an update is done on the current loop (through Update command, MultiUpdate command, or
update action on breakpoint). The values read by GetCurrentLoop are the buffered settings.

This command is only supported in products that include digital current control, and when the current
control mode is Phase A/B.

C-Motion API PMDresult PMDSetCurrentLoop(PMDAxisInterface axis_intf,
PMDuint8 phase,
PMDuint8 parameter,
PMDuint16 value)

PMDresult PMDGetCurrentLoop(PMDAxisInterface axis_intf,
PMDuint8 phase,
PMDuint8 parameter,
PMDuint16* value)

VB-Motion API MagellanAxis.CurrentLoopSet ([in] phase,
[in] parameter,
[in] value)

MagellanAxis.CurrentLoopGet ([in] phase,
[in] parameter,
[out] value)

see Update (p. 215), Set/GetUpdateMask (p. 211), MultiUpdate (p. 65),
Set/GetBreakpointUpdateMask (p. 97), GetCurrentLoopValue (p. 34),
Set/GetCurrentControlMode (p. 115)
C-Motion Magellan Programming Reference 121

122

2

SetDeceleration buffered 91h
GetDeceleration 92h
Syntax SetDeceleration axis deceleration
GetDeceleration axis

Motor Types
Arguments Name Instance Encoding

axis Axis1 0
Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
deceleration unsigned 32 bits 0 to 231–1 1/216 counts/cycle2

microsteps/cycle2

Packet
Structure

Description SetDeceleration loads the maximum deceleration buffer register for the specified axis.

GetDeceleration returns the value of the maximum deceleration buffer.

Scaling example: To load a value of 1.750 counts/cycle2 multiply by 65,536 (giving 114,688) and load the
resultant number as a 32-bit number, giving 0001 in the high word and C000h in the low word. Retrieved
numbers (GetDeceleration) must correspondingly be divided by 65,536 to convert to units of
counts/cycle2 or steps/cycle2

Restrictions This is a buffered command. The new value set will not take effect until the next Update or
MultiUpdate command is entered, with the Trajectory Update bit set in the update mask.

These commands are used with the Trapezoidal and Velocity Contouring profile modes. They are
not used with the Electronic Gear or S-curve profile mode.

Note: If deceleration is set to zero (0), then the value specified for acceleration (SetAcceleration)
will automatically be used to set the magnitude of deceleration.

C-Motion API PMDresult PMDSetDeceleration(PMDAxisInterface axis_intf,
 PMDuint32 deceleration)

PMDresult PMDGetDeceleration(PMDAxisInterface axis_intf,
 PMDuint32* deceleration)

VB-Motion API Dim deceleration as Long
MagellanAxis.Deceleration = deceleration
deceleration = MagellanAxis.Deceleration

see Set/GetAcceleration (p. 83), Set/GetPosition (p. 172), Set/GetVelocity (p. 213),
MultiUpdate (p. 65), Update (p. 215)

DC Brush Brushless DC Microstepping Pulse & Direction

SetDeceleration
0 axis 91h

15 12 11 8 7 0

First data word
write deceleration (high-order part)

31 16

Second data word
write deceleration (low-order part)

15 0

GetDeceleration
0 axis 92h

15 12 11 8 7 0

First data word
read deceleration (high-order part)

31 16

Second data word
read deceleration (low-order part)

15 0
C-Motion Magellan Programming Reference

2

SetDefault 89h
GetDefault 8Ah
Syntax SetDefault axis variable value
GetDefault axis variable

Motor Type

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

variable CanMode 0
SerialPortMode485 1

Type Range/Scaling
value 32 bits see below

Packet
Structure

Description SetDefault is used to override the reset default settings of system variables. When SetDefault is invoked
to change the reset default of a variable, it stores the value sent by the user in non-volatile memory. It
does not modify the value of the variable in active use. On subsequent system power cycles or resets,
this value will become the default for the selected variable.

The value for each variable is the value that would be used normally by the “Set/Get” command for that
variable. When configuring variables that are 16-bit values, the value should be sent as the low order part
of the 32-bit value.

The axis sent with Set/GetDefault may or may not be relevent, depending on whether the parameter is
an axis-specific parameter or not.

GetDefault gets the reset default value of the indicated variable from non-volatile memory.

DC Brush Brushless DC Microstepping Pulse & Direction

SetDefault
0 axis 89h

15 12 11 8 7 0

First data word
write variable

15 0

Second data word
write value (high-order part)

31 16

Third data word
write value (low-order part)

15 0

GetDefault
0 axis 8Ah

15 12 11 8 7 0

First data word
write variable

15 0

Second data word
read value (high-order part)

31 16

Third data word
read value (low-order part)

15 0
C-Motion Magellan Programming Reference 123

124

2

SetDefault (cont.) 89h
GetDefault 8Ah
Restrictions This command is only available in ION products.

The SetDefault command can only be executed when motor output is disabled (e.g., immediately
after power-up or reset).

C-Motion API PMDresult PMDSetDefault (PMDAxisInterface axis_intf,
 PMDuint16 variable,
 PMDuint32 value)

PMDresult PMDGetDefault (PMDAxisInterface axis_intf,
 PMDuint16 variable,
 PMDuint32* value)

VB-Motion API MagellanAxis.DefaultSet([in] variable, [in] value)
MagellanAxis.DefaultGet([in] variable, [out] value)

see Reset (p. 75)
C-Motion Magellan Programming Reference

2

SetDriveCommandMode 7Eh
GetDriveCommandMode 7Fh
Syntax SetDriveCommandMode mode
GetDriveCommandMode mode

Motor Type

Arguments Name Type Encoding
mode 16-bit unsigned see below

Packet
Structure

Description SetDriveCommandMode is used to change the command format for drive motor torque. Currently it
may be used to put an attached Atlas amplifier into pulse and direction input mode, by using a mode
value of 14h. After setting an Atlas amplifier to pulse and direction mode it will not be possible for
Magellan to communicate with it, except by electrically connecting the Magellan pulse and direction
outputs and changing the Magellan output mode. SetDriveCommandMode does not change Magellan
output mode.

GetDriveCommandMode returns the current Atlas command mode, see Atlas Digital Amplifier Complete
Technical Reference for more detail.

Atlas These commands are relayed to an attached Atlas amplifier.

C-Motion API PMDresult PMDSetDriveCommandMode(PMDAxisInterface axis_intf,
 PMDuint16 mode,

PMDresult PMDGetDriveCommandMode(PMDAxisInterface axis_intf,
 PMDuint16* mode)

VB-Motion API MagellanAxis.DriveCommandMode = mode
mode = MagellanAxis.DriveCommandMode

DC Brush Brushless DC Microstepping Pulse & Direction

SetDriveCommandMode
0 7Eh

15 8 7 0

write mode
15 0

GetDriveCommandMode
0 7Fh

15 8 7 0

read mode
15 0
C-Motion Magellan Programming Reference 125

126

2

SetDriveFaultParameter 62h
GetDriveFaultParameter 60h
Syntax SetDriveFaultParameter axis parameter value
GetDriveFaultParameter axis parameter

Motor Types

Arguments Name Instance Encoding Units
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

parameter Overvoltage Limit 0 V
Undervoltage Limit 1 V
Event Recovery Mode 2 N/A
Watchdog Limit 3 s
Temperature Limit 4 °C
Temperature Hysteresis 5 °C
 — (Reserved) 6
 — (Reserved) 7
Shunt voltage limit 8 V
Shunt duty 9 %
Bus current supply limit 10 A
Bus current return limit 11 A

Type Range Scaling
value unsigned 16 bits see below see below

Packet
Structure

Description SetDriveFaultParameter sets various drive operation limits. The particular limit set depends on
the parameter argument. When an operation limit is exceeded, motor output will be disabled and
either a Drive Exception or Overtemperature event will be raised, and a bit set in the Drive Fault
Status register to indicate the fault.

DC Brush Brushless DC Microstepping Pulse & Direction

SetDriveFaultParameter
0 axis 62h

15 12 11 8 7 0

First data word
write parameter

15 0

Second data word
write value

15 0

GetDriveFaultParameter
0 axis 60h

15 12 11 8 7 0

First data word
write parameter

15 0

Second data word
read value

15 0
C-Motion Magellan Programming Reference

2

SetDriveFaultParameter (cont.) 62h
GetDriveFaultParameter 60h
Description
(cont’d)

Not all products support all limits, consult product-specific documentation for more detail.

GetDriveFaultParameter returns the limits set by SetDriveFaultParameter.

The Overvoltage and Undervoltage limit parameters set the thresholds for determination of overvoltage
and undervoltage conditions. If the bus voltage exceeds the Overvoltage Limit value, an overvoltage
condition occurs. If the bus voltage is less than the Undervoltage Limit value, an undervoltage condition

occurs. Both the Overvoltage Limit and Undervoltage Limit have ranges of 0 to 216 - 1; the scaling is
product-dependent.

For example, to set the overvoltage threshold on Atlas to 30V, Overvoltage Limit should be set to
30V/1.3612 mv = 22039. On an MC58113 system with a maximum readable voltage of 90V,
Overvoltage Limit should be set to (30V / 90V) * 65535 = 21845.

GetDriveFaultParameter reads the indicated limit.

The Event Recovery mode and Watchdog Limit are relevant only to an axis driving an Atlas amplifier,
see Atlas Digital Amplifier Complete Technical Reference scaling and use. These commands were previously
documented as Set/GetBusVoltageLimits. The names have been changed for clarity as more fault
parameter options were added.

Temperature Limit and Temperature Hysteresis are used either with an attached Atlas amplifier or with
a motion control IC with a temperature input. In the case of the motion control IC the temperature
scaling depends on external hardware. Because the input thermistor voltage may either rise or fall with
actual temperature the sign of the temperature limit is used to indicate the sign of the gain: With a
positive sign the internal temperature reading is just the input voltage. With a negative sign, the internal
temperature reading is the input voltage subtracted from 3.3V, and the limit applied to that reading is
the absolute value of the argument. In both cases 08000h corresponds to 3.3V.

Shunt voltage limit and Shunt duty are used with motion control ICs that support a shunt PWM output
to control bus voltage rise due to regeneration. As long as the bus voltage remains below the shunt
voltage limit the shunt PWM will remain inactive, when bus voltage rises above the limit, the shunt PWM
will become active, with a duty cycle specified by Shunt duty. Shunt duty is scaled so that 08000h
corresponds to 100%. The shunt PWM will remain active until bus voltage falls below the shunt voltage
limit by a fixed hysteresis of 2.5%.

The bus current supply and bus current return limits are limits on the measured bus current supply and
the computed bus current return values. When either current exceeds the specified limit motor output
will be disabled, a DriveException event raised, and the Overcurrent Fault bit set in the Drive Fault
status register.

Atlas These commands will be relayed to an attached Atlas amplifier.

Restrictions Get/SetDriveFaultParameter is only available in products equipped with Bus voltage sensors.

The Overvoltage Limit cannot be set to a value greater than the reset default setting, and the Undervoltage
Limit cannot be set to a value less than the reset default setting.
C-Motion Magellan Programming Reference 127

128

2

SetDriveFaultParameter (cont.) 62h
GetDriveFaultParameter 60h
Motion API PMDresult PMDSetDriveFaultParameter(PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDuint16 value)

PMDresult PMDGetDriveFaultParameter(PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDuint16* value)

VB-Motion API MagellanAxis.DriveFaultParameterSet([in] parameter, [in] value)
MagellanAxis.DriveFaultParameterGet([in] parameter, [out] value)

see Set/GetFaultOutMask (p. 137), GetBusVoltage (p. 28), GetDriveFaultStatus (p. 36),
ClearDriveFaultStatus (p. 18), GetEventStatus (p. 42), ResetEventStatus (p. 80)
C-Motion Magellan Programming Reference

2

SetDrivePWM 23h
GetDrivePWM 24h
Syntax SetDrivePWM parameter value
GetDrivePWM parameter

Motor Type

Arguments Name Instance Encoding Units
parameter Limit 0 %

Dead Time 1 ns
Signal Sense 2 N/A
Frequency 3 Hz
Refresh Period 4 ns
Refresh Time 5 ns
Minimum Current Read Time 6 ns

Type Range/Scaling
value 16-bit unsigned see below

Packet
Structure

Description SetDrivePWM sets parameters used for controlling amplifier PWM output. The PWM Limit register

limits the maximum PWM duty cycle, and hence the effective output voltage. The range is from 0 to 214,

214 corresponding to 100% PWM modulation.

The PWM Dead Time option controls the dead time added for High/Low PWM output between
turning off the high side switch and turning on the low side, or vice versa. It has units of ns.

The PWM Frequency option controls the frequency for all PWM signals, the value is approximately the
actual frequency, in Hz, scaled by 1/4. The available options are shown in the table below. Not all
products support all frequencies.

DC Brush Brushless DC Microstepping Pulse & Direction

SetDrivePWM
0 23h

15 8 7 0

write 0 parameter
15 8 7 0

write value
15 0

GetDrivePWM
0 24h

15 8 7 0

write 0 parameter
15 8 7 0

read value
15 0

Approximate
Frequency

PWM bit
Resolution

Actual
Frequency

SetPWMFrequency
Value

20 kHz 10 19.531 kHz 5,000
40 kHz 9 39.062 kHz 10,000
80 kHz 8 78.124 kHz 20,000
C-Motion Magellan Programming Reference 129

130

2

SetDrivePWM (cont.) 23h
GetDrivePWM 24h
The PWM Signal Sense register controls whether an individual PWM signal is active high, encoded
by a set bit, or active low, encoded by a clear bit. The PWM signal sense is not applied in the case
of the sign signal for sign/magnitude PWM. The register layout is shown below:

The PWM Refresh Period and PWM Refresh Time options are used to specify a minimum amount
of off time when in High/Low PWM output mode. This may be required in order to allow charge
pump capacitors to recharge. The Refresh Time is specified in ns, and the Refresh Period in
commutation cycles. The low side of each PWM channel will be guaranteed to be on for at least
the Refresh Time for every Refresh Period cycles.

The PWM Minimum Current Read time option is used to specify a minimum amount of off time
for two out of the three PWM output channels for three phase output in PWM High/Low output
mode. For motion control ICs supporting leg current sensing this may be required in order to get
accurate current measurement. It has units of ns.

GetDrivePWM returns the parameters set by SetDrivePWM.

Atlas These commands are relayed to an attached Atlas amplifier.

C-Motion API PMDresult PMDSetDrivePWM(PMDAxisInterface axis_intf,
 PMDuint16 option,
 PMDuint16 value);

PMDresult PMDGetDrivePWM(PMDAxisInterface axis_intf,
 PMDuint16 option,
 PMDuint16* value)

VB-Motion API Magellan.DrivePWMSet([in] parameter, [in] value)
Magellan.DrivePWMGet([in] parameter, [out] value)

Signal Bit
PWM A High/PWM A Mag 0
PWM A Low 1
PWM B High/PWM B Mag 2
PWM B Low 3
PWM C High/PWM C Mag 4
PWM C Low 5
PWM D High/PWM D Mag 6
PWM D Low 7
reserved 8-14
PWM shunt 15
C-Motion Magellan Programming Reference

2

SetEncoderModulus 8Dh
GetEncoderModulus 8Eh
Syntax SetEncoderModulus axis modulus
GetEncoderModulus axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
modulus unsigned 16 bits0 to 215–1 unity counts

Packet
Structure

Description SetEncoderModulus sets the parallel word range for the specified axis when parallel-word feedback is
used. The modulus determines the range of the connected device. For multi-turn systems, this value is
used to determine when a position wrap condition has occurred. The value provided should be one half
of the actual range of the axis. For example, if the parallel-word input is used with a linear potentiometer
connected to an external A/D (Analog to Digital converter) which has 12 bits of resolution, then the
total range is 4,096 and a value of 2,048 should be loaded with this command.

GetEncoderModulus returns the encoder modulus.

Restrictions A value for encoder modulus is only required when the encoder source is set to parallel.

C-Motion API PMDresult PMDSetEncoderModulus(PMDAxisInterface axis_intf,
PMDuint16 modulus)

PMDresult PMDGetEncoderModulus(PMDAxisInterface axis_intf,
PMDuint16* modulus)

VB-Motion API Dim modulus as Short
MagellanAxis.EncoderModulus = modulus
modulus = MagellanAxis.EncoderModulus

see Set/GetEncoderSource (p. 132)

DC Brush Brushless DC Microstepping Pulse & Direction

SetEncoderModulus
0 axis 8Dh

15 12 11 8 7 0

Data
write modulus

15 0

GetEncoderModulus
0 axis 8Eh

15 12 11 8 7 0

Data
read modulus

15 0
C-Motion Magellan Programming Reference 131

132

2

SetEncoderSource DAh
GetEncoderSource DBh
Syntax SetEncoderSource axis source
GetEncoderSource axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

source Incremental 0
Parallel 1
None 2
Loopback 3
Pulse and Direction 4
Hall Sensors 5
32 bit parallel 6
(Reserved) 7
sin/cos 8
SSI 9
(Reserved) 10-12
BiSS 13

Packet
Structure

Description SetEncoderSource sets the type of encoder feedback (Incremental quadrature encoder or Parallel-
word) for the specified axis. When incremental quadrature is selected the motion control IC expects
A and B quadrature signals to be input at the QuadA and QuadB axis inputs. When parallel-word
is selected the motion control IC expects user-defined external circuitry connected to the motion
control IC’s external bus to load a 16-bit word containing the current position value for the selected
axis. External feedback devices with less than 16 bits may be used but the unused bits must be sign
extended or zeroed.

When motor type (see SetMotorType (p. 154)) is set to Pulse and Direction and the encoder source
is set to Loopback, the step output is internally fed back into the quadrature counters. This allows
for position capture of the step position when a physical encoder is not present.

DC Brush Brushless DC Microstepping Pulse & Direction

SetEncoderSource
0 axis DAh

15 12 11 8 7 0

Data
write 0 source

15 3 2 0

GetEncoderSource
0 axis DBh

15 12 11 8 7 0

Data
read 0 source

15 3 2 0
C-Motion Magellan Programming Reference

2

SetEncoderSource (cont.) DAh
GetEncoderSource DBh
Description
(cont.)

When the encoder source is set to Pulse and Direction, then Magellan expects the incoming position
encoding to correspond to a pulse & direction encoding scheme rather than a quadrature encoding
scheme. This feature is most commonly used with electronic gear mode, so that the Magellan processor
can be driven by a motion controller that outputs pulse & direction signals.

GetEncoderSource returns the code for the current type of feedback.

Restrictions A Loopback source is only supported for pulse & direction motors. Loopback is not supported in single-
chip versions (MC58110 & MC55110). In order for the loopback option to work correctly the step invert
bit of the signal sense register must be set. This bit is set as a side-effect of setting the loopback encoder
source.

A source value of None is typically only used with microstepping and pulse & direction motors.

Not all products support all types of encoders. See the product user guide.

When using a parallel word encoder with the MotorType set to Pulse&Direction or MicroStepping, the
SetCountToStepRatio command must be used prior to this command.

When using BiSS or SSI encoders with N-Series ION, setting encoder parameters using PRP commands
is required before SetEncoderSource. See the product user guide.

When using sin/cos encoders calibration may be required. For more information see
Set/GetAnalogCalibration and CalibrateAnalog, and consult the product user guide.

C-Motion API PMDresult PMDSetEncoderSource(PMDAxisInterface axis_intf, PMDuint16 source)
PMDresult PMDGetEncoderSource(PMDAxisInterface axis_intf, PMDuint16* source)

VB-Motion API Dim source as Short
MagellanAxis.EncoderSource = source
source = MagellanAxis.EncoderSource

see CalibrateAnalog (p. 17), Set/GetAnalogCalibration (p. 88), Set/GetEncoderModulus (p. 131)
Set/GetSignalSense (p. 186)
C-Motion Magellan Programming Reference 133

134

2

SetEncoderToStepRatio DEh
GetEncoderToStepRatio DFh
Syntax SetEncoderToStepRatio axis counts steps
GetEncoderToStepRatio axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
counts unsigned 16 bits 1 to 215–1 unity counts
steps unsigned 16 bits 1 to 215–1 unity microsteps

Packet
Structure

Description SetEncoderToStepRatio sets the ratio of the number of encoder counts to the number of output
steps per motor rotation used by the motion control IC to convert encoder counts into steps. Counts
is the number of encoder counts per full rotation of the motor. Steps is the number of steps output
by the motion control IC per full rotation of the motor. Since this command sets a ratio, the
parameters do not have to be for a full rotation as long as they correctly represent the encoder count
to step ratio. GetEncoderToStepRatio returns the ratio of the number of encoder counts to the
number of output steps per motor rotation.

C-Motion API PMDresult PMDSetEncoderToStepRatio(PMDAxisInterface axis_intf,
PMDuint16 counts, PMDuint16 steps)

PMDresult PMDGetEncoderToStepRatio(PMDAxisInterface axis_intf,
PMDuint16* counts, PMDuint16* steps)

VB-Motion API MagellanAxis.EncoderToStepRatioSet([in] counts, [in] steps)
MagellanAxis.EncoderToStepRatioGet([out] counts, [out] steps)

see Set/GetActualPositionUnits (p. 87)

Microstepping Pulse & Direction

SetEncoderToStepRatio
0 axis DEh

15 12 11 8 7 0

First data word
write counts

Second data word
write steps

15 0

GetEncoderToStepRatio
0 axis DFh

15 12 11 8 7 0

First data word
read counts

Second data word
read steps

15 0
C-Motion Magellan Programming Reference

2

SetEventAction 48h
GetEventAction 49h
Syntax SetEventAction axis event action
GetEventAction axis event

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

event Immediate 0
Positive Limit 1
Negative Limit 2
Motion Error 3
Current Foldback 4

action None 0
— (Reserved) 1
Abrupt Stop 2
Smooth Stop 3
— (Reserved) 4
Disable Position Loop & Higher Modules 5
Disable Current Loop & Higher Modules 6
Disable Motor Output & Higher Modules 7
Abrupt Stop with Position Error Clear 8

Packet
Structure

Description SetEventAction configures what actions will be taken by the axis in response to a given event. The action
can be either to modify the operating mode by disabling some or all of the loops, or, in the case of all
loops remaining on, to perform an abrupt or smooth stop. The Abrupt Stop action can be done with or
without a clearing of the position error.

DC Brush Brushless DC Microstepping Pulse & Direction

SetEventAction
0 axis 48h

15 12 11 8 7 0

First data word
write event

15 0

Second data word
write action

15 0

GetEventAction
0 axis 49h

15 12 11 8 7 0

First data word
write event

15 0

Second data word
read action

15 0
C-Motion Magellan Programming Reference 135

136

2

SetEventAction (cont.) 48h
GetEventAction 49h
Description
(cont.)

When, through SetEventAction, one of the events causes an action, the event bit in the Event Status
register must be cleared prior to returning to operation. For trajectory stops, this means that the bit
must be cleared prior to performing another trajectory move. For changes in operating mode, this
means that the bit must be cleared prior to restoring the operating mode, either by
RestoreOperatingMode or SetOperatingMode.

An exception is the Motion Error event, which only needs to be cleared in Event Status if its action
is Abrubt Stop or Smooth Stop. If it causes changes in operating mode, the operating mode can be
restored without clearing the bit in Event Status first.

GetEventAction gets the action that is currently programmed for the given event with the
exception of the Immediate event, which cannot be read back.

Atlas For the Current Foldback event this command will be sent to an attached Atlas amplifier before
being applied to the local Magellan register. The foldback event action is set automatically on Atlas
by Magellan when first establishing SPI communication.

Restrictions If a Smooth Stop action occurs while the trajectory mode is S-curve, the trajectory cannot be
restarted until the smooth stop is complete. If a Smooth Stop action occurs while the trajectory
mode is electronic gearing, an abrupt stop will occur.

C-Motion API PMDresult PMDSetEventAction (PMDAxisInterface axis_intf,
PMDuint16 event,
PMDuint16 action)

PMDresult PMDGetEventAction (PMDAxisInterface axis_intf,
PMDuint16 event,
PMDuint16* action)

VB-Motion API Dim action as Short
MagellanAxis.EventAction(event) = action
action = MagellanAxis.EventAction(event)

see GetActiveOperatingMode (p. 24), RestoreOperatingMode (p. 82), Set/GetOperatingMode (p.
156)
C-Motion Magellan Programming Reference

2

SetFaultOutMask FBh
GetFaultOutMask FCh
Syntax SetFaultOutMask axis mask
GetFaultOutMask axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

mask see below bitmask

Packet
Structure

Description SetFaultOutMask configures the mask on Event Status register bits that will be ORed together on the
FaultOut pin. The FaultOut pin is active high, as are the bits in Event Status. Thus, FaultOut will go high
when any of the enabled bits in Event Status are set (1). The mask parameter is used to determine what
bits in the Event Status register can cause FaultOut high, as follows:

DC Brush Brushless DC Microstepping Pulse & Direction

SetFaultOutMask
0 axis FBh

15 12 11 8 7 0

First data word
write mask

15 0

GetFaultOutMask
0 axis FCh

15 12 11 8 7 0

First data word
read mask

15 0

Name Bit
Motion Complete 0
Wrap-around 1
Breakpoint 1 2
Position Capture 3
Motion Error 4
Positive Limit 5
Negative Limit 6
Instruction Error 7
Disable 8
Overtemperature Fault 9
Drive Exception 10
Commutation Error 11
Current Foldback 12
— (Reserved) 13
Breakpoint 2 14
— (Reserved) 15
C-Motion Magellan Programming Reference 137

138

2

SetFaultOutMask (cont.) FBh
GetFaultOutMask FCh
Description
(cont.)

For example, a mask setting of hexadecimal 0610h will configure the FaultOut pin to go high upon
a motion error, Overtemperature Fault, or Bus Voltage Fault. The FaultOut pin stays high until all
Fault enabled bits in Event Status are cleared. The default value for the FaultOut mask is 0600h –
Overtemperature Fault and Bus Voltage Fault enabled.

GetFaultOutMask gets the current mask for the indicated axis.

Atlas The Magellan version of this command does not apply to an Atlas amplifier. In order to control
Atlas behavior it is necessary to send a command directly, see Atlas Digital Amplifier Complete Technical
Reference for more detail.

Restrictions This command is only available on products that include a FaultOut pin.

Depending on the product, all of the specified bits in Event Status may not be available.

In addition to the FaultOut mask on the Event Status register, the FaultOut pin is driven by a mask
on the Drive Fault Status register (bits 4, 2, 1, and 0) which cannot be changed, and is internally
ORed with the FaultOut mask on Event Status.

C-Motion API PMDresult PMDSetFaultOutMask (PMDAxisInterface axis_intf,
PMDuint16 mask)

PMDresult PMDGetFaultOutMask (PMDAxisInterface axis_intf,
PMDuint16* mask)

VB-Motion API Dim mask as Short
MagellanAxis.FaultOutMask = mask
mask = MagellanAxis.FaultOutMask

see Set/GetInterruptMask (p. 146)
C-Motion Magellan Programming Reference

2

SetFeedbackParameter 21h
GetFeedbackParameter 22h
Syntax SetFeedbackParameter parameter value
GetFeedbackParameter parameter value

Motor Types

Arguments Name Instance Encoding
parameter Encoder Modulus 0

Type Range/Scaling
value 32-bit unsigned see below

Packet
Structure

Description SetFeedbackParameter sets parameters used to configure position feedback devices. Encoder
modulus is a 32 bit parallel encoder modulus, its least significant 16 bit word is identical with the
parameter set by SetEncoderModulus.

The Encoder Modulus sets the parallel word range for the specified axis when 32 bit parallel-word
feedback is used. The modulus determines the range of the connected device. For multi-turn systems,
this value is used to determine when a position wrap condition has occurred. The value provided should
be one half of the actual range of the axis. For example, if the parallel-word input is used with an SSI
encoder which has 24 bits of resolution, then the total range is 16777216 and a value of 8388608 should
be used as the encoder modulus.

GetFeedbackParameter returns the value of parameters set by SetFeedbackParameter.

DC Brush Brushless DC Microstepping Pulse & Direction

SetFeedbackParameter
0 21h

15 8 7 0

write 0 parameter
15 8 7 0

value (high order parameter)
write 15 8 7 0

write value (low order parameter)
15 0

GetFeedbackParameter
0 22h

15 8 7 0

write 0 parameter
15 8 7 0

value (high order parameter)
read 15 8 7 0

read value (low order parameter)
15 0
C-Motion Magellan Programming Reference 139

140

2

SetFeedbackParameter (cont.) 21h
GetFeedbackParameter 22h
C-Motion API PMDresult PMDSetFeedbackParameter (PMDAxisInterface axis_intf,
PMDuint8 parameter,
PMDuint32 value);

PMDresult PMDGetFeedbackParameter (PMDAxisInterface axis_intf,
PMDuint8 parameter,
PMDuint32* value)

VB-Motion API MagellanAxis.FeedbackParameter([in] parameter
[out] value)

see SetEncoderModulus (p. 131)
C-Motion Magellan Programming Reference

2

SetFOC buffered F6h
GetFOC F7h
Syntax SetFOC axis loop_parameter value
GetFOC axis loop_parameter

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

loop Direct(D) 0
Quadrature(Q) 1
Both(D and Q) 2

parameter Proportional Gain (KpDQ) 0
Integrator Gain (KiDQ) 1
Integrator Sum Limit (ILimitDQ) 2

Type Range/Scaling
value unsigned 16 bits see below

Packet
Structure

Description Set/GetFOC is used to configure the operating parameters of the FOC-Current control. See the product user
guide for more information on how each parameter is used in the current loop processing. The value
written/read is always an unsigned 16-bit value, with the parameter-specific scaling shown below:

A setting of 64 for KpDQ corresponds to a gain of 1. That is, an error signal of 30% maximum current will cause
the proportional contribution of the current loop output to be 30% of maximum output.

Brushless DC Microstepping

SetFOC
0 axis F6h

15 12 11 8 7 0

First data word
write 0 loop parameter

15 12 11 8 7 0

Second data word
write value

15 0

GetFOC
0 axis F7h

15 12 11 8 7 0

First data word
write 0 loop parameter

15 12 11 8 7 0

Second data word
read value

15 0

Parameter Range Scaling Units
Proportional Gain (KpDQ) 0 to 215–1 1/64 gain

Integrator Gain (KiDQ) 0 to 215–1 1/256 gain/cycles

Integrator Sum Limit (ILimitDQ) 0 to 215–1 1/100 % current * cycles
C-Motion Magellan Programming Reference 141

142

2

SetFOC (cont.) buffered F6h
GetFOC F7h
Description
(cont.)

Similarly, setting KiDQ to 256 gives it a gain of 1; the value of the integrator sum would become the
integrator contribution to the output.

ILimitDQ is used to limit the contribution of the integrator sum at the output. Its effect depends on
the value of KiDQ. Setting IlimitDQ to 1000 when KiDQ is 10 means that the maximum contribution

to the output is 1000 x 10 = 10,000 out of 215 - 1 or approximately 30.5%. The units of time for the
integrator sum are cycles.

The loop argument allows individual configuration of the parameters for the D and Q current loops.
Alternately, a loop of 2 can be used with SetFOC to set the D and Q loops with a single API
command. A loop of 2 is not valid for GetFOC.

Atlas These commands are relayed to an attached Atlas amplifier.

Restrictions Set/GetFOC are buffered commands. All parameters set are buffered, and will not take effect until
an update is done on the current loop (through Update command, MultiUpdate command, or
update action on breakpoint). The values read by GetFOC are the buffered settings.

These commands are only supported in products that include digital current control, and when the
current control mode is set to FOC.

C-Motion API PMDresult PMDSetFOC (PMDAxisInterface axis_intf,
PMDuint8 loop,
PMDuint8 parameter,
PMDuint16 value)

PMDresult PMDGetFOC (PMDAxisInterface axis_intf,
PMDuint8 loop,
PMDuint8 parameter,
PMDuint16* value)

VB-Motion API MagellanAxis.FOCSet([in] loop, [in] parameter, [in] value)
MagellanAxis.FOCGet([in] loop, [in] parameter, [out] value)

see Update (p. 215), Set/GetUpdateMask (p. 211), MultiUpdate (p. 65),
Set/GetBreakpointUpdateMask (p. 98), GetFOCValue (p. 44),
Set/GetCurrentControlMode (p. 115)
C-Motion Magellan Programming Reference

2

SetGearMaster AEh
GetGearMaster AFh
Syntax SetGearMaster axis masterAxis_source
GetGearMaster axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

masterAxis Axis1 0
Axis2 1
Axis3 2
Axis4 3

source Actual 0
Commanded 1

Packet
Structure

Description SetGearMaster establishes the slave (axis) and master (masterAxis) axes for the electronic-gearing
profile, and sets the source, Actual or Commanded, of the master axis position data to be used.

The masterAxis determines the axis that will drive the slave axis. Both the slave and the master axes must
be enabled (SetOperatingMode command). The source determines whether the master axis’
commanded position as determined by the trajectory generator will be used to drive the slave axis, or
whether the master axis’ encoder position will be used to drive the slave.

GetGearMaster returns the value for the geared axes and position source.

Restrictions

DC Brush Brushless DC Microstepping Pulse & Direction

SetGearMaster
0 axis AEh

15 12 11 8 7 0

Data
write 0 source masterAxis

15 9 8 7 0

GetGearMaster
0 axis AFh

15 12 11 8 7 0

Data
read 0 source masterAxis

15 9 8 7 0
C-Motion Magellan Programming Reference 143

144

2

SetGearMaster (cont.) AEh
GetGearMaster AFh
C-Motion API PMDresult PMDSetGearMaster(PMDAxisInterface axis_intf,
PMDAxis masterAxis, PMDuint8 source)

PMDresult PMDGetGearMaster(PMDAxisInterface axis_intf,
PMDAxis* masterAxis, PMDuint8* source)

VB-Motion API MagellanAxis.GearMasterSet([in] masterAxis, [in] source)
MagellanAxis.GearMasterGet([out] masterAxis, [out] source)

see Set/GetGearRatio (p. 145)
C-Motion Magellan Programming Reference

2

SetGearRatio buffered 14h
GetGearRatio 59h
Syntax SetGearRatio slaveAxis ratio
GetGearRatio slaveAxis

Motor Types

Arguments Name Instance Encoding
slaveAxis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
ratio signed 32 bits –231 to 231–1 1/216 SlaveCts/MasterCts

Packet
Structure

Description SetGearRatio sets the ratio between the master and slave axes for the Electronic Gear profile for the
given slaveAxis. Positive ratios cause the slave to move in the same direction as the master, negative ratios
in the opposite direction. The specified ratio has a unity scaling of 65,536.

GetGearRatio returns the gear ratio set for the specified slaveAxis.

Scaling examples:

Restrictions This is a buffered command. The new value set will not take effect until the next Update or
MultiUpdate command is entered, with the Trajectory Update bit set in the update mask.

C-Motion API PMDresult PMDSetGearRatio(PMDAxisInterface axis_intf, PMDint32 ratio)
PMDresult PMDGetGearRatio(PMDAxisInterface axis_intf, PMDint32* ratio)

VB-Motion API Dim ratio as Long
MagellanAxis.GearRatio = ratio
ratio = MagellanAxis.GearRatio

see Set/GetGearMaster (p. 143), MultiUpdate (p. 65), Update (p. 215)

DC Brush Brushless DC Microstepping Pulse & Direction

SetGearRatio
0 slaveAxis 14h

15 12 11 8 7 0

First data word
write ratio (high-order part)

31 16

Second data word
write ratio (low-order part)

15 0

GetGearRatio
0 slaveAxis 59h

15 12 11 8 7 0

First data word
read ratio (high-order part)

31 16

Second data word
read ratio (low-order part)

15 0

ratio value resultant ratio
–32,768 .5 negative slave counts for each positive master count
1,000,000 15.259 positive slave counts for each positive master count
123 .0018 positive slave counts for each positive master count
C-Motion Magellan Programming Reference 145

146

2

SetInterruptMask 2Fh
GetInterruptMask 56h
Syntax SetInterruptMask axis mask
GetInterruptMask axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

mask Motion Complete 0001h
Wrap-around 0002h
Breakpoint 1 0004h
Capture Received 0008h
Motion Error 0010h
Positive Limit 0020h
Negative Limit 0040h
Instruction Error 0080h
Disable 0100h
Overtemperature Fault 0200h
Drive Exception 0400h
Commutation Error 0800h
Current Foldback 1000h
Breakpoint 2 4000h

Packet
Structure

Description SetInterruptMask determines which bits in the Event Status register of the specified axis will cause
a host interrupt. For each interrupt mask bit that is set to 1, the corresponding Event Status register
bit will cause an interrupt when that status register bit goes active (is set to 1). Interrupt mask bits
set to 0 will not generate interrupts.

GetInterruptMask returns the mask for the specified axis.

SetInterruptMask also controls CAN event notification when using the motion control IC’s CAN
2.0B interface. Whenever a host interrupt is activated, a CAN message is generated using message
ID 180h + nodeID, notifying interested CAN nodes of the change in the Event Status register.

Example: The interrupt mask value 28h will generate an interrupt when either the Positive Limit
bit or the Capture Received bit of the Event Status register goes active (set to 1).

DC Brush Brushless DC Microstepping Pulse & Direction

SetInterruptMask
0 axis 2Fh

15 12 11 8 7 0

Data
write mask

15 0

GetInterruptMask
0 axis 56h

15 12 11 8 7 0

Data
read mask

15 0
C-Motion Magellan Programming Reference

2

SetInterruptMask (cont.) 2Fh
GetInterruptMask 56h
Restrictions

C-Motion API PMDresult PMDSetInterruptMask(PMDAxisInterface axis_intf,
PMDuint16 mask)

PMDresult PMDGetInterruptMask(PMDAxisInterface axis_intf,
PMDuint16* mask)

VB-Motion API Dim mask as Short
MagellanAxis.InterruptMask = mask
mask = MagellanAxis.InterruptMask

see ClearInterrupt (p. 19), GetInterruptAxis (p. 49), Set/GetFaultOutMask (p. 137)
C-Motion Magellan Programming Reference 147

148

2

SetJerk buffered 13h
GetJerk 58h
Syntax SetJerk axis jerk
GetJerk axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
jerk unsigned 32 bits 0 to 231–1 1/232 counts/cycle3

microsteps/cycle3

Packet
Structure

Description SetJerk loads the Jerk register in the parameter buffer for the specified axis.

GetJerk reads the contents of the Jerk register.

Scaling example: To load a jerk value (rate of change of acceleration) of 0.012345 counts/cycle3

(or steps/cycle3) multiply by 232 or 4,294,967,296. In this example this gives a value to load of
53,021,371 (decimal) which corresponds to a high word of 0329h and a low word of 0ABBh when
loading each word in hexadecimal.

Restrictions SetJerk is a buffered command. The value set using this command will not take effect until the next
Update or MultiUpdate command, with the Trajectory Update bit set in the update mask.

This command is used only with the S-curve profile mode. It is not used with the Trapezoidal,
Velocity Contouring, or Electronic Gear profile modes.

C-Motion API PMDresult PMDSetJerk(PMDAxisInterface axis_intf, PMDuint32 jerk)
PMDresult PMDGetJerk(PMDAxisInterface axis_intf, PMDuint32* jerk)

VB-Motion API Dim jerk as Long
MagellanAxis.Jerk = jerk
jerk = MagellanAxis.Jerk

see Set/GetAcceleration (p. 83), Set/GetDeceleration (p. 122), Set/GetPosition (p. 172),
Set/GetVelocity (p. 213), MultiUpdate (p. 65), Update (p. 215)

DC Brush Brushless DC Microstepping Pulse & Direction

SetJerk
0 axis 13h

15 12 11 8 7 0

First data word
write jerk (high-order part)

31 16

Second data word
write jerk (low-order part)

15 0

GetJerk
0 axis 58h

15 12 11 8 7 0

First data word
read jerk (high-order part)

31 16

Second data word
read jerk (low-order part)

15 0
C-Motion Magellan Programming Reference

2

SetMotionCompleteMode EBh
GetMotionCompleteMode ECh
Syntax SetMotionCompleteMode axis mode
GetMotionCompleteMode axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

mode commanded 0
actual 1

Packet
Structure

Description SetMotionCompleteMode establishes the source for the comparison which determines the motion-
complete status for the specified axis. When set to commanded, the motion is considered complete when
the profile velocity reaches zero (0) and no further motion will occur without an additional host
command. This mode is unaffected by the actual encoder location.

When set to actual mode the motion complete bit will be set when the above condition is true, and when
the actual encoder position has been within the settle window (SetSettleWindow command) for the
number of cycles specified by the SetSettleTime command. The settle timer is started at zero (0) at the
end of the trajectory profile motion, so a minimum delay of settle time cycles will occur after the
trajectory profile motion is complete.

GetMotionCompleteMode returns the value for the motion-complete mode.

Restrictions

C-Motion API PMDresult PMDSetMotionCompleteMode(PMDAxisInterface axis_intf,
PMDuint16 mode)

PMDresult PMDGetMotionCompleteMode(PMDAxisInterface axis_intf,
PMDuint16* mode)

VB-Motion API Dim mode as Short
MagellanAxis.MotionCompleteMode = mode
mode = MagellanAxis.MotionCompleteMode

see Set/GetSettleTime (p. 184), Set/GetSettleWindow (p. 185)

DC Brush Brushless DC Microstepping Pulse & Direction

SetMotionCompleteMode
0 axis EBh

15 12 11 8 7 0

Data
write 0 mode

15 1 0

GetMotionCompleteMode
0 axis ECh

15 12 11 8 7 0

Data
read 0 mode

15 1 0
C-Motion Magellan Programming Reference 149

150

2

SetMotorBias 0Fh
GetMotorBias 2Dh
Syntax SetMotorBias axis bias
GetMotorBias axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
bias signed 16 bits –215 to 215–1 100/215 % output

Packet
Structure

Description SetMotorBias sets the output bias of the digital servo filter for the specified axis.

GetMotorBias reads the value of the bias of the digital servo filter.

Scaling example: If it is desired that a motor bias value of –2.5% of full scale be placed on the
servo filter output, then this register should be loaded with a value of –2.5*32,768/100 = –819
(decimal). This corresponds to a loaded hexadecimal value of 0FCCDh.

Restrictions

C-Motion API PMDresult PMDSetMotorBias(PMDAxisInterface axis_intf, PMDint16 bias)
PMDresult PMDGetMotorBias(PMDAxisInterface axis_intf, PMDint16* bias)

VB-Motion API Dim bias as Short
MagellanAxis.MotorBias = bias
bias = MagellanAxis.MotorBias

see Set/GetMotorCommand (p. 151), Set/GetMotorLimit (p. 153)

DC Brush Brushless DC

SetMotorBias
0 axis 0Fh

15 12 11 8 7 0

Data
write bias

15 0

GetMotorBias
0 axis 2Dh

15 12 11 8 7 0

Data
read bias

15 0
C-Motion Magellan Programming Reference

2

SetMotorCommand buffered 77h
GetMotorCommand 69h
Syntax SetMotorCommand axis command
GetMotorCommand axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
command signed 16 bits –215 to 215–1 100/215 % output

Packet
Structure

Description SetMotorCommand loads the Motor Command buffer register of the specified axis. For axes configured
for microstepping motors, this command is used to control the magnitude of the output waveform. For DC
brush and brushless DC motors, this command directly sets the Motor Output register when the Position
Loop and Trajectory Generator modules are disabled in the operating mode.

GetMotorCommand reads the contents of the motor command buffer register.

Scaling example: If it is desired that a Motor Command value of 13.7% of full scale be output to the
motor, then this register should be loaded with a value of 13.7 * 32,768/100 = 4,489 (decimal). This
corresponds to a hexadecimal value of 1189h.

Atlas Note that SetMotorCommand is not used to set step motor drive current when using an Atlas
amplifier, SetCurrent should be used instead.

Restrictions SetMotorCommand is a buffered command. The value set using this command will not take effect until
the next Update or MultiUpdate command, with the Position Loop Update bit set in the update mask.

C-Motion API PMDresult PMDSetMotorCommand(PMDAxisInterface axis_intf,
 PMDint16 command)

PMDresult PMDGetMotorCommand(PMDAxisInterface axis_intf,
PMDint16* command)

DC Brush Brushless DC Microstepping

SetMotorCommand
0 axis 77h

15 12 11 8 7 0

Data
write command

15 0

GetMotorCommand
0 axis 69h

15 12 11 8 7 0

Data
read command

15 0
C-Motion Magellan Programming Reference 151

152

2

SetMotorCommand (cont.) buffered 77h
GetMotorCommand 69h
VB-Motion API Dim command as Short
MagellanAxis.MotorCommand = command
command = MagellanAxis.MotorCommand

see SetCurrent (p. 113), Set/GetMotorBias (p. 150), Set/GetMotorLimit (p. 153),
Set/GetOperatingMode (p. 156), MultiUpdate (p. 65), Update (p. 215)
C-Motion Magellan Programming Reference

2

SetMotorLimit 06h
GetMotorLimit 07h
Syntax SetMotorLimit axis limit
GetMotorLimit axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
limit unsigned 16 bits 0 to 215–1 100/215 % output

Packet
Structure

Description SetMotorLimit sets the maximum value for the motor output command allowed by the digital servo
filter of the specified axis. Motor command values beyond this value will be clipped to the specified
motor command limit. For example if the motor limit was set to 1,000 and the servo filter determined
that the current motor output value should be 1,100, the actual output value would be 1,000. Conversely,
if the output value was –1,100, then it would be clipped to –1,000. This command is useful for
protecting amplifiers, motors, or system mechanisms when it is known that a motor command exceeding
a certain value will cause damage.

GetMotorLimit reads the motor limit value.

Scaling example: If it is desired that a motor limit of 75% of full scale be established, then this register
should be loaded with a value of 75.0 * 32,767/100 = 24,576 (decimal). This corresponds to a
hexadecimal value of 06000h.

Restrictions This command only affects the motor output when the position loop or trajectory generator is enabled.
When the motion control IC is in open loop mode, this command has no effect.

C-Motion API PMDresult PMDSetMotorLimit(PMDAxisInterface axis_intf,
 PMDuint16 limit);

PMDresult PMDGetMotorLimit(PMDAxisInterface axis_intf,
 PMDuint16* limit)

VB-Motion API Dim limit as Short
MagellanAxis.MotorLimit = limit
limit = MagellanAxis.MotorLimit

see Set/GetMotorBias (p. 150), Set/GetMotorCommand (p. 151), Set/GetOperatingMode (p. 156)

DC Brush Brushless DC

SetMotorLimit
0 axis 06h

15 12 11 8 7 0

Data
write limit

15 0

GetMotorLimit
0 axis 07h

15 12 11 8 7 0

Data
read limit

15 0
C-Motion Magellan Programming Reference 153

154

2

SetMotorType 02h
GetMotorType 03h
Syntax SetMotorType axis type
GetMotorType axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

type Brushless DC (3 phase) 0
Closed-loop stepper 1
Microstepping (3 phase) 2
Microstepping (2 phase) 3
Pulse & Direction 4
DC Brush 7

Packet
Structure

Description SetMotorType sets type of motor being driven by the selected axis. This operation sets the number of
phases for commutation on the axis, as well as internally configuring the motion control IC for the motor
type.

The following table describes each motor type, and the number of phases to be commutated.

* Also called Brushless DC (2-phase)

GetMotorType returns the configured motor type for the selected axis.

Restrictions The motor type should only be set once for each axis, either via the motor configuration word during device
startup, or immediately after reset using SetMotorType. Once it has been set, it should not be changed.
Executing SetMotorType will reset many variables to their motor type specific default values.

Not all motor types are available on all products. See the product user guide.

C-Motion API PMDresult PMDSetMotorType (PMDAxisInterface axis_intf, PMDuint8 type)
PMDresult PMDGetMotorType (PMDAxisInterface axis_intf, PMDuint8* type)

DC Brush Brushless DC Microstepping Pulse & Direction

SetMotorType
0 axis 02h

15 12 11 8 7 0

Data
write 0 type

15 3 2 0

GetMotorType
0 axis 03h

15 12 11 8 7 0

Data
read 0 type

15 3 2 0

Motor type Commutation
Brushless DC (3 phase) 3 phase
Closed-loop stepper* 2 phase
Microstepping (3 phase) 3 phase
Microstepping (2 phase) 2 phase
Pulse & Direction None
DC Brush None
C-Motion Magellan Programming Reference

2

SetMotorType (cont.) 02h
GetMotorType 03h
VB-Motion API Dim type as Short
MagellanAxis.MotorType = type
type = MagellanAxis.MotorType

see Reset (p. 75)
C-Motion Magellan Programming Reference 155

156

2

SetOperatingMode 65h
GetOperatingMode 66h
Syntax SetOperatingMode axis mode
GetOperatingMode axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range/Scaling
mode unsigned 16-bit see below

Packet
Structure

Description SetOperatingMode configures the operating mode of the axis. Each bit of the mode configures
whether a feature/loop of the axis is active or disabled, as follows:

When the axis is disabled, no processing will be done on the axis, and the axis outputs will be at their
reset states. When the axis motor output is disabled, the axis will function normally, but its motor
outputs will be in their disabled state. When a loop is disabled (position or current loop), it operates
by passing its input directly to its output, and clearing all internal state variables (such as integrator
sums, etc.). When the trajectory generator is disabled, it operates by commanding 0 velocity.

DC Brush Brushless DC Microstepping Pulse & Direction

SetOperatingMode
0 axis 65h

15 12 11 8 7 0

First data word
write 0 mode

15 4 3 0

GetOperatingMode
0 axis 66h

15 12 11 8 7 0

First data word
read 0 mode

15 4 3 0

Name Bit Description
Axis Enabled 0 0: No axis processing, axis outputs in reset state. 1: axis active.

Motor Output Enabled 1 0: axis motor outputs disabled. 1: axis motor outputs enabled.

Current Control Enabled 2 0: axis current control bypassed. 1: axis current control active.

— 3 Reserved
Position Loop Enabled 4 0: axis position loop bypassed. 1: axis position loop active.

Trajectory Enabled 5 0: trajectory generator disabled. 1: trajectory generator enabled.
— 6–15 Reserved
C-Motion Magellan Programming Reference

2

SetOperatingMode (cont.) 65h
GetOperatingMode 66h
Description
(cont.)

For example, to configure an axis for Torque mode, (trajectory and position loop disabled) the operating
mode would be set to hexadecimal 0007h.

This command should be used to configure the static operating mode of the axis. The actual current operating
mode may be changed by the axis in response to safety events, or user-programmable events. In this case, the
present operating mode is available using GetActiveOperatingMode. GetOperatingMode will always
return the static operating mode set using SetOperatingMode. Executing the SetOperatingMode
command sets both the static operating mode and the active operating mode to the desired state.

GetOperatingMode gets the operating mode of the axis.

Atlas The SetOperatingMode command will be relayed to an attached Atlas amplifier before being applied to
the local Magellan register. GetOperatingMode does not require any additional Atlas communication.

Restrictions The possible operating modes of an axis is product specific, and in some cases axis specific. See the
product user guide for a description of what operating modes are supported on each axis.

C-Motion API PMDresult PMDSetOperatingMode(PMDAxisInterface axis_intf,
PMDuint16 mode)

PMDresult PMDGetOperatingMode(PMDAxisInterface axis_intf,
PMDuint16* mode)

VB-Motion API Dim mode as Short
MagellanAxis.OperatingMode = mode
mode = MagellanAxis.OperatingMode

see GetActiveOperatingMode (p. 24), RestoreOperatingMode (p. 82)
C-Motion Magellan Programming Reference 157

158

2

SetOutputMode E0h
GetOutputMode 6Eh
Syntax SetOutputMode axis mode
GetOutputMode axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

mode Parallel DAC Offset Binary 0
PWM Sign Magnitude 1
PWM 50/50 Magnitude 2
SPI DAC Offset Binary 3
Parallel DAC Sign Magnitude 4
SPI DAC 2’s Complement 5
Atlas SPI 6
PWM High/Low 7
Pulse & Direction 8
Atlas Recovery 9
None 10

Packet
Structure

Description SetOutputMode sets the form of the motor output signal of the specified axis.

GetOutputMode returns the value for the motor output mode.

Restrictions Not all output modes are available on all products. See the product user guide.

C-Motion API PMDresult PMDSetOutputMode(PMDAxisInterface axis_intf, PMDuint16 mode)
PMDresult PMDGetOutputMode(PMDAxisInterface axis_intf, PMDuint16* mode)

VB-Motion API Dim mode as Short
MagellanAxis.OutputMode = mode
mode = MagellanAxis.OutputMode

see

DC Brush Brushless DC Microstepping

SetOutputMode
0 axis E0h

15 12 11 8 7 0

Data
write 0 mode

15 4 3 0

GetOutputMode
0 axis 6Eh

15 12 11 8 7 0

Data
read 0 mode

15 4 3 0
C-Motion Magellan Programming Reference

2

SetOvertemperatureLimit 1Bh
GetOvertemperatureLimit 1Ch
Syntax SetOvertemperatureLimit axis limit
GetOvertemperatureLimit axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units

limit signed 16 bits –215 to 215–1 28 °C

Packet
Structure

Description SetOvertemperatureLimit sets the temperature threshold upon which an overtemperature condition
will occurr. For example, to set the overtemperature threshold at 60 degrees C, the value should be
60*256 = 15360. When the programmed threshold is exceeded, the Overtemperature Fault bit is set in
the Event Status register, and the axis enters the overtemperature state.

GetOvertemperatureLimit gets the current overtemperature threshold setting.

This command is not used to set the temperature limit for MC58113. Use SetDriveFaultParameter.

Atlas These commands are not used with Atlas.

Restrictions Get/SetOvertemperatureLimit is only available in products equipped with temperature sensors.

If the axis has more than one temperature sensor, the temperature used to compare to the
overtemperature threshold will be the highest value of all sensor readings.

The overtemperature threshold cannot be set to a value greater than the reset default setting.

C-Motion API PMDresult PMDSetOvertemperatureLimit (PMDAxisInterface axis_intf,
PMDint16 limit)

PMDresult PMDGetOvertemperatureLimit (PMDAxisInterface axis_intf,
PMDint16* limit)

DC Brush Brushless DC Microstepping Pulse & Direction

SetOvertemperatureLimit
0 axis 1Bh

15 12 11 8 7 0

First data word
write limit

15 0

GetOvertemperatureLimit
0 axis 1Ch

15 12 11 8 7 0

First data word
read limit

15 0
C-Motion Magellan Programming Reference 159

160

2

SetOvertemperatureLimit (cont.) 1Bh
GetOvertemperatureLimit 1Ch
VB-Motion API Dim limit as Short
MagellanAxis.OvertemperatureLimit = limit
limit = MagellanAxis.OvertemperatureLimit

see GetTemperature (p. 57), GetEventStatus (p. 42), ResetEventStatus (p. 80),
SetDriveFaultParameter (p. 126)
C-Motion Magellan Programming Reference

2

SetPhaseAngle 84h
GetPhaseAngle 2Ch
Syntax SetPhaseAngle axis angle
GetPhaseAngle axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
angle unsigned 16 bits 0 to 215–1 unity counts

microsteps

Packet
Structure

Description SetPhaseAngle sets the instantaneous commutation angle for the specified axis. For brushless DC
motors, the phase angle is specified in units of encoder counts. For microstepping motors, it is specified
in units of microsteps. GetPhaseAngle returns the value of the phase angle. To convert counts to an
actual phase angle, divide by the number of encoder counts per electrical cycle and multiply by 360.

For example, if a value of 500 is retrieved using GetPhaseAngle and the counts per electrical cycle value
has been set to 2,000 (SetPhaseCounts command), this corresponds to an angle of
(500/2,000)*360 = 90 degrees current phase angle position. SetPhaseAngle resets the phase offset
previously set by SetPhaseOffset.

Restrictions The specified angle must not exceed the number set by the SetPhaseCounts command. Some Magellan
products support a 32-bit commutation parameter interface using the commands
Set/GetCommutationParameter. It is possible to set parameters through the 32-bit interface that
cannot be represented using the 16-bit interface. If an attempt is made to read a non-representable value
then a value representation error (37) will be raised.

C-Motion API PMDresult PMDSetPhaseAngle(PMDAxisInterface axis_intf,
PMDuint16 angle)

PMDresult PMDGetPhaseAngle(PMDAxisInterface axis_intf,
PMDuint16* angle)

Brushless DC Microstepping

SetPhaseAngle
0 axis 84h

15 12 11 8 7 0

Data
write angle

15 0

GetPhaseAngle
0 axis 2Ch

15 12 11 8 7 0

Data
read angle

15 0
C-Motion Magellan Programming Reference 161

162

2

SetPhaseAngle (cont.) 84h
GetPhaseAngle 2Ch
VB-Motion API Dim angle as Short
MagellanAxis.PhaseAngle = angle
angle = MagellanAxis.PhaseAngle

see Set/GetCommutationParameter (p. 110), Set/GetPhaseCounts (p. 164)
C-Motion Magellan Programming Reference

2

SetPhaseCorrectionMode E8h
GetPhaseCorrectionMode E9h
Syntax SetPhaseCorrectionMode axis mode
GetPhaseCorrectionMode axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

mode Disable 0
Index 1
Hall 2

Packet
Structure

Description SetPhaseCorrectionMode controls the method used for phase correction on the specified axis. Phase
correction is optional, and may be disabled by using mode 0. In mode 1 (Index) the encoder Index signal
is used to update the commutation phase angle once per mechanical revolution. In mode 2 (Hall) a
particular Hall sensor transition is used to update the commutation phase angle once every twelve
electrical revolutions.

Phase correction ensures that the commutation angle will remain correct even if some encoder counts
are lost due to electrical noise, or due to the number of encoder counts per electrical revolution not being
an integer. Because Hall sensors normally have significant hysteresis index based correction is preferred
if an index signal is available.

GetPhaseCorrectionMode returns the phase correction mode.

Restrictions Hall phase correction mode is not supported by all products; it is supported by MC58113.

C-Motion API PMDresult PMDSetPhaseCorrectionMode(PMDAxisInterface axis_intf,
 PMDuint16 mode)

PMDresult PMDGetPhaseCorrectionMode(PMDAxisInterface axis_intf,
 PMDuint16* mode)

VB-Motion API Dim mode as Short
MagellanAxis.PhaseCorrectionMode = mode
mode = MagellanAxis.PhaseCorrectionMode

see GetPhaseCommand (p. 50), InitializePhase (p. 64), Set/GetPhaseCounts (p. 164)

Brushless DC

SetPhaseCorrectionMode
0 axis E8h

15 12 11 8 7 0

Data
write 0 mode

15 1 0

GetPhaseCorrectionMode
0 axis E9h

15 12 11 8 7 0

Data
read 0 mode

15 1 0
C-Motion Magellan Programming Reference 163

164

2

SetPhaseCounts 75h
GetPhaseCounts 7Dh
Syntax SetPhaseCounts axis counts
GetPhaseCounts axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
counts unsigned 16 bits 1 to 215–1 unity counts

microsteps

Packet
Structure

Description For axes configured for brushless DC motor types, SetPhaseCounts sets the number of encoder
counts per electrical cycle of the motor. The number of electrical cycles is equal to 1⁄2 the number
of motor poles. If this value is not an integer, then the closest integer value should be used, and
phase correction mode should be enabled. See SetPhaseCorrectionMode (p. 163).

For axes configured for microstepping motor types, the number of microsteps per full step is set
using the SetPhaseCounts command. The parameter used for this command represents the
number of microsteps per electrical cycle (4 times the desired number of microsteps). For example,
to set 64 microsteps per full step, the SetPhaseCounts 256 command should be used. The
maximum number of microsteps that can be generated per full step is 256, giving a maximum
parameter value of 1024.

GetPhaseCounts returns the number of counts or microsteps per electrical cycle.

Restrictions Some Magellan products support a 32-bit commutation parameter interface using the commands
Set/GetCommutationParameter. It is possible to set parameters through the 32-bit interface that
cannot be represented using the 16-bit interface. If an attempt is made to read a non-representable
value then a value representation error (37) will be raised.

C-Motion API PMDresult PMDSetPhaseCounts(PMDAxisInterface axis_intf, PMDuint16
counts)
PMDresult PMDGetPhaseCounts(PMDAxisInterface axis_intf, PMDuint16*
counts)

Brushless DC Microstepping

SetPhaseCounts
0 axis 75h

15 12 11 8 7 0

Data
write counts

15 0

GetPhaseCounts
0 axis 7Dh

15 12 11 8 7 0

Data
read counts

15 0
C-Motion Magellan Programming Reference

2

SetPhaseCounts (cont.) 75h
GetPhaseCounts 7Dh
VB-Motion API Dim counts as Short
MagellanAxis.PhaseCounts = counts
counts = MagellanAxis.PhaseCounts

see Set/GetCommutationParameter (p. 110), Set/GetPhaseAngle (p. 161)
C-Motion Magellan Programming Reference 165

166

2

SetPhaseInitializeMode E4h
GetPhaseInitializeMode E5h
Syntax SetPhaseInitializeMode axis mode
GetPhaseInitializeMode axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

mode Algorithmic 0
Hall-based 1
Pulse 2

Packet
Structure

Description In pulse mode the motion control IC briefly stimulates the motor windings and sets the initial
phasing based on the observed motor response. SetPhaseInitializeMode establishes the mode in
which the specified axis is to be initialized for commutation. The options are Algorithmic and Hall-
based. In algorithmic mode the motion control IC briefly stimulates the motor windings and sets
the initial phasing based on the observed motor response. In Hall-based initialization mode, the
three Hall sensor signals are used to determine the motor phasing.

GetPhaseInitializeMode returns the value of the initialization mode.

Restrictions Algorithmic mode should only be selected if it is known that the axis is free to move in both
directions, and that a brief uncontrolled move can be tolerated by the motor, mechanism, and load.

Not all Magellan products support pulse phase initialization. N-series ION does.

C-Motion API PMDresult PMDSetPhaseInitializeMode(PMDAxisInterface axis_intf,
 PMDuint16 mode)

PMDresult PMDGetPhaseInitializeMode(PMDAxisInterface axis_intf,
 PMDuint16* mode)

VB-Motion API Dim mode as Short
MagellanAxis.PhaseInitializeMode = mode
mode = MagellanAxis.PhaseInitializeMode

see InitializePhase (p. 64), Set/GetPhaseInitializeTime (p. 167)

Brushless DC

SetPhaseInitializeMode
0 axis E4h

15 12 11 8 7 0

Data
write 0 mode

15 1 0

GetPhaseInitializeMode
0 axis E5h

15 12 11 8 7 0

Data
read 0 mode

15 1 0
C-Motion Magellan Programming Reference

2

SetPhaseInitializeTime 72h
GetPhaseInitializeTime 7Ch
Syntax SetPhaseInitializeTime axis time
GetPhaseInitializeTime axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
time unsigned 16 bits 0 to 215–1 unity cycles

Packet
Structure

Description SetPhaseInitializeTime sets the time value (in cycles) to be used during the algorithmic phase
initialization procedure. This value determines the duration of each of the four segments in the phase
initialization algorithm.

GetPhaseInitializeTime returns the value of the phase initialization time.

Restrictions

C-Motion API PMDresult PMDSetPhaseInitializeTime(PMDAxisInterface axis_intf,
 PMDuint16 time)

PMDresult PMDGetPhaseInitializeTime(PMDAxisInterface axis_intf,
 PMDuint16* time)

VB-Motion API Dim time as Short
MagellanAxis.PhaseInitializeTime = time
time = MagellanAxis.PhaseInitializeTime

see InitializePhase (p. 64), Set/GetPhaseInitializeMode (p. 166)

Brushless DC

SetPhaseInitializeTime
0 axis 72h

15 12 11 8 7 0

Data
write time

15 0

GetPhaseInitializeTime
0 axis 7Ch

15 12 11 8 7 0

Data
read time

15 0
C-Motion Magellan Programming Reference 167

168

2

SetPhaseOffset 76h
GetPhaseOffset 7Bh
Syntax SetPhaseOffset axis offset
GetPhaseOffset axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
offset unsigned 16 bits 0 to 215–1 unity counts

Packet
Structure

Description Before the first index capture has occurred, GetPhaseOffset will return –1. SetPhaseOffset sets
the offset from the index mark of the specified axis to the internal zero phase angle. This command
will have no immediate effect on the commutation angle but will have an effect once the index pulse
is encountered. The settable range of phase offset is 0 to 32,767.

GetPhaseOffset returns the value of the phase offset.

To convert counts to a phase angle in degrees, divide by the number of encoder counts per electrical
cycle and multiply by 360. For example, if a value of 500 is specified using SetPhaseOffset and the
counts per electrical cycle value has been set to 2,000 (SetPhaseCounts command) this
corresponds to an angle of (500/2,000)*360 = 90 degrees phase angle at the index mark.

Restrictions Some Magellan products support a 32-bit commutation parameter interface using the commands
Set/GetCommutationParameter. It is possible to set parameters through the 32-bit interface that
cannot be represented using the 16-bit interface. If an attempt is made to read a non-representable
value then a value representation error (37) will be raised.

C-Motion API PMDresult PMDSetPhaseOffset(PMDAxisInterface axis_intf,
 PMDint16 offset)

PMDresult PMDGetPhaseOffset(PMDAxisInterface axis_intf,
 PMDint16* offset)

VB-Motion API Dim offset as Short
MagellanAxis.PhaseOffset = offset
offset = MagellanAxis.PhaseOffset

see Set/GetCommutationParameter (p. 110)

Brushless DC

SetPhaseOffset
0 axis 76h

15 12 11 8 7 0

Data
write offset

15 0

GetPhaseOffset
0 axis 7Bh

15 12 11 8 7 0

Data
read offset

15 0
C-Motion Magellan Programming Reference

2

SetPhaseParameter 85h
GetPhaseParameter 86h
Syntax SetPhaseParameter axis parameter value
GetPhaseParameter axis parameter value

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

parameter ramp time 0
positive pulse time 1
negative pulse time 2
pulse command 3
— (Reserved) 4
ramp command 5

Type Range Scaling/Units

value unsigned 16bits 0 to 215–1 counts

Packet
Structure

Description SetPhaseParameter is used to set parameters required for brushless DC motor pulse phase
initialization. Phase initialization is required for commutation using an incremental encoder; the method
used is set by SetPhaseInitializeMode.

The positive pulse time is a non-negative count of sample periods giving the duration of the first,
positive pulse. The default sample period is 102 µs, but it can be changed by SetSampleTime.

The negative pulse time is a non-negative count of sample periods giving the duration of the second,
negative pulse. Each negative pulse follows immediately after a positive pulse. The time between
successive pulse pairs is given by three times the positive pulse time.

The pulse command is a non-negative value that is used as the motor command during both the positive
and negative pulses.

The ramp time is a non-negative count of sample periods giving the duration of the pull-in ramp part
of pulse phase initialization. It is possible, though not recommended, to set this to zero.

Brushless DC

SetPhaseParameter
0 axis 85h

15 12 11 8 7 0

write parameter
15 0

write value
15 0

GetPhaseParameter
0 axis 85h

15 12 11 8 7 0

write parameter
15 0

read value
15 0
C-Motion Magellan Programming Reference 169

170

2

SetPhaseParameter (cont.) 85h
GetPhaseParameter 86h
Description
(cont.)

The ramp command is a non-negative value that is used as the motor command during the pull-in
ramp.

By default all phase parameters are zero, however phase initialization cannot possibly work in that
state.

The process of pulse phase initialization and how to set the various parameters is discussed in the
Juno Velocity and Torque IC User Guide. [Radey: Change cross ref?]

GetPhaseParameter is used to read the values set by SetPhaseParameter.

Errors Unrecognized parameter code, or value out of range.

C-Motion API PMDresult PMDGetPhaseParameter (PMDAxisInterface axis_intf,
PMDuint16 parameter, PMDint16* value);

PMDresult PMDSetPhaseParameter (PMDAxisInterface axis_intf,
PMDuint16 parameter, PMDint16 value);

Script API GetPhaseParameter parameter
SetPhaseParameter parameter value

C# API Int32 value = PMDAxis.GetPhaseParameter(PMDPhaseParameter parameter);
PMDAxis.SetPhaseParameter(PMDPhaseParameter parameter, Int32 value);

Visual Basic
API

Int32 value = PMDAxis.GetPhaseParameter(ByVal parameter
As PMDPhaseParameter)

PMDAxis.SetPhaseParameter(ByVal parameter As PMDPhaseParameter,
ByVal value As Int32)

see InitializePhase (p. 64), SetPhaseInitializeMode (p. 166)
C-Motion Magellan Programming Reference

2

SetPhasePrescale E6h
GetPhasePrescale E7h
Syntax SetPhasePrescale axis scale
GetPhasePrescale axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

scale Off 0
1/64 1
1/128 2
1/256 3

Packet
Structure

Description SetPhasePrescale controls scaling of the encoder counts before they are used to calculate a
commutation angle for the specified axis. When operated in the pre-scale mode, the motion control IC
can commutate motors with a high number of counts per electrical cycle, such as motors with very high
accuracy encoders.

SetPhasePrescale Off removes the scale factor.

GetPhasePrescale returns the value of the scaling mode.

Restrictions Some Magellan products do not include this command because they support a full 32-bit commutation
interface using Set/GetCommutationParameter.

C-Motion API PMDresult PMDSetPhasePrescale(PMDAxisInterface axis_intf,
PMDuint16 scale);

PMDresult PMDGetPhasePrescale(PMDAxisInterface axis_intf,
PMDuint16* scale)

VB-Motion API Dim scale as Short
MagellanAxis.PhasePrescale = scale
scale = MagellanAxis.PhasePrescale

see Get/SetCommutationParameter (p. 110)

Brushless DC

SetPhasePrescale
0 axis E6h

15 12 11 8 7 0

Data
write 0 scale

15 2 1 0

GetPhasePrescale
0 axis E7h

15 12 11 8 7 0

Data
read 0 scale

15 2 1 0
C-Motion Magellan Programming Reference 171

172

2

SetPosition buffered 10h
GetPosition 4Ah
Syntax SetPosition axis position
GetPosition axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type RangeScalingUnits
position signed 32 bits –231 to 231–1 unity counts

microsteps

Packet
Structure

Description SetPosition specifies the trajectory destination of the specified axis. It is used in the Trapezoidal and
S-curve profile modes.

GetPosition reads the contents of the buffered position register.

Restrictions SetPosition is a buffered command. The value set using this command will not take effect until the
next Update or MultiUpdate command, with the Trajectory Update bit set in the update mask.

C-Motion API PMDresult PMDSetPosition(PMDAxisInterface axis_intf,
 PMDint32 position);

PMDresult PMDGetPosition(PMDAxisInterface axis_intf,
 PMDint32* position)

VB-Motion API Dim position as Long
MagellanAxis.Position = position
position = MagellanAxis.Position

see Set/GetAcceleration (p. 83), Set/GetDeceleration (p. 122), Set/GetJerk (p. 148),
Set/GetVelocity (p. 213), MultiUpdate (p. 65), Update (p. 215)

DC Brush Brushless DC Microstepping Pulse & Direction

SetPosition
0 axis 10h

15 12 11 8 7 0

First data word
write position (high-order part)

31 16

Second data word
write position (low-order part)

15 0

GetPosition
0 axis 4Ah

15 12 11 8 7 0

First data word
read position (high-order part)

31 16

Second data word
read position (low-order part)

15 0
C-Motion Magellan Programming Reference

2

SetPositionErrorLimit 97h
GetPositionErrorLimit 98h
Syntax SetPositionErrorLimit axis limit
GetPositionErrorLimit axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
limit unsigned 32 bits 0 to 231–1 unity counts

microsteps

Packet
Structure

Description SetPositionErrorLimit sets the absolute value of the maximum position error allowable by the motion
control IC for the specified axis. If the position error exceeds this limit, a motion error occurs. Such a motion
error can cause a choice of actions, or no action, configurable using the SetEventAction (Motion Error)
command.

When the motor type is microstepping or pulse & direction, this value is set in microsteps or steps,
respectively.

GetPositionErrorLimit returns the value of the position error limit.

Restrictions

C-Motion API PMDresult PMDSetPositionErrorLimit(PMDAxisInterface axis_intf,
PMDuint32 limit)

PMDresult PMDGetPositionErrorLimit(PMDAxisInterface axis_intf,
PMDuint32* limit)

VB-Motion API Dim limit as Long
MagellanAxis.PositionErrorLimit = limit
limit = MagellanAxis.PositionErrorLimit

see GetPositionError (p. 51), GetActualPosition (p. 87), Set/GetPosition (p. 172),
Set/GetEventAction (p. 135)

DC Brush Brushless DC Microstepping Pulse & Direction

SetPositionErrorLimit
0 axis 97h

15 12 11 8 7 0

First data word
write limit (high-order part)

31 16

Second data word
write limit (low-order part)

15 0

GetPositionErrorLimit
0 axis 98h

15 12 11 8 7 0

First data word
read limit (high-order part)

31 16

Second data word
read limit (low-order part)

15 0
C-Motion Magellan Programming Reference 173

174

2

SetPositionLoop buffered 67h
GetPositionLoop 68h
Syntax SetPositionLoop axis parameter value
GetPositionLoop axis parameter

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

parameter PID Proportional Gain (Kp) 0
PID Integrator Gain (Ki) 1
PID Integrator Limit (Ilimit) 2
PID Derivative Gain (Kd) 3
PID Derivative Time 4
PID Output Gain (Kout) 5
Velocity Feedforward Gain (Kvff) 6
Acceleration Feedforward Gain (Kaff) 7
Biquad1, Enable Filter 8
Biquad1, CoefficientB0 9
Biquad1, CoefficientB1 10
Biquad1, CoefficientB2 11
Biquad1, CoefficientA1 12
Biquad1, CoefficientA2 13
Biquad1, CoefficientK 14
Biquad2, Enable filter 15
Biquad2, CoefficientB0 16
Biquad2, CoefficientB1 17
Biquad2, CoefficientB2 18
Biquad2, CoefficientA1 19
Biquad2, CoefficientA2 20
Biquad2, CoefficientK 21

Type Range/Scaling
value signed 32 bits see below

Packet
Structure

DC Brush Brushless DC

SetPositionLoop
0 axis 67h

15 12 11 8 7 0

First data word
write parameter

15 0

Second data word
write value (high-order part)

31 16

Third data word
write value (low-order part)

15 0
C-Motion Magellan Programming Reference

2

SetPositionLoop (cont.) buffered 67h
GetPositionLoop 68h
Packet
Structure
(cont.)

Description Set/GetPositionLoop is used to configure the operating parameters of the PID position loop. See the
product user guide for more information on how each parameter is used in the position loop processing.
Though these commands always use 32-bit data, the range and format vary depending on the parameter,
as follows:

GetPositionLoop
0 axis 68h

15 12 11 8 7 0

First data word
write parameter

15 0

Second data word
read value (high-order part)

31 16

Third data word
read value (low-order part)

15 0

Parameter Range Scaling Units
Velocity Feedforward Gain (Kvff) 0 to 215–1 unity gain/cycles

Acceleration Feedforward Gain (Kaff) 0 to 215–1 unity gain/cycles2

PID Proportional Gain (Kp) 0 to 215–1 unity gain

PID Integrator Gain (Ki) 0 to 215–1 1/256 gain/cycles

PID Derivative Gain (Kd) 0 to 215–1 unity gain*cycles

PID Integrator Limit (Ilimit) 0 to 231–1 unity count*cycles

PID Derivative Time 1 to 215–1 unity cycles

PID Output Gain (Kout) 0 to 216–1 100/216 % output

Biquad1, Enable Filter 0 to 1 0=disable,
1=enable

Biquad1, CoefficientB0 –215 to 215–1 unity

Biquad1, CoefficientB1 –215 to 215–1 unity

Biquad1, CoefficientB2 –215 to 215–1 unity

Biquad1, CoefficientA1 –215 to 215–1 unity

Biquad1, CoefficientA2 –215 to 215–1 unity

Biquad1, CoefficientK 0 to 215–1 unity

Biquad2, Enable Filter 0 to 1 0=disable,
1=enable

Biquad2, CoefficientB0 –215 to 215–1 unity

Biquad2, CoefficientB1 –215 to 215–1 unity

Biquad2, CoefficientB2 –215 to 215–1 unity

Biquad2, CoefficientA1 –215 to 215–1 unity

Biquad2, CoefficientA2 –215 to 215–1 unity

Biquad2, CoefficientK 0 to 215–1 unity
C-Motion Magellan Programming Reference 175

176

2

SetPositionLoop (cont.) buffered 67h
GetPositionLoop 68h
Many of these parameters are self-descriptive. However, below are some additional comments on
the use of specific parameters.

• PID Derivative Time has units of cycles. This is the sample time of the axis, as configured
by SetSampleTime. For example, if set to 10, the derivative term will be computed ev-
ery 10 cycles of the axis position loop. PID Integrator Limit has units of count*cycles, and
scaling of unity. This matches the units and scaling of the position loop integrator sum.
For example, a constant position error of 100 counts which is present for 256 cycles will
result an an integrator sum of 100*256 = 25,600.

• PID Integrator Gain has scaling of 1/256. Thus, a setting of 256 corresponds to “uni-
ty” integrator gain. From the above example, this would make the integrator sum of
25,600 create a contribution to the PID output of 25,600.

• PID Output Gain is a scaling factor applied to the output of the digital servo filter,
with units of % output. Its default value is 65,535, or approximately 100% output.
To set the scaling to, for example, 50% of output, PID Output Gain would be set to
32,767.

• The biquad coefficients configure the two biquad output filters. If both filters are en-
abled, their outputs are chained (filter1 followed by filter2). If filter1 is disabled for an
axis, filter2 is also disabled for that axis, regardless of user setting of Biquad2 Enable Fil-
ter. The signed coefficients and unsigned scalar K combine to implement the following
equation, for each filter:

Where Yn is the filter output at cycle n, and Xn is the filter input at cycle n.

Restrictions Set/GetPositionLoop are buffered commands. All parameters set are buffered, and will not take
effect until an update is done on the position loop (through Update command, MultiUpdate
command, or update action on breakpoint). The values read by GetPositionLoop are the buffered
settings.

C-Motion API PMDresult PMDSetPositionLoop(PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDint32 value)

PMDresult PMDGetPositionLoop(PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDint32* value)

VB-Motion API MagellanAxis.PositionLoopSet([in] parameter, [in] value)
MagellanAxis.PositionLoopGet([in] parameter, [out] value)

see Update (p. 215), Set/GetUpdateMask (p. 211), MultiUpdate (p. 65),
Set/GetBreakpointUpdateMask (p. 97), GetPositionLoopValue (p. 52)

Yn K B0 Xn B1 Xn 1– B2 Xn 2– A1 Yn 1– A2 Yn 2–+++ =
C-Motion Magellan Programming Reference

2

SetProfileMode buffered A0h
GetProfileMode A1h
Syntax SetProfileMode axis mode
GetProfileMode axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

mode Trapezoidal 0
Velocity Contouring 1
S-curve 2
Electronic Gear 3

Packet
Structure

Description SetProfileMode sets the profile mode for the specified axis.

GetProfileMode returns the contents of the profile-mode register for the specified axis.

Restrictions SetProfileMode is a buffered command. The value set using this command will not take effect until the
next Update or MultiUpdate command, with the Trajectory Update bit set in the update mask.

C-Motion API PMDresult PMDSetProfileMode(PMDAxisInterface axis_intf,
PMDuint16 mode)

PMDresult PMDGetProfileMode(PMDAxisInterface axis_intf,
PMDuint16* mode)

VB-Motion API Dim mode as Short
MagellanAxis.ProfileMode = mode
mode = MagellanAxis.ProfileMode

see MultiUpdate (p. 65), Update (p. 215)

DC Brush Brushless DC Microstepping Pulse & Direction

SetProfileMode
0 axis A0h

15 12 11 8 7 0

Data
write 0 mode

15 3 2 0

GetProfileMode
0 axis A1h

15 12 11 8 7 0

Data
read 0 mode

15 3 2 0
C-Motion Magellan Programming Reference 177

178

2

SetPWMFrequency 0Ch
GetPWMFrequency 0Dh
Syntax SetPWMFrequency axis frequency
GetPWMFrequency axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
frequency unsigned 16 bits 0 to 216 –1 1/28 kHz

Packet
Structure

Description SetPWMFrequency sets the PWM output frequency (in kHz) for the specified axis. To select one
of the supported frequencies, pass the value listed in the SetPWMFrequency Value column as the
frequency argument to this command.

Atlas These commands are relayed to an attached Atlas amplifier. Atlas supports 20 kHz, 40 kHz, and
80 kHz PWM frequencies.

Restrictions Only 20 kHz and 80 kHz are currently supported by the Magellan motion control IC. Only 20 kHz
and 40 kHz are supported in the ION products.

The PWM frequency can be changed only when motor output is disabled (e.g., immediately after
power-up or reset).

C-Motion API PMDresult PMDSetPWMFrequency(PMDAxisInterface axis_intf,
 PMDuint16 frequency)

PMDresult PMDGetPWMFrequency(PMDAxisInterface axis_intf,
 PMDuint16* frequency)

DC Brush Brushless DC Microstepping

SetPWMFrequency
0 axis 0Ch

15 12 11 8 7 0

Data
write frequency

15 0

GetPWMFrequency
0 axis 0Dh

15 12 11 8 7 0

Data
read frequency

15 0

Approximate
Frequency

PWM bit
Resolution

Actual
Frequency

SetPWMFrequency
Value

20 kHz 10 19.531 kHz 5,000
40 kHz 9 39.062 kHz 10,000
80 kHz 8 78.124 kHz 20,000
C-Motion Magellan Programming Reference

2

SetPWMFrequency (cont.) 0Ch
GetPWMFrequency 0Dh
VB-Motion API Dim frequency as Short
MagellanAxis.PWMFrequency = frequency
frequency = MagellanAxis.PWMFrequency

see SetOutputMode (p. 158)
C-Motion Magellan Programming Reference 179

180

2

SetSampleTime 3Bh
GetSampleTime 3Ch
Syntax SetSampleTime time
GetSampleTime

Motor Types

Arguments Name Type Range Units
time unsigned 32 bits 51 to 220 microseconds

Packet
Structure

Description SetSampleTime sets the time basis for the motion control IC. This time basis determines the
trajectory update rate for all motor types as well as the servo loop calculation rate for DC brush and
brushless DC motors. It does not, however, determine the commutation rate of the brushless DC
motor types, nor the PWM or current loop rates for any motor type.

The time value is expressed in microseconds. The motion control IC hardware can adjust the cycle
time only in increments of 51.2 microseconds; the time value passed to this command will be
rounded to the nearest multiple of this base value.

Minimum cycle time depends on the product and number of enabled axes as follows:

DC Brush Brushless DC Microstepping Pulse & Direction

SetSampleTime
0 3Bh

15 8 7 0

First data word
write time (high-order part)

31 16

Second data word
write time (low-order part)

15 0

GetSampleTime
0 3Ch

15 8 7 0

First data word
read time (high-order part)

31 16

Second data word
read time (low-order part)

15 0

Enabled
Axes

Minimum
Cycle
Time

Cycle Time
w/ Trace
Capture

Time
per Axis

Maximum Cycle
Frequency

1 (ION) 102.4 µs 102.4 µs 102.4 µs 9.76 kHz
1 MC58113 51.2 µs 51.2 µs 51.2 µs 19.53 kHz
1 (Magellan

Single-axis)
51.2 µs 102.4 µs 51.2 µs 19.53 kHz (9.76 w/

trace capture)
1 (Magellan

Multi-axis)
102.4 µs 102.4 µs 102.4 µs 9.76 kHz

2 (Magellan) 153.6 µs 153.6 µs 76.8 µs 6.51 kHz
3 (Magellan) 204.8 µs 204.8 µs 68.3 µs 4.88 kHz
4 (Magellan) 256 µs 256 µs 64 µs 3.91 kHz
C-Motion Magellan Programming Reference

2

SetSampleTime (cont.) 3Bh
GetSampleTime 3Ch
Description
(cont.)

Using the trace feature on single axis Magellan products with the sample time set to 51.2 µs will result
in unexpected behavior.

GetSampleTime returns the value of the sample time.

Restrictions This command affects the cycle time for all axes on multi-axis configurations.

This command cannot be used to set a sample time lower than the required minimum cycle time for the
current configuration. Attempting to do so will set the sample time to the required minimum cycle time
as specified in the previous table.

C-Motion API PMDresult PMDSetSampleTime(PMDAxisInterface axis_intf,
PMDuint32 time)

PMDresult PMDGetSampleTime(PMDAxisInterface axis_intf,
PMDuint32* time)

VB-Motion API Dim time as Long
MagellanAxis.SampleTime = time
time = MagellanAxis.SampleTime

see
C-Motion Magellan Programming Reference 181

182

2

SetSerialPortMode 8Bh
GetSerialPortMode 8Ch
Syntax SetSerialPortMode mode
GetSerialPortMode

Motor Types

Arguments Name Type Encoding
mode unsigned 16 bits see below

Packet
Structure

Description SetSerialPortMode sets the configuration for the asynchronous serial port. It configures the timing and
framing of the serial port on the unit, regardless of whether RS-232 or RS-485 voltage levels are being used.
The response to this command will use the serial port settings in effect before the command is executed,
for example, transmission rate and parity. The new serial port settings must be used for the next command.

GetSerialPortMode returns the configuration for the asynchronous serial port, regardless of
whether RS-232 or RS-485 voltage levels are being used.

The following table shows the encoding of the data used by this command.

DC Brush Brushless DC Microstepping Pulse & Direction

SetSerialPortMode
0 axis 8Bh

15 8 7 0

Data
write multi-drop address 0 protocol stop bits parity transmission rate

15 11 10 9 8 7 6 5 4 3 0

GetSerialPortMode
0 axis 8Ch

15 8 7 0

Data
read multi-drop address 0 protocol stop bits parity transmission rate

15 11 10 9 8 7 6 5 4 3 0

Bit Number Name Instance Encoding
0–3 Transmission Rate 1200 baud

2400 baud
9600 baud
19200 baud
57600 baud
115200 baud
230400 baud
460800 baud

0
1
2
3
4
5
6
7

4–5 Parity none
odd
even

0
1
2

6 Stop Bits 1
2

0
1

7–8 Protocol Point-to-point
Multi-drop using idle-line detection
— (Reserved)
— (Reserved)

0
1
2
3

11–15 Multi-Drop Address Address 0
Address 1

Address 31

0
1
...
31
C-Motion Magellan Programming Reference

2

SetSerialPortMode (cont.) 8Bh
GetSerialPortMode 8Ch
Restrictions

C-Motion API PMDresult PMDSetSerialPortMode(PMDAxisInterface axis_intf,
PMDuint8 baud,
PMDuint8 parity,
PMDuint8 stopBits,
PMDuint8 protocol,
PMDuint8 multiDropID)

PMDresult PMDGetSerialPortMode(PMDAxisInterface axis_intf,
PMDuint8* baud,
PMDuint8* parity,
PMDuint8* stopBits,
PMDuint8* protocol,
PMDuint8* multiDropID)

VB-Motion API CommunicationSerial.SerialPortModeSet([in] baud,
[in] parity,
[in] stopBits,
[in] protocol,
[in] multidropID)

see
C-Motion Magellan Programming Reference 183

184

2

SetSettleTime AAh
GetSettleTime ABh
Syntax SetSettleTime axis time
GetSettleTime axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
time unsigned 16 bits 0 to 216–1 unity cycles

Packet
Structure

Description SetSettleTime sets the time, in number of cycles, that the specified axis must remain within the
settle window before the Axis Settled indicator in the Activity Status register is set.

GetSettleTime returns the value of the settle time for the specified axis.

Restrictions

C-Motion API PMDresult PMDSetSettleTime(PMDAxisInterface axis_intf,
PMDuint16 time)

PMDresult PMDGetSettleTime(PMDAxisInterface axis_intf,
PMDuint16* time)

VB-Motion API Dim time as Short
MagellanAxis.SettleTime = time
time = MagellanAxis.SettleTime

see Set/GetMotionCompleteMode (p. 149), Set/GetSettleWindow (p. 185),
GetActivityStatus (p. 25)

DC Brush Brushless DC Microstepping Pulse & Direction

SetSettleTime
0 axis AAh

15 12 11 8 7 0

Data
write time

15 0

GetSettleTime
0 axis ABh

15 12 11 8 7 0

Data
read time

15 0
C-Motion Magellan Programming Reference

2

SetSettleWindow BCh
GetSettleWindow BDh
Syntax SetSettleWindow axis window
GetSettleWindow axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
window unsigned 16 bits 0 to 216–1 unity counts

Packet
Structure

Description SetSettleWindow sets the position range within which the specified axis must remain for the duration
specified by SetSettleTime before the Axis Settled indicator in the Activity Status register is set.

GetSettleWindow returns the value of the settle window.

Restrictions

C-Motion API PMDresult PMDSetSettleWindow (PMDAxisInterface axis_intf,
PMDuint16 window)

PMDresult PMDGetSettleWindow (PMDAxisInterface axis_intf,
PMDuint16* window)

VB-Motion API Dim window as Short
MagellanAxis.SettleWindow = window
window = MagellanAxis.SettleWindow

see Set/GetMotionCompleteMode (p. 149), Set/GetSettleTime (p. 184), GetActivityStatus (p. 25)

DC Brush Brushless DC Microstepping Pulse & Direction

SetSettleWindow
0 axis BCh

15 12 11 8 7 0

Data
write window

15 0

GetSettleWindow
0 axis BDh

15 12 11 8 7 0

Data
read window

15 0
C-Motion Magellan Programming Reference 185

186

2

SetSignalSense A2h
GetSignalSense A3h
Syntax SetSignalSense axis sense
GetSignalSense axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Indicator Encoding Bit Number
sense EncoderA 0001h 0

EncoderB 0002h 1
Encoder Index 0004h 2
Capture Input 0008h 3
Positive Limit 0010h 4
Negative Limit 0020h 5
AxisIn 0040h 6
HallA 0080h 7
HallB 0100h 8
HallC 0200h 9
AxisOut 0400h 10
Step Output/SPI Enable 0800h 11
Motor Direction 1000h 12
— (Reserved) 13–15

Packet
Structure

Description SetSignalSense establishes the sense of the corresponding bits of the Signal Status register, with
the addition of Step Output and Motor Direction, for the specified axis.

For Encoder Index, if the sense bit is 1, an index will be recognized for use in index-based phase
correction if the index is high. For MC58113, if the sense bit is 1, an index capture will happen on
a rising edge of the index signal, otherwise on a falling edge. This is true for index phase correction
as well.

For the Capture Input, if the sense bit is 1, a capture will occur on a low-to-high signal transition.
Otherwise, a capture will occur on a high-to-low transition. For MC58113 this bit applies only to
capture on the home signal, bit 2 applies to capture on the index signal.

DC Brush Brushless DC Microstepping Pulse & Direction

SetSignalSense
0 axis A2h

15 12 11 8 7 0

Data
write 0 sense

15 13 12 0

GetSignalSense
0 axis A3h

15 12 11 8 7 0

Data
read 0 sense

15 13 12 0
C-Motion Magellan Programming Reference

2

SetSignalSense (cont.) A2h
GetSignalSense A3h
Description
(cont.)

For Positive Limit and Negative Limit: if the sense bit is 1, an overtravel condition will occur if the signal
is high. Otherwise, an overtravel condition will occur when the signal is low.

The AxisOut signal is inverted if the sense bit is set to one; otherwise it is not inverted.

When the Step Output/SPI Enable bit is set to 1, a step will be generated by the motion control IC with
a low-to-high transition on the Pulse signal. Otherwise, a step will be generated by the motion control
IC with a high-to-low transition on the Pulse signal.

For non-MC58113 motion control ICs, the same bit is used to control the sense of the SPI Enable signal,
either in SPI DAC or in Atlas SPI output mode. When the bit is set the Enable signal will be held low
when addressing the SPI output device, otherwise it will be held high. When driving an Atlas amplifier
this bit must be set. Setting the Motor Direction bit has the effect of swapping the sense of positive and
negative motor movement.

For MC58113, the signal sense for SPI Enabler is active low for Atlas and active high for SPI DAC.

GetSignalSense returns the value of the Signal Sense mask.

Atlas No additional Atlas communication is performed for these commands. Atlas communication will fail
if bit 11 is not properly set.

Restrictions In ION products, FaultOut and /Enable exist in the Signal Status register, but their sense is not
controllable.

In ION products, when the Capture Source is set to Encoder Index, only the Encoder Index bit of signal
sense should be used to configure its polarity. The Capture Input bit of Signal Sense should always be
cleared to zero (0) in this case.

Not all bits are implemented for all products. See the product user guide.

For Atlas these signals are not included in the Magellan signal status register.

C-Motion API PMDresult PMDSetSignalSense(PMDAxisInterface axis_intf,
 PMDuint16 sense)

PMDresult PMDGetSignalSense(PMDAxisInterface axis_intf,
 PMDuint16* sense)

VB-Motion API Dim sense as Short
MagellanAxis.SignalSense = sense
sense = MagellanAxis.SignalSense

see GetSignalStatus (p. 55)
C-Motion Magellan Programming Reference 187

188

2

SetSPIMode 0Ah
GetSPIMode 0Bh
Syntax SetSPIMode mode
GetSPIMode

Motor Types

Arguments Name Instance Encoding
mode RisingEdge 0

RisingEdgeDelay 1
FallingEdge 2
FallingEdgeDelay 3

Packet
Structure

Description SetSPIMode configures the communication settings for the motion control IC’s SPI (Serial
Peripheral Interface) DAC output port. Data is output as a series of 16-bit data words transmitted
at 10 Mbps. The mode parameter controls the data clocking scheme as shown in the following table.

Atlas No additional Atlas communication is performed for these commands. When using Atlas output
the SPI mode must be zero.

Restrictions SPI output is only available when the motor type is DC brush, and only in some products. See the
product user guide.

C-Motion API PMDresult PMDSetSPIMode(PMDAxisInterface axis_intf, PMDuint16 mode)
PMDresult PMDGetSPIMode(PMDAxisInterface axis_intf, PMDuint16* mode)

VB-Motion API Dim mode as Short
MagellanObject.SPIMode = mode
mode = MagellanObject.SPIMode

see SetOutputMode (p. 158)

DC Brush

SetSPIMode
0 0Ah

15 8 7 0

Data
write 0 mode

15 2 1 0

GetSPIMode
0 0Bh

15 8 7 0

Data
read 0 mode

15 2 1 0

Mode Encoding Description
RisingEdge 0 Rising edge without phase delay: The SPIClock signal is inactive low. The

SPIXmt pin transmits data on the rising edge of the SPIClock signal.
RisingEdgeDelay 1 Rising edge with phase delay: The SPIClock signal is inactive low. The

SPIXmt pin transmits data one half-cycle ahead of the rising edge of
the SPIClock signal.

FallingEdge 2 Falling edge without phase delay: The SPIClock signal is inactive high. The
SPIXmt pin transmits data on the falling edge of the SPIClock signal.

FallingEdgeDelay 3 Falling edge with phase delay: The SPIClock signal is inactive high. The
SPIXmt pin transmits data one half-cycle ahead of the falling edge of
the SPIClock signal.
C-Motion Magellan Programming Reference

2

SetStartVelocity 6Ah
GetStartVelocity 6Bh
Syntax SetStartVelocity axis velocity
GetStartVelocity axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
velocity unsigned 32 bits 0 to 231–1 1/216 steps/cycle

microsteps/cycle

Packet
Structure

Description SetStartVelocity loads the starting velocity register for the specified axis. The start velocity is the
instantaneous velocity at the start and at the end of the profile.

GetStartVelocity reads the value of the starting velocity register.

Scaling example: To load a starting velocity value of 1.750 steps/cycle multiply by 65,536 (giving
114,688) and load the resultant number as a 32-bit number, giving 0001 in the high word and C000h in
the low word. Values returned by GetStartVelocity must correspondingly be divided by 65,536 to
convert them to units of counts/cycle.

Restrictions SetStartVelocity is only used in the Velocity Contouring and Trapezoidal profile modes.

C-Motion API PMDresult PMDSetStartVelocity(PMDAxisInterface axis_intf,
PMDuint32 velocity)

PMDresult PMDGetStartVelocity(PMDAxisInterface axis_intf,
PMDuint32* velocity)

VB-Motion API Dim velocity as Long
MagellanAxis.StartVelocity = velocity
velocity = MagellanAxis.StartVelocity

see Set/GetVelocity (p. 213), Set/GetAcceleration (p. 83), Set/GetDeceleration (p. 122),
Set/GetPosition (p. 172)

Microstepping Pulse & Direction

SetStartVelocity
0 axis 6Ah

15 12 11 8 7 0

First data word
write velocity (high-order part)

31 16

Second data word
write velocity (low-order part)

15 0

GetStartVelocity
0 axis 6Bh

15 12 11 8 7 0

First data word
read velocity (high-order part)

31 16

Second data word
read velocity (low-order part)

15 0
C-Motion Magellan Programming Reference 189

190

2

SetStepRange CFh
GetStepRange CEh
Syntax SetStepRange axis range
GetStepRange axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

range 0–4.98 Msteps/sec 1
0–622.5 ksteps/sec 4
0–155.6 ksteps/sec 6
0–38906 steps/sec 8

Packet
Structure

Description SetStepRange sets the maximum pulse rate frequency for the specified axis. For example, if the
desired maximum pulse rate is 200,000 pulses/second, the SetStepRange 6 command should be
issued.

GetStepRange returns the maximum pulse rate frequency for the specified axis.

Restrictions The MC55110 and the MC58110 have a maximum step range of 100 Kstep/s, which cannot be
changed. The MC58113 has a maximum step range of 1 Mstep/s which cannot be changed.

SetStepRange must be called before any moves are made, and must not be called after any moves
have been made.

C-Motion API PMDresult PMDSetStepRange(PMDAxisInterface axis_intf,
PMDuint16 range)

PMDresult PMDGetStepRange(PMDAxisInterface axis_intf,
PMDuint16* range)

VB-Motion API Dim range as Short
MagellanAxis.StepRange = range
range = MagellanAxis.StepRange

see

Pulse & Direction

SetStepRange
0 axis CFh

15 12 11 8 7 0

Data
write 0 range

15 4 3 0

GetStepRange
0 axis CEh

15 12 11 8 7 0

Data
read 0 range

15 4 3 0
C-Motion Magellan Programming Reference

2

SetStopMode buffered D0h
GetStopMode D1h
Syntax SetStopMode axis mode
GetStopMode axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

mode No Stop 0
Abrupt Stop 1
Smooth Stop 2

Packet
Structure

Description SetStopMode stops the specified axis. The available stop modes are Abrupt Stop, which instantly
(without any deceleration phase) stops the axis; Smooth Stop, which uses the programmed deceleration
value and profile shape for the current profile mode to stop the axis; or No Stop, which is generally used
to turn off a previously issued set stop command.

Note: After an Update, a buffered stop command (SetStopMode command) will reset to the No Stop
condition. In other words, if the SetStopMode command is followed by an Update command and then
by a GetStopMode command, the retrieved stop mode will be No Stop.

GetStopMode returns the value of the stop mode.

Restrictions Smooth Stop mode is not available in the Electronic Gear profile mode.

SetStopMode is a buffered command. The value set using this command will not take effect until the
next Update or MultiUpdate command, with the Trajectory Update bit set in the update mask.

C-Motion API PMDresult PMDSetStopMode(PMDAxisInterface axis_intf, PMDuint16 mode)
PMDresult PMDGetStopMode(PMDAxisInterface axis_intf, PMDuint16* mode)

VB-Motion API Dim mode as Short
MagellanAxis.StopMode = mode
mode = MagellanAxis.StopMode

see MultiUpdate (p. 65), Update (p. 215)

DC Brush Brushless DC Microstepping Pulse & Direction

SetStopMode
0 axis D0h

15 12 11 8 7 0

Data
write 0 mode

15 2 1 0

GetStopMode
0 axis D1h

15 12 11 8 7 0

Data
read 0 mode

15 2 1 0
C-Motion Magellan Programming Reference 191

192

2

SetSynchronizationMode F2h
GetSynchronizationMode F3h
Syntax SetSynchronizationMode mode
GetSynchronizationMode

Motor Types

Arguments Name Instance Encoding
mode Disabled 0

Master 1
Slave 2

Packet
Structure

Description SetSynchronizationMode sets the mode of the pin used for the synchronization of the internal
timer across multiple motion ICs. In the Disabled mode, the pin is configured as an input and is not
used. In the Master mode, the pin outputs a synchronization pulse that can be used by slave nodes
or other devices to synchronize with the internal chip cycle of the master node. In the Slave mode,
the pin is configured as an input and a pulse on the pin synchronizes the internal chip cycle.

When the synchronization mode is set to either Master or Slave, the internal time counter will be
set to zero. This feature is intended to allow synchronization of updates across processors by using
time breakpoints.

GetSynchronizationMode returns the value of the synchronization mode.

Restrictions If the motion control IC is configured as a slave, and any axis is configured for pulse & direction
output, multi-chip synchronization cannot be used.

Multichip synchronization is not supported in all products. See the product user guide.

C-Motion API PMDresult PMDSetSynchronizationMode(PMDAxisInterface axis_intf,
 PMDuint16 mode)

PMDresult PMDGetSynchronizationMode(PMDAxisInterface axis_intf,
 PMDuint16* mode)

VB-Motion API Dim mode as Short
MagellanObject.SynchronizationMode = mode
mode = MagellanObject.SynchronizationMode

see GetTime (p. 58), SetBreakPoint (p. 94)

DC Brush Brushless DC Microstepping

SetSynchronizationMode
0 F2h

15 8 7 0

Data
write 0 mode

15 2 1 0

GetSynchronizationMode
0 F3h

15 8 7 0

Data
read 0 mode

15 2 1 0
C-Motion Magellan Programming Reference

2

SetTraceMode B0h
GetTraceMode B1h
Syntax SetTraceMode mode
GetTraceMode

Motor Types

Arguments Name Instance Encoding
mode 16-bit unsigned see below

Packet
Structure

Description SetTraceMode sets the behavior for the next trace. Mode is a bitmask, as shown below:

Wrap mode may be either One Time (zero), or Rolling Buffer (one). In One Time mode, the trace
continues until the trace buffer is filled, then stops. In Rolling Buffer mode, the trace continues from
the beginning of the trace buffer after the end is reached. When in rolling mode, values stored at the
beginning of the trace buffer are lost if they are not read before being overwritten by the wrapped data.

Trigger mode may be either Internal (zero), or External (one). This mode is used to control tracing on
attached Atlas amplifiers. In Internal trigger mode the trace bit in all Atlas torque commands will be set
whenever Magellan trace is active. In this mode Atlas should be configured to use its own internal trace
period to time trace samples. In External mode the trace bit in all Atlas torque commands will be set
exactly once each time Magellan stores a trace sample, and clear at other times. In this mode Atlas
should be configured to use its external trigger mode to synchronize sampling with Magellan.

GetTraceMode returns the value for the trace mode.

Atlas No additional Atlas communication is performed for these commands, but the Atlas trace mode, and
other trace parameters may have to be set by addressing an Atlas amplifier directly. See Atlas Digital
Amplifier Complete Technical Reference for more detail.

Restrictions

DC Brush Brushless DC Microstepping Pulse & Direction

SetTraceMode
0 B0h

15 8 7 0

Data
write mode

15 0

GetTraceMode
0 B1h

15 8 7 0

Data
read mode

15 0

Name Bit
Wrap Mode 0
 - (Reserved) 1-7
Trigger Mode 8
 - (Reserved) 9-15
C-Motion Magellan Programming Reference 193

194

2

SetTraceMode (cont.) B0h
GetTraceMode B1h
C-Motion API PMDresult PMDSetTraceMode(PMDAxisInterface axis_intf, PMDuint16 mode)
PMDresult PMDGetTraceMode(PMDAxisInterface axis_intf, PMDuint16* mode)

VB-Motion API Dim mode as Short
MagellanObject.TraceMode = mode
mode = MagellanObject.TraceMode

see GetTraceStatus (p. 60)
C-Motion Magellan Programming Reference

2

SetTracePeriod B8h
GetTracePeriod B9h
Syntax SetTracePeriod period
GetTracePeriod

Motor Types

Arguments Name Type Range Scaling Units
period unsigned 16 bits 1 to 216–1 unity cycles

Packet
Structure

Description SetTracePeriod sets the interval between contiguous trace captures. For example, if the trace period is
set to one, trace data will be captured at the end of every chip cycle. If the trace period is set to two, trace
data will be captured at the end of every second chip cycle, and so on.

GetTracePeriod returns the value for the trace period.

Atlas No additional Atlas communication is performed for these commands, but Atlas trace parameters may
have to be set by addressing an Atlas amplifier directly. Atlas trace may be synchronized to Magellan
trace by using the "external trigger" trace mode, which is done using the trace bit in each Atlas torque
command. See Atlas Digital Amplifier Complete Technical Reference for more detail.

Restrictions

C-Motion API PMDresult PMDSetTracePeriod(PMDAxisInterface axis_intf,
PMDuint16 period);

PMDresult PMDGetTracePeriod(PMDAxisInterface axis_intf,
PMDuint16* period)

VB-Motion API Dim period as Short
MagellanObject.TracePeriod = period
period = MagellanObject.TracePeriod

see Set/GetSampleTime (p. 180), Set/GetTraceStart (p. 196), Set/GetTraceStop (p. 199)

DC Brush Brushless DC Microstepping Pulse & Direction

SetTracePeriod
0 B8h

15 8 7 0

Data
write period

15 0

GetTracePeriod
0 B9h

15 8 7 0

Data
read period

15 0
C-Motion Magellan Programming Reference 195

196

2

SetTraceStart B2h
GetTraceStart B3h
Syntax SetTraceStart triggerAxis_condition_triggerBit_triggerState
GetTraceStart

Motor Types

Arguments Name Instance Encoding
triggerAxis Axis1 0

Axis2 1
Axis3 2
Axis4 3

condition Immediate 0
Next Update 1
Event Status 2
Activity Status 3
Signal Status 4
Drive Status 5

triggerBit Status Register Bit 0 to 15

triggerState (tS) Triggering State of the Bit 0 (value = 0)
1 (value = 1)

Packet
Structure

Description SetTraceStart sets the condition for starting the trace. The Immediate condition requires no axis
to be specified and the trace will begin upon execution of this instruction. The other four conditions
require an axis to be specified, and when the condition for that axis is attained, the trace will begin.

When a status register bit is the trigger, the bit number and state must be included in the argument.
The trace is started when the indicated bit reaches the specified state (0 or 1).

GetTraceStart returns the value of the trace-start trigger.

Once a trace has started, the trace-start trigger is reset to zero (0).

DC Brush Brushless DC Microstepping Pulse & Direction

SetTraceStart
0 B2h

15 8 7 0

Data
write 0 tS triggerBit condition triggerAxis

15 13 12 11 8 7 4 3 0

GetTraceStart
0 B3h

15 8 7 0

Data
read 0 tS triggerBit condition triggerAxis

15 13 12 11 8 7 4 3 0
C-Motion Magellan Programming Reference

2

SetTraceStart (cont.) B2h
GetTraceStart B3h
Description
(cont.)

The following table shows the corresponding value for combinations of triggerBit and register0.

Examples:

If it is desired that the trace begin on the next Update for axis 3, then a 2 is set for the axis number, a 1
is set for the condition, and bit number and state can be loaded with zeroes since they are not used. The
actual data word sent to the motor processor in this case is 0012h.

If it is desired that the trace begin when bit 7 of the Activity Status register for axis 2 goes to 0, then the trace
start is loaded as follows: A 1 is loaded for axis number, a 3 is loaded for condition, a 7 is loaded for bit number,
and a 0 is loaded for state. The actual data word sent to the motor processor is 0731h.

Atlas No additional Atlas communication is performed for these commands, but Atlas trace parameters may
have to be set by addressing an Atlas amplifier directly. Magellan trace start is signaled to Atlas by using
the trace bit in each Atlas torque command, See Atlas Digital Amplifier Complete Technical Reference for more
detail.

Restrictions Not all trace start conditions are available in all products. See the product user guide.

C-Motion API PMDresult PMDSetTraceStart(PMDAxisInterface axis_intf,
PMDAxis traceAxis,
PMDuint8 condition,
PMDuint8 triggerBit,
PMDuint8 triggerState)

PMDresult PMDGetTraceStart(PMDAxisInterface axis_intf,
PMDAxis* traceAxis,
PMDuint8* condition,
PMDuint8* triggerBit,
PMDuint8* triggerState)

TriggerBit
Event Status
Register

Activity
Status
Register

Signal Status
Register

Drive Status
Register

0 Motion Complete Phasing Initialized Encoder A
1 Wrap-around At Maximum

Velocity
Encoder B In Foldback

2 Breakpoint 1 Tracking Encoder Index Overtemperature
3 Position Capture Capture Input Shunt Active
4 Motion Error Positive Limit In Holding
5 Positive Limit Negative Limit Overvoltage
6 Negative Limit AxisIn Undervoltage
7 Instruction Error Axis Settled Hall Sensor A Atlas Disabled
8 Disable Motor mode Hall Sensor B
9 Overtemperature

Fault
Position Capture Hall Sensor C

0Ah Drive Exception In Motion
0Bh Commutation Error In Positive Limit
0Ch Current Foldback In Negative Limit Clipping
0Dh /Enable Input
0Eh Breakpoint 2 FaultOut
0Fh Atlas not

connected
C-Motion Magellan Programming Reference 197

198

2

SetTraceStart (cont.) B2h
GetTraceStart B3h
VB-Motion API MagellanObject.TraceStartSet([in] triggerAxis,
[in] condition,
[in] triggerBit,
[in] triggerState)

MagellanObject.TraceStartGet([out] triggerAxis,
[out] condition,
[out] triggerBit,
[out] triggerState)

see Set/GetBufferLength (p. 101), GetTraceCount (p. 59), Set/GetTraceMode (p. 193),
Set/GetTracePeriod (p. 195), Set/GetTraceStop (p. 199)
C-Motion Magellan Programming Reference

2

SetTraceStop B4h
GetTraceStop B5h
Syntax SetTraceStop triggerAxis_condition_triggerBit_triggerState
GetTraceStop

Motor Types

Arguments Name Instance Encoding
triggerAxis Axis1 0

Axis2 1
Axis3 2
Axis4 3

condition Immediate 0
Next Update 1
Event Status 2
Activity Status 3
Signal Status 4
Drive Status 5

triggerBit Status Register Bit 0 to 15

triggerState (tS) Triggering State of the Bit 0 (value = 0)
1 (value = 1)

Packet
Structure

Description SetTraceStop sets the condition for stopping the trace. The Immediate condition requires no axis to be
specified and the trace will stop upon execution of this instruction. The other four conditions require
an axis to be specified, and when the condition for that axis is attained, the trace will stop.

When a status register bit is the trigger, the bit number and state must be included in the argument. The
trace is stopped when the indicated bit reaches the specified state (0 or 1).

GetTraceStop returns the value of the trace-stop trigger.

Once a trace has stopped, the trace-stop trigger is reset to zero (0).

DC Brush Brushless DC Microstepping Pulse & Direction

SetTraceStop
0 B4h

15 8 7 0

Data
write 0 tS triggerBit condition triggerAxis

15 13 12 11 8 7 4 3 0

GetTraceStop
0 B5h

15 8 7 0

Data
read 0 tS triggerBit condition triggerAxis

15 13 12 11 8 7 4 3 0
C-Motion Magellan Programming Reference 199

200

2

SetTraceStop (cont.) B4h
GetTraceStop B5h
Description
(cont.)

The following table shows the corresponding value for combinations of triggerBit and register.

Examples:

If it is desired that the trace ends on the next Update for axis 3, then a 2 is set for the axis number,
a 1 is set for the condition, and bit number and state can be loaded with zeroes since they are not
used. The actual data word sent to the motor processor in this case is 0012h.

If it is desired that the trace ends when bit 7 of the Activity Status register for axis 2 goes to 0, then the
trace stop is loaded as follows: A 1 is loaded for axis number, a 3 is loaded for condition, a 7 is loaded for
bit number, and a 0 is loaded for state. The actual data word sent to the motor processor in this case is
0731h.

Atlas No additional Atlas communication is performed for these commands, but Atlas trace parameters
may have to be set by addressing an Atlas amplifier directly. Magellan trace stop is signaled to Atlas
by using the trace bit in each Atlas torque command, See Atlas Digital Amplifier Complete Technical
Reference for more detail.

Restrictions Not all trace stop conditions are available in all products. See the product user guide.

C-Motion API PMDresult PMDSetTraceStop(PMDAxisInterface axis_intf,
PMDAxis traceAxis,
PMDuint8 condition,
PMDuint8 triggerBit,
PMDuint8 triggerState)

PMDresult PMDGetTraceStop(PMDAxisInterface axis_intf,
PMDAxis* traceAxis,
PMDuint8* condition,
PMDuint8* triggerBit,
PMDuint8* triggerState)

TriggerBit
Event Status
Register

Activity
Status
Register

Signal Status
Register

Drive Status
Register

0 Motion Complete Phasing Initialized Encoder A
1 Wrap-around At Maximum

Velocity
Encoder B In Foldback

2 Breakpoint 1 Tracking Encoder Index Overtemperature
3 Position Capture Capture Input Shunt Active
4 Motion Error Positive Limit In Holding
5 Positive Limit Negative Limit Overvoltage
6 Negative Limit AxisIn Undervoltage
7 Instruction Error Axis Settled Hall Sensor A Atlas Disabled
8 Disable Motor mode Hall Sensor B
9 Overtemperature

Fault
Position Capture Hall Sensor C

0Ah Drive Exception In Motion
0Bh Commutation Error In Positive Limit
0Ch Current Foldback In Negative Limit Clipping
0Dh /Enable Input
0Eh Breakpoint 2 FaultOut
0Fh Atlas not

connected
C-Motion Magellan Programming Reference

2

SetTraceStop (cont.) B4h
GetTraceStop B5h
VB-Motion API MagellanObject.TraceStopSet([in] triggerAxis,
[in] condition,
[in] triggerBit,
[in] triggerState)

MagellanObject.TraceStopGet([out] triggerAxis,
[out] condition,
[out] triggerBit,
[out] triggerState)

see GetTraceCount (p. 59), Set/GetTraceStart (p. 196), GetTraceStatus (p. 60)
C-Motion Magellan Programming Reference 201

202

2

SetTraceVariable B6h
GetTraceVariable B7h
Syntax SetTraceVariable variableNumber traceAxis_variableID
GetTraceVariable variableNumber

Motor Types

Arguments Name Instance Encoding
variableNumber Variable1 0

Variable2 1
Variable3 2
Variable4 3

traceAxis Axis1 0
Axis2 1
Axis3 2
Axis4 3

variableID

Trajectory Generator Commanded Position 2
Commanded Velocity 3
Commanded Acceleration 4

Encoder Actual Position 5
Actual Velocity 6
Position Capture Register 9
Phase Angle 15
Phase Offset 16
Raw Encoder Reading 84
Encoder sin raw reading 111
Encoder cos raw reading 112
Encoder sin corrected reading 113
Encoder cos corrected reading 114
Encoder sin/cos angle 115
Encoder sin/cos digital count 116

Position Loop Position Error 1
Position Loop Integrator Sum 10
Position Loop Integrator Contribution 57
Position Loop Derivative 11
Biquad1 Input 64
Biquad2 Input 65

Status Registers Event Status Register 12
Activity Status Register 13
Signal Status Register 14
Drive Status Register 56
Drive Fault Status Register 79

Commutation/Phasing Active Motor Command 7
Phase A Command 17
Phase B Command 18
Phase C Command 19
Phase Angle Scaled 29

DC Brush Brushless DC Microstepping Pulse & Direction
C-Motion Magellan Programming Reference

2

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Arguments
(cont.)

Current Loops Phase A Reference 66
Phase A Error 30
Phase A Actual Current 31
Phase A Integrator Sum 32
Phase A Integrator Contribution 33
Current Loop A Output 34
Phase B Reference 67
Phase B Error 35
Phase B Actual Current 36
Phase B Integrator Sum 37
Phase B Integrator Contribution 38
Current Loop B Output 39
D Feedback 40
Q Feedback 48
Leg A Current 69
Leg B Current 70
Leg C Current 71
Leg D Current 72

Field Oriented Control D Reference 40
D Error 41
D Feedback 42
D Integrator Sum 43
D Integrator Contribution 44
D Output 45
Q Reference 46
Q Error 47
Q Feedback 48
Q Integrator Sum 49
Q Integrator Contribution 50
Q Output 51
FOC Alpha Output 52
FOC Beta Output 53
Phase Alpha Actual Current 73
Phase Beta Actual Current 74

Motor Output Bus Voltage 54
Temperature 55
Foldback Energy 68
Bus Current Supply 86
Bus Current Return 87
PWM Output A 75
PWM Output B 76
PWM Output C 77

Analog Inputs Analog Input0 20
Analog Input1 21
Analog Input2 22
Analog Input3 23
Analog Input4 24
Analog Input5 25
Analog Input6 26
Analog Input7 27

Miscellaneous None (disable variable) 0
Motion Control IC Time 8
C-Motion Magellan Programming Reference 203

204

2

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
0

0

0

0

0

0

Packet
Structure

Description SetTraceVariable assigns the given variable to the specified variableNumber location in the trace
buffer. Up to four variables may be traced at one time.

All variable assignments must be contiguous starting with variableNumber = 0.

GetTraceVariable returns the variable and axis of the specified variableNumber.

Example: To set up a three variable trace capturing the commanded acceleration for axis 1, the
actual position for axis 1, and the event status word for axis 3, the following sequence of commands
would be used. First, a SetTraceVariable command with variableNumber of 0, axis of 0, and
variableID of 4 would be sent. Then, a SetTraceVariable command with variableNumber of 1, axis
of 0, and variableID of 5 would be sent. Finally, a SetTraceVariable command with a
variableNumber of 3, axis of 2 and variableID of 0h would be sent.

The table below summarizes the data type and scaling factor for the trace variables supported by
Magellan. Note that all values are actually stored in the trace buffer or returned by GetTraceValue
as 32 bit quantities. If the data type is “16 bit signed” then the data will be sign-extended to 32 bits.
If the data type is “16 bit unsigned” then the high word will be zero.

SetTraceVariable
0 B6h

15 8 7

First data word
write 0 variableNumber

15 2 1

Second data word
write variableID 0 traceAxis

15 8 7 4 3

GetTraceVariable
0 B7h

15 8 7

First data word
write 0 variableNumber

15 2 1

Second data word
read variableID 0 traceAxis

15 8 7 4 3

Variable Encoding Type Scaling Units/Notes
Command Source
Commanded Position 2 signed 32

bit
unity counts or microsteps

Commanded Velocity 3 signed 32
bit

1/216 counts/cycle or
microsteps/cycle

Commanded Acceleration 4 signed 32
bit

1/216 counts/cycle2 or
microsteps/cycle2
C-Motion Magellan Programming Reference

2

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Description
(cont.)

Variable Encoding Type Scaling Units/Notes
Encoder
Actual Position 5 signed 32

bit
unity counts or microsteps

Capture Value 9 signed 32
bit

unity counts or microsteps

Actual Velocity (not smoothed) 83 signed 32
bit

unity counts/cycle or
microsteps/cycle

Raw Encoder Reading 84 signed 32
bit

unity counts

Encoder sin raw reading 111 unsigned
16 bit

100/216 % full scale

Encoder cos raw reading 112 unsigned
16 bit

100/216 % full scale

Encoder sin corrected reading 113 signed 16
bit

100/215 % full scale

Encoder cos corrected reading 114 signed 16
bit

100/215 % full scale

Encoder sin/cos angle 115 unsigned
16 bit

360/16384 degrees

Encoder sin/cos digital count 116 unsigned
32 bit

unity counts

Position Loop
Position Error 1 signed 32

bit
unity counts or microsteps

Position Loop Integrator Sum 10 signed 32
bit

100Kout/2
39 % output

Position Loop Derivative 11 signed 32
bit

100Kout/2
16 % output

Position Loop Integration
Contribution

57 signed 32
bit

100Kout/2
31 % output (eg scaled

velocity)
 Biquad1 Input 64 signed 32

bit
100/215 % output

Biquad2 Input 65 signed 32
bit

100/215 % output

Status Registers
Event Status 12 unsigned

16 bit
- see GetEventStatus

Activity Status 13 unsigned
16 bit

- see GetActivityStatus

Signal Status 14 unsigned
16 bit

- see GetSignalStatus

Drive Status 56 unsigned
16 bit

- see GetDriveStatus

Drive Fault Status 79 unsigned
16 bit

- see
GetDriveFaultStatus

Active Operating Mode 110 unsigned
16 bit

- see
GetActiveOperating
Mode
C-Motion Magellan Programming Reference 205

206

2

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Description
(cont.)

Variable Encoding Type Scaling Units/Notes
Commutation/Phasing
Active Motor Command 7 signed 16

bit
100/215 % output

Phase Angle 15 unsigned
32 bit

unity counts or microsteps

Phase Offset 16 signed 32
bit

unity counts

Phase A Command 17 signed 16
bit

100/215 % output

Phase B Command 18 signed 16
bit

100/215 % output

Phase C Command 19 signed 16
bit

100/215 % output

Phase Angle Scaled 29 unsigned
16 bit

360/215 degrees

Commutation Error 89 signed 32
bit

unity counts (set during phase
initialization or
correction)

Commutation Error Cause 119 unsigned
16 bit

enumerated value,
explanation below

Current Loops
Phase A Reference 66 signed 16

bit
100/215 % full scale

Phase A Error 30 signed 16
bit

100/215 % full scale

Phase A Actual Current 31 signed 16
bit

100/215 % full scale

Phase A Integrator Sum 32 signed 16
bit

100/215 % full scale

Phase A Integrator Contribution 33 signed 16
bit

100/214 % full scale

Current Loop A Output 34 signed 16
bit

100/215 % output

Phase B Reference 67 signed 16
bit

100/215 % full scale

Phase B Error 30 signed 16
bit

100/215 % full scale

Phase B Actual Current 35 signed 16
bit

100/215 % full scale

Phase B Integrator Sum 36 signed 16
bit

100/215 % full scale

Phase B Integrator Contribution 37 signed 16
bit

100/214 % full scale

Current Loop B Output 39 signed 16
bit

100/215 % output

D Feedback 40 signed 16
bit

100/215 % full scale

Q Feedback 48 signed 16
bit

100/215 % full scale
C-Motion Magellan Programming Reference

2

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Description
(cont.)

Variable Encoding Type Scaling Units/Notes
Current Loops (cont.)
Leg A Current 69 signed 16

bit
100/215 % full scale

Leg B Current 70 signed 16
bit

100/215 % full scale

Leg C Current 71 signed 16
bit

100/215 % full scale

Leg D Current 72 signed 16
bit

100/215 % full scale

Field Oriented Control
D Reference 40 signed 16

bit
100/215 % full scale

D Error 41 signed 16
bit

100/215 % full scale

D Feedback 42 signed 16
bit

100/215 % full scale

D Integrator Sum 43 signed 16
bit

100/215 % full scale

D Integrator Contribution 44 signed 16
bit

100/214 % full scale

D Output 45 signed 16
bit

100/215 % output

Q Reference 46 signed 16
bit

100/215 % full scale

Q Error 47 signed 16
bit

100/215 % full scale

Q Feedback 48 signed 16
bit

100/215 % full scale

Q Integrator Sum 49 signed 16
bit

100/215 % full scale

Q Integrator Contribution 50 signed 16
bit

100/214 % full scale

Q Output 51 signed 16
bit

100/215 % output

FOC Alpha Output 52 signed 16
bit

100/215 % output

FOC Beta Output 53 signed 16
bit

100/215 % output

Phase A Actual Current 31 signed 16
bit

100/215 % full scale

Phase B Actual Current 35 signed 16
bit

100/215 % full scale
C-Motion Magellan Programming Reference 207

208

2

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Description
(cont.)

The foldback energy scaling factor is tc(if s/20480)2215, where tc is the current loop period of

51.2 x 10-6s and if s is the actual current when a leg current sensor is at full scale. The full scale current

depends on the product and, for ICs, on the current sense circuit. In all cases it is greater than the
maximum current that is actually readable. Consult your product user guide for more information
on scaling.

Variable Encoding Type Scaling Units/Notes
Motor Output
Bus Voltage 54 unsigned

16 bit
100/216 % bus voltage analog

input
Temperature 55 unsigned

16 bit
100/215 % temperature analog

input
Foldback Energy 68 unsigned

32 bit
see note
below

A2s

PWM A Output 75 signed 16
bit

100/215 % max output

PWM B Output 76 signed 16
bit

100/215 % max output

PWM C Output 77 signed 16
bit

100/215 % max output

Bus Current Supply 86 signed 16
bit

100/215 % max bus current
analog input

Bus Current Return 87 signed 16
bit

100/215 % max leg current
analog input

Analog Inputs
Analog Raw Channel 0 20 unsigned

16 bit
100/216 % input

Analog Raw Channel 1 21 unsigned
16 bit

100/216 % input

Analog Raw Channel 2 22 unsigned
16 bit

100/216 % input

Analog Raw Channel 3 23 unsigned
16 bit

100/216 % input

Analog Raw Channel 4 24 unsigned
16 bit

100/216 % input

Analog Raw Channel 5 25 unsigned
16 bit

100/216 % input

Analog Raw Channel 6 26 unsigned
16 bit

100/216 % input

Analog Raw Channel 7 27 unsigned
16 bit

100/216 % input

None 0 - - Terminates variable list
Motion Processor Time 8 unsigned

32 bit
unity cycles
C-Motion Magellan Programming Reference

2

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Description
(cont.)

The Commutation Error Cause trace value indicates the reason for the first commutation error since
the value was cleared. Reading the value, either with trace or by using GetTraceValue, clears it to zero.
The error codes are:

The script inteface combines the traceAxis with the variableID in a single code argument as shown
below. For example, to set the second trace variable to Active Motor Command (7) for axis 1 (0), code
= 7*256 + 0 = 1792, so the command should be:

SetTraceVariable 1 1792

Atlas No additional Atlas communication is performed for these commands, but Atlas trace parameters may
have to be set by addressing an Atlas amplifier directly. See Atlas Digital Amplifier Complete Technical
Reference for more detail.

Restrictions When selecting ActualVelocity as a trace variable, the reported value is the change in position between
trace captures.

In FOC (Field Oriented Control) mode, A/B current values are not meaningful. Select D/Q current
values instead.

Not all trace variables are available in all products. See the product user guide.

C-Motion API PMDresult PMDSetTraceVariable(PMDAxisInterface axis_intf,
PMDuint16 variableNumber,
PMDAxis traceAxis,
PMDuint8 variableID)

PMDresult PMDGetTraceVariable(PMDAxisInterface axis_intf,
PMDuint16 variableNumber,
PMDAxis* traceAxis,
PMDuint8* variableID)

VB-Motion API MagellanObject.TraceVariableSet([in] variableNumber,
[in] traceAxis,
[in] variableID)

MagellanObject.TraceVariableGet

see SetTracePeriod (p. 195), SetTraceStart (p. 196), SetTraceStop (p. 199)

Error Code Encoding
No error 0
Phase correction too large 1
Invalid Hall state 2
— (Reserved) 3
Pulse phase initialization, signal/noise too low, or
no movement

4

Pulse phase initialization, too much movement
during ramp

5

([in] variableNumber,
[out] traceAxis,
[out] variableID)
C-Motion Magellan Programming Reference 209

210

2

SetTrackingWindow A8h
GetTrackingWindow A9h
Syntax SetTrackingWindow axis window
GetTrackingWindow axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
window unsigned 16 bits 0 to 216–1 unity counts

Packet
Structure

Description SetTrackingWindow sets boundaries for the position error of the specified axis. If the absolute
value of the position error exceeds the tracking window, the tracking indicator (bit 2 of the Activity
Status register) is set to 0. When the position error returns to within the window, the tracking
indicator is set to 1.

GetTrackingWindow returns the value of the tracking window.

Restrictions

C-Motion API PMDresult PMDSetTrackingWindow(PMDAxisInterface axis_intf,
 PMDuint16 window)

PMDresult PMDGetTrackingWindow(PMDAxisInterface axis_intf,
 PMDuint16* window)

VB-Motion API Dim window as Short
MagellanAxis.TrackingWindow = window
window = MagellanAxis.TrackingWindow

see GetActivityStatus (p. 25), GetActualPosition (p. 85)

DC Brush Brushless DC Microstepping Pulse & Direction

SetTrackingWindow
0 axis A8h

15 12 11 8 7 0

Data
write window

15 0

GetTrackingWindow
0 axis A9h

15 12 11 8 7 0

Data
read window

15 0
C-Motion Magellan Programming Reference

2

SetUpdateMask F9h
GetUpdateMask FAh
Syntax SetUpdateMask axis mask
GetUpdateMask axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Scaling
mask unsigned 16 bit bitmask

Packet
Structure

Description SetUpdateMask configures what loops in the axis are updated when an update is executed on the given
axis. If the bitmask for a given loop is set in the mask, the operating parameters for that loop will be
updated from the buffered values when an Update or MultiUpdate command is received. The bitmask
encoding is given below.

For example, if the update mask for a given axis is set to hexadecimal 0003h, the trajectory and position
loop parameters will be updated from their buffered values when an Update or MultiUpdate command
is received for that axis.

The Current Loop bit applies regardless of the active current control mode. When it is set, an Update
or MultiUpdate command will update either the active FOC parameters, or the active digital current
loop parameters, depending on which Current Control mode is active.

GetUpdateMask gets the update mask for the indicated axis.

DC Brush Brushless DC Microstepping Pulse & Direction

SetUpdateMask
0 axis F9h

15 12 11 8 7 0

First data word
write mask

15 0

GetUpdateMask
0 axis FAh

15 12 11 8 7 0

First data word
read mask

15 0

Name Bit(s) Description
Trajectory 0 Set to 1 to update trajectory from buffered parameters.
Position Loop 1 Set to 1 to update position loop from buffered parameters.
— 2 Reserved
Current Loop 3 Set to 1 to update current loop from buffered parameters.
— 4–15 Reserved
C-Motion Magellan Programming Reference 211

212

2

SetUpdateMask (cont.) F9h
GetUpdateMask FAh
Restrictions The current loop bit is only valid for products that include a current loop.

C-Motion API PMDresult PMDSetUpdateMask (PMDAxisInterface axis_intf,
PMDuint16 mask)

PMDresult PMDGetUpdateMask (PMDAxisInterface axis_intf,
PMDuint16* mask)

VB-Motion API Dim mask as Short
MagellanAxis.UpdateMask = mask
mask = MagellanAxis.UpdateMask

see Set/GetBreakpointUpdateMask (p. 211), Update (p. 215), MultiUpdate (p. 65)
C-Motion Magellan Programming Reference

2

SetVelocity buffered 11h
GetVelocity 4Bh
Syntax SetVelocity axis velocity
GetVelocity axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Type Range Scaling Units
velocity signed 32 bits –231 to 231–1 1/216 counts/cycle

microsteps/cycle

Packet
Structure

Description SetVelocity loads the maximum velocity buffer register for the specified axis.

GetVelocity returns the contents of the maximum velocity buffer register.

Scaling example: To load a velocity value of 1.750 counts/cycle, multiply by 65,536 (giving 114,688)
and load the resultant number as a 32-bit number; giving 0001 in the high word and C000h in the low
word. Numbers returned by GetVelocity must correspondingly be divided by 65,536 to convert to units
of counts/cycle.

Restrictions SetVelocity may not be issued while an axis is in motion with the S-curve profile.

SetVelocity is not valid in Electronic Gear profile mode.

The velocity cannot be negative, except in the Velocity Contouring profile mode.

SetVelocity is a buffered command. The value set using this command will not take effect until the next
Update or MultiUpdate command, with the Trajectory Update bit set in the update mask.

DC Brush Brushless DC Microstepping Pulse & Direction

SetVelocity
0 axis 11h

15 12 11 8 7 0

First data word
write velocity (high-order part)

31 16

Second data word
write velocity (low-order part)

15 0

GetVelocity
0 axis 4Bh

15 12 11 8 7 0

First data word
read velocity (high-order part)

31 16

Second data word
read velocity (low-order part)

15 0
C-Motion Magellan Programming Reference 213

214

2

SetVelocity (cont.) buffered 11h
GetVelocity 4Bh
C-Motion API PMDresult PMDSetVelocity(PMDAxisInterface axis_intf,
 PMDint32 velocity)

PMDresult PMDGetVelocity(PMDAxisInterface axis_intf,
 PMDint32* velocity)

VB-Motion API Dim velocity as Long
MagellanAxis.Velocity = velocity
velocity = MagellanAxis.Velocity

see Set/GetAcceleration (p. 83), Set/GetDeceleration (p. 122), Set/GetJerk (p. 148),
Set/GetPosition (p. 172), MultiUpdate (p. 65), Update (p. 215)
C-Motion Magellan Programming Reference

2
Update 1Ah
C

Syntax Update axis

Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Axis2 1
Axis3 2
Axis4 3

Packet
Structure

Description Update causes all buffered data parameters to be copied into the corresponding run-time registers
on the specified axis. When the Update command is executed, the update mask is used to determine
which groups of parameters are actually updated.

The following table shows the buffered commands and variables that are activated by the Update
command.

Atlas No additional Atlas communication need be performed for this command, because the update bit
in the Atlas torque command is used to cause an Atlas amplifier update. See Atlas Digital Amplifier
Complete Technical Reference for more detail.

Restrictions

C-Motion API PMDresult PMDUpdate(PMDAxisInterface axis_intf)

VB-Motion API MagellanAxis.Update()

see MultiUpdate (p. 65), Set/GetUpdateMask (p. 211)

DC Brush Brushless DC Microstepping Pulse & Direction

Update
0 axis 1Ah

15 12 11 8 7 0

Group Command/Parameter
Trajectory Acceleration

Deceleration
Gear Ratio
Jerk
Position
Profile Mode
Stop Mode
Velocity
Clear Position Error

Position Servo Derivative Time
Integrator Sum Limit
Kaff
Kd
Ki
Kp
Kvff
Kout
Motor Command

Current Loops Integrator Sum Limit
Ki
Kp
-Motion Magellan Programming Reference 215

216

2
 WriteBuffer C8h
Syntax WriteBuffer bufferID value

Motor Types

Arguments Name Type Range
bufferID unsigned 16 bits 0 to 31

value signed 32 bits –231 to 231–1

Packet
Structure

Description WriteBuffer writes the 32-bit value into the location pointed to by the write buffer index in the specified
buffer. After the contents have been written, the write index is incremented by 1. If the result is equal to
the buffer length (set by SetBufferLength), the index is reset to zero (0).

Restrictions The command is not available on all products. See the product user guide.

C-Motion API PMDresult PMDWriteBuffer(PMDAxisInterface axis_intf,
 PMDuint16 bufferID,
 PMDint32 data)

VB-Motion API Dim data as Long
MagellanObject.WriteBuffer(bufferID) = data

see ReadBuffer (p. 72), Set/GetBufferWriteIndex (p. 106)

DC Brush Brushless DC Microstepping Pulse & Direction

WriteBuffer
0 C8h

15 8 7 0

First data word
write 0 bufferID

15 5 4 0

Second data word
write value (high-order part)

31 16

Third data word
write value (low-order part)

15 0
C-Motion Magellan Programming Reference

2
WriteIO 82h
Syntax WriteIO address data

Motor Types

Arguments Name Type Range
address unsigned 16 bits 0 to 255

data unsigned 16 bits 0 to 216–1

Packet
Structure

Description WriteIO writes one 16-bit word of data to address. The address is an offset from location 1000h of the
motion control IC’s peripheral device address space.

The format and interpretation of the 16-bit data word are dependent on the user-defined device being
addressed. User-defined I/O can be used to implement a variety of features such as additional parallel
I/O, flash memory for non-volatile configuration information storage, or display devices such as LED
arrays.

Restrictions This command is only available in products with general purpose parallel port interfaces. See the product
user guide.

C-Motion API PMDresult PMDWriteIO(PMDAxisInterface axis_intf,
PMDuint16 address,
PMDuint16 data)

VB-Motion API Dim data as Short
MagellanObject.IO(address) = data

see ReadIO (p. 74)

DC Brush Brushless DC Microstepping Pulse & Direction

WriteIO
0 82h

15 8 7 0

First data word
write 0 address

15 8 7 0

Second data word
write data

15 0
C-Motion Magellan Programming Reference 217

218

2

This page intentionally left blank.
C-Motion Magellan Programming Reference

3

3. Instruction Summary Tables

3.1 Descriptions by Functional Category
Breakpoints and Interrupts Page
Set/GetBreakpointUpdateMask Set/Get mask for what is updated by breakpoint action “update.” 97

ClearInterrupt Reset interrupt. 19

Set/GetBreakpoint Set/Get breakpoint type. 94

Set/GetBreakpointValue Set/Get breakpoint comparison value. 99

GetInterruptAxis Get the axes with pending interrupts. 49

Set/GetInterruptMask Set/Get interrupt mask. 146

Motor Phase and Commutation
Set/GetCommutationMode Set/Get the commutation phasing mode. 109

Set/GetCommutationParameter Set/Get the commutation parameter. 110

Set/GetPhaseAngle Set/Get current commutation phase angle. 161

GetPhaseCommand Get the motor output command for a given phase A, B, or C. 50

Set/GetPhaseCorrectionMode Set/Get phase correction mode. 163

Set/GetPhaseCounts Set/Get number of encoder counts per commutation cycle. 164

Set/GetPhaseInitializeMode Set/Get phase initialization method. 166

Set/GetPhaseInitializeTime Set/Get the time parameters for algorithmic phase initialization. 167

Set/GetPhaseOffset Set/Get phase offset value. 168

Set/GetPhaseParameter Set/Get phase parameter. 169

Set/GetPhasePrescale Set/Get commutation prescaler mode. 171

InitializePhase Perform phase initialization procedure. 64

Current Loops
CalibrateAnalog Set analog offsets to zero output. 17

Set/GetAnalogCalibration Set analog measurement offsets. 88

Set/GetCurrentControlMode Set/Get current loop mode (PhaseA/B or FOC). 115

Set/GetCurrentLoop Set/Get a parameter for the PhaseA/B current loops. 120

GetCurrentLoopValue Get the instantaneous value of a node in the PhaseA/B current loops. 34

Set/GetFOC Set/Get a parameter for the FOC current control. 141

GetFOCValue Get the instantaneous value of a node in the FOC current control. 44

Digital Servo Filter
ClearPositionError Set position error to 0. 20

GetPositionError Get actual position error. 51

Set/GetPositionLoop Set/Get a parameter for the Digital Servo Loop. 174

GetPositionLoopValue Get the current value of a node in the Digital Servo Loop. 52

Set/GetPositionErrorLimit Set/Get the maximum position error limit. 173

Set/GetAuxiliaryEncoderSource Controls the dual encoder loop feature. 90

Encoder
AdjustActualPosition Sums the specified offset with the actual encoder position. 16

Set/GetActualPosition Set/Get the actual encoder position. 85
C-Motion Magellan Programming Reference 219

Instruction Summary Tables3
Set/GetActualPositionUnits Set/Get the unit type returned for the actual encoder position. 87

GetActualVelocity Get the actual encoder velocity. 27

Set/GetCaptureSource Set/Get the capture source. 108

GetCaptureValue Get current axis position capture value and reset the capture. 29

Set/GetEncoderModulus Set/Get the full scale range of the parallel-word encoder. 131

Set/GetEncoderSource Set/Get the encoder type. 132

Set/GetEncoderToStepRatio Set/Get encoder count to step ratio. 134

Motor Output
GetActiveMotorCommand Read the active motor command value. 23

GetDriveValue Read drive bus voltage, bus current, or temperature. 40

Set/GetMotorCommand Set/Get direct value to motor output register, read buffered motor
output command.

151

Set/GetMotorType Set/Get motor type for axis. 154

Set/GetOutputMode Set/Get the motor output mode. 158

Set/GetPWMFrequency Set/Get the PWM output frequency 178

Set/GetDrivePWM Set/Get PWM parameters 129

Set/GetStepRange Set/Get the allowable range (in KHz) for step output generation. 190

Set/GetCurrentFoldback Set/Get the maximum continuous operating current for 12t Current
Foldback

117

Set/GetCurrent Set/Get parameters for holding current. 113

Set/GetMotorLimit Set/Get motor output limit. 153

Set/GetMotorBias Set/Get the motor bias (applied outside of position loop). 150

Operating Mode, Event, and Update Control
Set/GetOperatingMode Set/Get static Operating Mode of the axis. 156

RestoreOperatingMode Restore the Current Operating Mode to the static Operating Mode. 82

GetActiveOperatingMode Get the Active Operating Mode of the axis. 24

MultiUpdate Forces buffered command values to become active for multiple axes. 65

Update Forces buffered command values to become active. 215

Set/GetUpdateMask Set/Get mask for what loops are updated by update command. 211

Set/GetEventAction Set/Get the response of the axis to an event. 135

Postion Servo Loop Control
Set/GetMotionCompleteMode Set/Get the motion complete mode. 149

Set/GetSampleTime Set/Get servo loop sample time. 180

Set/GetSettleTime Set/Get the axis-settled time. 184

Set/GetSettleWindow Set/Get the settle-window boundary value. 185

GetTime Get current chipset time (number of servo loops). 58

Set/GetTrackingWindow Set/Get the tracking window boundary value. 210

Profile Generation
Set/GetAcceleration Set/Get acceleration limit. 83

GetCommandedAcceleration Get commanded (instantaneous desired) acceleration. 31

GetCommandedPosition Get commanded (instantaneous desired) position. 32

GetCommandedVelocity Get commanded (instantaneous desired) velocity. 33

Set/GetDeceleration Set/Get deceleration limit. 122

Set/GetGearMaster Set/Get the electronic gear mode master axis and source. 143

Set/GetGearRatio Set/Get commanded electronic gear ratio. 145

Encoder
220 C-Motion Magellan Programming Reference

Instruction Summary Tables 3
Set/GetJerk Set/Get jerk limit. 148

Set/GetPosition Set/Get destination position. 172

Set/GetProfileMode Set/Get current profile mode. 177

Set/GetStartVelocity Set/Get start velocity. 189

Set/GetStopMode Set/Get stop command: abrupt, smooth, or none. 191

Set/GetVelocity Set/Get velocity limit. 213

RAM Buffer
Set/GetBufferLength Set/Get the length of a memory buffer. 101

Set/GetBufferReadIndex Set/Get the buffer read pointer for a particular buffer. 103

Set/GetBufferStart Set/Get the start location of a memory buffer. 104

Set/GetBufferWriteIndex Set/Get the buffer write pointer for a particular buffer. 106

ReadBuffer Read a long word value from a buffer memory location. 72

WriteBuffer Write a long word value to a buffer memory location. 216

Drive
Set/GetDriveFaultParameter Set/Get threshold for Overvoltage, Undervoltage, or Overcurrent fault. 28

GetBusVoltage Get the current bus voltage reading. 28

Set/GetOvertemperatureLimit Set/Get threshold for Overtemperature fault. 159

GetTemperature Gets current temperature reading. 57

Set/GetFaultOutMask Set/Get mask for FaultOut from Event Status register. 137

GetDriveFaultStatus Gets the Drive Fault Status register. 36

ClearDriveFaultStatus Clears the Drive Fault Status register. 18

Status Registers and AxisOut Indicator
GetActivityStatus Get Activity Status register. 25

GetDriveStatus Gets the Drive Status register. 38

Set/GetAxisOutMask Set/Get AxisOut source. 92

GetEventStatus Get Event Status word. 42

GetSignalStatus Get the current axis Signal Status register. 55

Set/GetSignalSense Set/Get the interpretation of the Signal Status bits. 186

ResetEventStatus Reset bits in Event Status word. 80

Traces
GetTraceCount Get the number of traced data points. 59

Set/GetTraceMode Set/Get the trace mode (rolling or one-time). 193

Set/GetTracePeriod Set/Get the trace period. 195

Set/GetTraceStart Set/Get the trace start condition. 196

GetTraceStatus Get the trace status word. 60

Set/GetTraceStop Set/Get the trace stop condition. 199

Set/GetTraceVariable Set/Get a trace variable setting. 202

Communications
Set/GetCANMode Set/Get the CAN 2.0B configuration mode. 107

GetInstructionError Get the most recent I/O error code. 46

Set/GetSerialPortMode Set/Get the serial-port configuration mode. 182

Set/GetSPIMode Set/Get the SPI output mode. 188

Miscellaneous
ExecutionControl Delays execution during NVRAM initialization. 21

GetChecksum Reads the internal chip checksum. 30

Profile Generation
C-Motion Magellan Programming Reference 221

Instruction Summary Tables3
3.2 Command Support by Product

The following table summarizes the support of each Magellan command by the different product families. The
“MC58000/Atlas” column is for commands affecting a Atlas digital amplifier attached to an MC58000 Motion Con-
trol IC. In that column “pass through” means that a command is sent directly to Atlas, even if directed to Magellan;
“separate” means that a command may be directed either to Atlas or Magellan, and “combined” means that a com-
mand directed to Magellan may result in a command being sent to Atlas as well.

GetProductInfo Reads fixed information about the Magellan IC. 53

Set/GetSynchronizationMode Set/Get the synchronization mode. 192

GetVersion Get chipset software version information. 62

NoOperation Perform no operation, used to verify communications. 67

ReadIO Read user-defined I/O value. 74

Reset Reset chipset. 75

NVRAM Program non-volatile memory 68

WriteIO Write user-defined I/O value. 217

ReadAnalog Read a raw analog input. 71

Set/GetDefault Set/Get a reset default setting from non-volatile memory. 123

Command MC55000 MC58000
MC58000/
Atlas ION

N-Series
ION MC58113

Breakpoints and Interrupts
Set/GetBreakpointUpdateMask Y Y Y Y Y
ClearInterrupt Y Y Y Y Y
Set/GetBreakpoint Y Y Y Y Y
Set/GetBreakpointValue Y Y Y Y Y
GetInterruptAxis Y Y Y Y Y
Set/GetInterruptMask Y Y Y Y Y

Motor Phase and Commutation
Set/GetCommutationMode Y Y Y Y Y
Set/GetCommutationParameter Y
Set/GetPhaseAngle Y Y Y Y
GetPhaseCommand Y pass through Y Y Y
Set/GetPhaseCorrectionMode Y Y Y Y
Set/GetPhaseCounts Y stepper only Y Y Y
Set/GetPhaseInitializeMode Y Y Y Y
Set/GetPhaseInitializeTime Y Y Y Y
Set/GetPhaseOffset Y Y Y Y
Set/GetPhaseParameter Y
Set/GetPhasePrescale Y Y Y Y
InitializePhase Y Y Y Y

Current Loops
Set/GetAnalogCalibration Y Y
CalibrateAnalog Y Y
Set/GetCurrentControlMode pass through Y Y Y
Set/GetCurrentLoop pass through Y Y Y
GetCurrentLoopValue pass through Y Y Y

Miscellaneous
222 C-Motion Magellan Programming Reference

Instruction Summary Tables 3
Set/GetFOC pass through Y Y Y
GetFOCValue pass through Y Y Y

Digital Servo Filter
ClearPositionError Y Y Y Y Y
GetPositionError Y Y Y Y Y
Set/GetPositionLoop Y Y Y Y
GetPositionLoopValue Y Y Y Y
Set/GetPositionErrorLimit Y Y Y Y Y
Set/GetAuxiliaryEncoderSource Y Y Y Y

Encoder
AdjustActualPosition Y Y Y Y Y
Set/GetActualPosition Y Y Y Y Y
Set/GetActualPositionUnits Y Y Y Y Y
GetActualVelocity Y Y Y Y Y
Set/GetCaptureSource Y Y Y Y Y
GetCaptureValue Y Y Y Y Y
Set/GetEncoderModulus Y Y Y Y
Set/GetEncoderSource Y Y Y Y Y
Set/GetEncoderToStepRatio Y Y Y Y Y

Motor Output
GetActiveMotorCommand Y Y Y Y Y
Set/GetMotorCommand Y Y Y Y
Set/GetMotorType read only Y read

only
Y Y

Set/GetOutputMode read only Y read
only

Y Y

Set/GetPWMFrequency pass through Y Y Y
Set/GetDrivePWM pass through Y Y
Set/GetStepRange Y Y Y Y
Set/GetCurrentFoldback Y pass through Y Y Y
Set/GetCurrent combined Y Y
Set/GetMotorLimit Y Y Y Y
Set/GetMotorBias Y Y Y Y

Operating Mode, Event, and Update Control
Set/GetOperatingMode Y Y combined Y Y Y
RestoreOperatingMode Y Y combined Y Y Y
GetActiveOperatingMode Y Y Y Y Y
MultiUpdate Y Y Y Y
Update Y Y Y Y Y
Set/GetUpdateMask Y Y Y Y Y
Set/GetEventAction Y Y combined

(foldback)
Y Y Y

Position Servo Loop Control
Set/GetMotionCompleteMode Y Y Y Y Y
Set/GetSampleTime Y Y Y Y Y

Command MC55000 MC58000
MC58000/
Atlas ION

N-Series
ION MC58113
C-Motion Magellan Programming Reference 223

Instruction Summary Tables3
Set/GetSettleTime Y Y Y Y Y
Set/GetSettleWindow Y Y Y Y Y
Set/GetTrackingWindow Y Y Y Y Y
GetTime Y Y separate Y Y Y

Profile Generation
Set/GetAcceleration Y Y Y Y Y
GetCommandedAcceleration Y Y Y Y Y
GetCommandedPosition Y Y Y Y Y
GetCommandedVelocity Y Y Y Y Y
Set/GetDeceleration Y Y Y Y Y
Set/GetGearMaster Y Y Y Y Y
Set/GetGearRatio Y Y Y Y Y

Profile Generation
Set/GetJerk Y Y Y Y Y
Set/GetPosition Y Y Y Y Y
Set/GetProfileMode Y Y Y Y Y
Set/GetStartVelocity Y Y Y Y Y
Set/GetStopMode Y Y Y Y Y
Set/GetVelocity Y Y Y Y Y

RAM Buffer
Set/GetBufferLength Y Y separate Y Y Y
Set/GetBufferReadIndex Y Y separate Y Y Y
Set/GetBufferStart Y Y separate Y Y Y
Set/GetBufferWriteIndex Y Y separate Y Y Y
ReadBuffer Y Y Y Y Y
WriteBuffer Y Y Y Y Y
ReadBuffer16 Atlas only Y Y

Drive
Set/GetDriveFaultParameter pass through Y Y
GetBusVoltage pass through Y
GetDriveValue Y Y
Set/GetOvertemperatureLimit Y
GetTemperature pass through Y
Set/GetFaultOutMask Atlas only Y Y Y
GetDriveFaultStatus pass through Y Y Y
ClearDriveFaultStatus pass through Y Y Y

Status Registers and AxisOut Indicator
GetActivityStatus Y Y Y Y Y
GetDriveStatus Y Y Y Y Y
Set/GetAxisOutMask Y Y Y Y Y
GetEventStatus Y Y Y Y Y
GetSignalStatus Y Y separate Y Y Y
Set/GetSignalSense Y Y Y Y Y
ResetEventStatus Y Y combined Y Y Y

Command MC55000 MC58000
MC58000/
Atlas ION

N-Series
ION MC58113
224 C-Motion Magellan Programming Reference

Instruction Summary Tables 3
3.3 Alphabetical Listing

Traces
GetTraceCount Y Y separate Y Y Y
Set/GetTraceMode Y Y separate Y Y Y
Set/GetTracePeriod Y Y separate Y Y Y
Set/GetTraceStart Y Y separate Y Y Y
GetTraceStatus Y Y separate Y Y Y
Set/GetTraceStop Y Y separate Y Y Y
Set/GetTraceVariable Y Y separate Y Y Y

Communications
Set/GetCANMode Y Y Y Y Y
GetInstructionError Y Y separate Y Y Y
Set/GetSerialPortMode Y Y Y Y Y
Set/GetSPIMode Y Y Y

Miscellaneous
ExecutionControl Y
GetChecksum Y Y separate Y Y Y
GetProductInfo Y
Set/GetSynchronizationMode Y Y Y
GetVersion Y Y separate Y Y Y
NoOperation Y Y separate Y Y Y
ReadIO Y Y
Reset Y Y separate Y Y Y
WriteIO Y Y Y
ReadAnalog Y Y separate Y Y Y
Set/GetDefault Y
NVRAM Y Y Y

 Get/Set instructions pairs are shown together on the same line of the table.

Instruction Code Instruction Code Page
AdjustActualPosition F5h 16

CalibrateAnalog 6Fh 17

ClearDriveFaultStatus 6Ch 18

ClearInterrupt ACh 19

ClearPositionError 47h 20

NVRAM 30h 68

ExecutionControl 35h 21

GetAcceleration 4Ch SetAcceleration 90h 83

GetActiveMotorCommand 3Ah 23

GetActiveOperatingMode 57h 24

GetActivityStatus A6h 25

GetActualPosition 37h SetActualPosition 4Dh 85

Command MC55000 MC58000
MC58000/
Atlas ION

N-Series
ION MC58113
C-Motion Magellan Programming Reference 225

Instruction Summary Tables3
GetActualPositionUnits BFh SetActualPositionUnits BEh 87

GetActualVelocity ADh 27

GetAnalogCalibration 2Ah SetAnalogCalibration 29h 88

GetAuxiliaryEncoderSource 09h SetAuxiliaryEncoderSource 08h 90

GetAxisOutMask 46h SetAxisOutMask 45h 92

GetBreakpoint D5h SetBreakpoint D4h 94

GetBreakpointUpdateMask 33h SetBreakpointUpdateMask 32h 97

GetBreakpointValue D7h SetBreakpointValue D6h 99

GetBufferLength C3h SetBufferLength C2h 101

GetBufferReadIndex C7h SetBufferReadIndex C6h 103

GetBufferStart C1h SetBufferStart C0h 104

GetBufferWriteIndex C5h SetBufferWriteIndex C4h 106

GetBusVoltage 40h 28

GetCANMode 15h SetCANMode 12h 107

GetCaptureSource D9h SetCaptureSource D8h 108

GetCaptureValue 36h 29

GetChecksum F8h 30

GetCommandedAcceleration A7h 31

GetCommandedPosition 1Dh 32

GetCommandedVelocity 1Eh 33

GetCommutationMode E3h SetCommutationMode E2h 109

GetCommutationParameter 64h SetCommutationParameter 63h 110

GetCurrent 5Fh SetCurrent 5Eh 113

GetCurrentControlMode 44h SetCurrentControlMode 43h 115

GetCurrentFoldback 42h SetCurrentFoldback 41h 117

GetCurrentLoop 74h SetCurrentLoop 73h 120

GetCurrentLoopValue 71h 34

GetDeceleration 92h SetDeceleration 91h 122

GetDefault 8Ah SetDefault 89h 123

GetDriveCommandMode 7Fh SetDriveCommandMode 7Eh 125

GetDriveFaultParameter 60h SetDriveFaultParameter 62h 126

GetDriveFaultStatus 6Dh 36

GetDrivePWM 24h SetDrivePWM 23h 129

GetDriveStatus 0Eh 38

GetDriveValue 70h 40

GetEncoderModulus 8Eh SetEncoderModulus 8Dh 131

GetEncoderSource DBh SetEncoderSource DAh 132

GetEncoderToStepRatio DFh SetEncoderToStepRatio DEh 134

GetEventAction 49h SetEventAction 48h 135

GetEventStatus 31h 42

GetFaultOutMask FCh SetFaultOutMask FBh 137

GetFeedbackParameter 22h SetFeedbackParameter 21h 139

GetFOC F7h SetFOC F6h 141

GetFOCValue 5Ah 44

GetGearMaster AFh SetGearMaster AEh 143

GetGearRatio 59h SetGearRatio 14h 145

GetInstructionError A5h 46

GetInterruptAxis E1h 49

GetInterruptMask 56h SetInterruptMask 2Fh 146

GetJerk 58h SetJerk 13h 148

GetMotionCompleteMode ECh SetMotionCompleteMode EBh 149

Instruction Code Instruction Code Page
226 C-Motion Magellan Programming Reference

Instruction Summary Tables 3
GetMotorBias 2Dh SetMotorBias 0Fh 150

GetMotorCommand 69h SetMotorCommand 77h 151

GetMotorLimit 07h SetMotorLimit 06h 153

GetMotorType 03h SetMotorType 02h 154

GetOperatingMode 66h SetOperatingMode 65h 156

GetOutputMode 6Eh SetOutputMode E0h 158

GetOvertemperatureLimit 1Ch SetOvertemperatureLimit 1Bh 159

GetPhaseAngle 2Ch SetPhaseAngle 84h 161

GetPhaseCommand EAh 50

GetPhaseCorrectionMode E9h SetPhaseCorrectionMode E8h 163

GetPhaseCounts 7Dh SetPhaseCounts 75h 164

GetPhaseInitializeMode E5h SetPhaseInitializeMode E4h 166

GetPhaseInitializeTime 7Ch SetPhaseInitializeTime 72h 167

GetPhaseOffset 7Bh SetPhaseOffset 76h 168

GetPhaseParameter 86h SetPhaseParameter 85h 169

GetPhasePrescale E7h SetPhasePrescale E6h 171

GetPosition 4Ah SetPosition 10h 172

GetPositionError 99h 51

GetPositionErrorLimit 98h SetPositionErrorLimit 97h 173

GetPositionLoop 68h SetPositionLoop 67h 174

GetPositionLoopValue 55h 52

GetProductInfo 01h 53

GetProfileMode A1h SetProfileMode A0h 177

GetPWMFrequency 0Dh SetPWMFrequency 0Ch 178

GetSampleTime 3Ch SetSampleTime 3Bh 180

GetSerialPortMode 8Ch SetSerialPortMode 8Bh 182

GetSettleTime ABh SetSettleTime AAh 184

GetSettleWindow BDh SetSettleWindow BCh 185

GetSignalSense A3h SetSignalSense A2h 186

GetSignalStatus A4h 55

GetSPIMode 0Bh SetSPIMode 0Ah 188

GetStartVelocity 6Bh SetStartVelocity 6Ah 189

GetStepRange CEh SetStepRange CFh 190

GetStopMode D1h SetStopMode D0h 191

GetSynchronizationMode F3h SetSynchronizationMode F2h 192

GetTemperature 53h 57

GetTime 3Eh 58

GetTraceCount BBh 59

GetTraceMode B1h SetTraceMode B0h 193

GetTracePeriod B9h SetTracePeriod B8h 195

GetTraceStart B3h SetTraceStart B2h 196

GetTraceStatus BAh 60

GetTraceStop B5h SetTraceStop B4h 199

GetTraceValue 28h 61

GetTraceVariable B7h SetTraceVariable B6h 202

GetTrackingWindow A9h SetTrackingWindow A8h 210

GetUpdateMask FAh SetUpdateMask F9h 211

GetVelocity 4Bh SetVelocity 11h 213

GetVersion 8Fh 62

InitializePhase 7Ah 64

MultiUpdate 5Bh 65

Instruction Code Instruction Code Page
C-Motion Magellan Programming Reference 227

Instruction Summary Tables3
NoOperation 00h 67

ReadAnalog EFh 71

ReadBuffer C9h 72

ReadIO 83h 74

Reset 39h 75

ResetEventStatus 34h 80

RestoreOperatingMode 2Eh 82

Update 1Ah 215

WriteBuffer C8h 216

WriteIO 82h 217

Instruction Code Instruction Code Page
228 C-Motion Magellan Programming Reference

Instruction Summary Tables 3
3.4 Numerical Listing
Code Instruction Page Code Instruction Page
00h NoOperation 67 3Eh GetTime 58

01h GetProductInfo 53 40h GetBusVoltage 28

02h SetMotorType 154 41h SetCurrentFoldback 117

03h GetMotorType 154 42h GetCurrentFoldback 117

06h SetMotorLimit 153 43h SetCurrentControlMode 115

07h GetMotorLimit 153 44h GetCurrentControlMode 115

08h SetAuxiliaryEncoderSource 90 45h SetAxisOutMask 92

09h GetAuxiliaryEncoderSource 90 46h GetAxisOutMask 92

0Ah SetSPIMode 188 47h ClearPositionError 20

0Bh GetSPIMode 188 48h SetEventAction 135

0Ch SetPWMFrequency 178 49h GetEventAction 135

0Dh GetPWMFrequency 178 4Ah GetPosition 172

0Eh GetDriveStatus 38 4Bh GetVelocity 213

0Fh SetMotorBias 150 4Ch GetAcceleration 83

10h SetPosition 172 4Dh SetActualPosition 85

11h SetVelocity 213 53h GetTemperature 57

12h SetCANMode 107 55h GetPositionLoopValue 52

13h SetJerk 148 56h GetInterruptMask 146

14h SetGearRatio 145 57h GetActiveOperatingMode 24

15h GetCANMode 107 58h GetJerk 148

1Ah Update 215 59h GetGearRatio 145

1Bh SetOvertemperatureLimit 159 5Ah GetFOCValue 44

1Ch GetOvertemperatureLimit 159 5Bh MultiUpdate 65

1Dh GetCommandedPosition 32 5Eh SetCurrent 113

1Eh GetCommandedVelocity 33 5Fh GetCurrent 113

21h SetFeedbackParameter 139 60h GetDriveFaultParameter 126

22h GetFeedbackParameter 139 62h SetDriveFaultParameter 126

23h SetDrivePWM 129 63h SetCommutationParameter 110

24h GetDrivePWM 129 64h GetCommutationParameter 110

28h GetTraceValue 61 65h SetOperatingMode 156

29h SetAnalogCalibration 88 66h GetOperatingMode 156

2Ah GetAnalogCalibration 88 67h SetPositionLoop 174

2Ch GetPhaseAngle 161 68h GetPositionLoop 174

2Dh GetMotorBias 150 69h GetMotorCommand 151

2Eh RestoreOperatingMode 82 6Ah SetStartVelocity 189

2Fh SetInterruptMask 146 6Bh GetStartVelocity 189

30h NVRAM 68 6Ch ClearDriveFaultStatus 18

31h GetEventStatus 42 6Dh GetDriveFaultStatus 36

32h SetBreakpointUpdateMask 97 6Eh GetOutputMode 158

33h GetBreakpointUpdateMask 97 6Fh CalibrateAnalog 17

34h ResetEventStatus 80 70h GetDriveValue 40

35h ExecutionControl 21 71h GetCurrentLoopValue 34

36h GetCaptureValue 29 72h SetPhaseInitializeTime 167

37h GetActualPosition 85 73h SetCurrentLoop 120

39h Reset 75 74h GetCurrentLoop 120

3Ah GetActiveMotorCommand 23 75h SetPhaseCounts 164

3Bh SetSampleTime 180 76h SetPhaseOffset 168

3Ch GetSampleTime 180 77h SetMotorCommand 151
C-Motion Magellan Programming Reference 229

Instruction Summary Tables3
7Ah InitializePhase 64 BBh GetTraceCount 59

7Bh GetPhaseOffset 168 BCh SetSettleWindow 185

7Ch GetPhaseInitializeTime 167 BDh GetSettleWindow 185

7Dh GetPhaseCounts 164 BEh SetActualPositionUnits 87

7Eh SetDriveCommandMode 125 BFh GetActualPositionUnits 87

7Fh GetDriveCommandMode 125 C0h SetBufferStart 104

82h WriteIO 217 C1h GetBufferStart 104

83h ReadIO 74 C2h SetBufferLength 101

84h SetPhaseAngle 161 C3h GetBufferLength 101

85h SetPhaseParameter 169 C4h SetBufferWriteIndex 106

86h GetPhaseParameter 169 C5h GetBufferWriteIndex 106

89h SetDefault 123 C6h SetBufferReadIndex 103

8Ah GetDefault 123 C7h GetBufferReadIndex 103

8Bh SetSerialPortMode 182 C8h WriteBuffer 216

8Ch GetSerialPortMode 182 C9h ReadBuffer 72

8Dh SetEncoderModulus 131 CEh GetStepRange 190

8Eh GetEncoderModulus 131 CFh SetStepRange 190

8Fh GetVersion 62 D0h SetStopMode 191

90h SetAcceleration 83 D1h GetStopMode 191

91h SetDeceleration 122 D4h SetBreakpoint 94

92h GetDeceleration 122 D5h GetBreakpoint 94

97h SetPositionErrorLimit 173 D6h SetBreakpointValue 99

98h GetPositionErrorLimit 173 D7h GetBreakpointValue 99

99h GetPositionError 51 D8h SetCaptureSource 108

A0h SetProfileMode 177 D9h GetCaptureSource 108

A1h GetProfileMode 177 DAh SetEncoderSource 132

A2h SetSignalSense 186 DBh GetEncoderSource 132

A3h GetSignalSense 186 DEh SetEncoderToStepRatio 134

A4h GetSignalStatus 55 DFh GetEncoderToStepRatio 134

A5h GetInstructionError 46 E0h SetOutputMode 158

A6h GetActivityStatus 25 E1h GetInterruptAxis 49

A7h GetCommandedAcceleration 31 E2h SetCommutationMode 109

A8h SetTrackingWindow 210 E3h GetCommutationMode 109

A9h GetTrackingWindow 210 E4h SetPhaseInitializeMode 166

AAh SetSettleTime 184 E5h GetPhaseInitializeMode 166

ABh GetSettleTime 184 E6h SetPhasePrescale 171

ACh ClearInterrupt 19 E7h GetPhasePrescale 171

ADh GetActualVelocity 27 E8h SetPhaseCorrectionMode 163

AEh SetGearMaster 143 E9h GetPhaseCorrectionMode 163

AFh GetGearMaster 143 EAh GetPhaseCommand 50

B0h SetTraceMode 193 EBh SetMotionCompleteMode 149

B1h GetTraceMode 193 ECh GetMotionCompleteMode 149

B2h SetTraceStart 196 EFh ReadAnalog 71

B3h GetTraceStart 196 F2h SetSynchronizationMode 192

B4h SetTraceStop 199 F3h GetSynchronizationMode 192

B5h GetTraceStop 199 F5h AdjustActualPosition 16

B6h SetTraceVariable 202 F6h SetFOC 141

B7h GetTraceVariable 202 F7h GetFOC 141

B8h SetTracePeriod 195 F8h GetChecksum 30

B9h GetTracePeriod 195 F9h SetUpdateMask 211

BAh GetTraceStatus 60 FAh GetUpdateMask 211

Code Instruction Page Code Instruction Page
230 C-Motion Magellan Programming Reference

Instruction Summary Tables 3
3.5 Magellan Compatibility

Below are commands from Magellan v1.x that have been replaced/superseded by new commands in Magellan v2.x.

FBh SetFaultOutMask 137

FCh GetFaultOutMask 137

Old Command Old Code New Command
Set/GetBiquadCoefficient 04h/05h Set/GetPositionLoop
GetDerivative 9Bh GetPositionLoopValue
Set/GetDerivativeTime 9Ch/9Dh Set/GetPositionLoop
GetHostIOError A5h GetInstructionError (name change only)
GetIntegral 9Ah GetPositionLoopValue
Set/GetIntegrationLimit 95h/96h Set/GetPositionLoop
Set/GetKaff 93h/94h Set/GetPositionLoop
Set/GetKd 27h/52h Set/GetPositionLoop
Set/GetKi 26h/51h Set/GetPositionLoop
Set/GetKout 9Eh/9Fh Set/GetPositionLoop
Set/GetKp 25h/50h Set/GetPositionLoop
Set/GetKvff 2Bh/54h Set/GetPositionLoop
Set/GetAutoStopMode D2h/D3h Set/GetEventAction
Set/GetMotorMode DCh/DDh Set/GetOperatingMode, RestoreOperatingMode
Set/GetAxisOutSource EDh/EEh Set/GetAxisOutMask
Set/GetAxisMode 87h/88h Set/GetOperatingMode
Set/GetLimitSwitchMode 80h/81h Set/GetEventAction

Code Instruction Page Code Instruction Page
C-Motion Magellan Programming Reference 231

Instruction Summary Tables3
This page intentionally left blank.
232 C-Motion Magellan Programming Reference

C-Motion Magellan Programming Reference 233

For additional information, or for technical assistance,
please contact PMD at (978) 266-1210.

You may also e-mail your request to support@pmdcorp.com

Visit our website at http://www.pmdcorp.com

Performance Motion Devices
80 Central Street

Boxborough, MA 01719

	1. Introduction
	1.1 Introduction
	1.2 PMD Products and C-Motion Version
	1.3 Overview of C-Motion Magellan
	1.4 Microsoft .NET Programming

	2. Instruction Reference
	2.1 How to Use This Reference
	AdjustActualPosition F5h
	CalibrateAnalog 6Fh
	ClearDriveFaultStatus 6Ch
	ClearInterrupt ACh
	ClearPositionError buffered 47h
	ExecutionControl 35h
	GetActiveMotorCommand 3Ah
	GetActiveOperatingMode 57h
	GetActivityStatus A6h
	GetActualVelocity ADh
	GetBusVoltage 40h
	GetCaptureValue 36h
	GetChecksum F8h
	GetCommandedAcceleration A7h
	GetCommandedPosition 1Dh
	GetCommandedVelocity 1Eh
	GetCurrentLoopValue 71h
	GetDriveFaultStatus 6Dh
	GetDriveStatus 0Eh
	GetDriveStatus (cont.) 0Eh
	GetDriveValue 70h
	GetEventStatus 31h
	GetFOCValue 5Ah
	GetInstructionError A5h
	GetInterruptAxis E1h
	GetPhaseCommand EAh
	GetPositionError 99h
	GetPositionLoopValue 55h
	GetProductInfo 1h
	GetSignalStatus A4h
	GetTemperature 53h
	GetTime 3Eh
	GetTraceCount BBh
	GetTraceStatus BAh
	GetTraceValue 28h
	GetVersion 8Fh
	InitializePhase 7Ah
	MultiUpdate 5Bh
	NoOperation 00h
	NVRAM
	ReadAnalog EFh
	ReadBuffer C9h
	ReadBuffer16 CDh
	ReadIO 83h
	Reset 39h
	ResetEventStatus 34h
	RestoreOperatingMode 2Eh
	SetAcceleration buffered 90h GetAcceleration 4Ch
	SetActualPosition 4Dh GetActualPosition 37h
	SetActualPositionUnits BEh GetActualPositionUnits BFh
	SetAnalogCalibration 29h GetAnalogCalibration 2Ah
	SetAnalogCalibration (cont.) 29h GetAnalogCalibration 2Ah
	SetAuxiliaryEncoderSource 08h GetAuxiliaryEncoderSource 09h
	SetAxisOutMask 45h GetAxisOutMask 46h
	SetBreakpoint D4h GetBreakpoint D5h
	SetBreakpointUpdateMask 32h GetBreakpointUpdateMask 33h
	SetBreakpointValue D6h GetBreakpointValue D7h
	SetBufferLength C2h GetBufferLength C3h
	SetBufferReadIndex C6h GetBufferReadIndex C7h
	SetBufferStart C0h GetBufferStart C1h
	SetBufferWriteIndex C4h GetBufferWriteIndex C5h
	SetCANMode 12h GetCANMode 15h
	SetCaptureSource D8h GetCaptureSource D9h
	SetCommutationMode E2h GetCommutationMode E3h
	SetCommutationParameter 63h GetCommutationParameter 64h
	SetCurrent 5Eh GetCurrent 5Fh
	SetCurrent (cont.) 5Eh GetCurrent 5Fh
	SetCurrentControlMode buffered 43h GetCurrentControlMode 44h
	SetCurrentFoldback 41h GetCurrentFoldback 42h
	SetCurrentLoop buffered 73h GetCurrentLoop 74h
	SetDeceleration buffered 91h GetDeceleration 92h
	SetDefault 89h GetDefault 8Ah
	SetDriveCommandMode 7Eh GetDriveCommandMode 7Fh
	SetDriveFaultParameter 62h GetDriveFaultParameter 60h
	SetDrivePWM 23h GetDrivePWM 24h
	SetDrivePWM (cont.) 23h GetDrivePWM 24h
	SetEncoderModulus 8Dh GetEncoderModulus 8Eh
	SetEncoderSource DAh GetEncoderSource DBh
	SetEncoderToStepRatio DEh GetEncoderToStepRatio DFh
	SetEventAction 48h GetEventAction 49h
	SetFaultOutMask FBh GetFaultOutMask FCh
	SetFeedbackParameter 21h GetFeedbackParameter 22h
	SetFOC buffered F6h GetFOC F7h
	SetGearMaster AEh GetGearMaster AFh
	SetGearRatio buffered 14h GetGearRatio 59h
	SetInterruptMask 2Fh GetInterruptMask 56h
	SetInterruptMask (cont.) 2Fh GetInterruptMask 56h
	SetJerk buffered 13h GetJerk 58h
	SetMotionCompleteMode EBh GetMotionCompleteMode ECh
	SetMotorBias 0Fh GetMotorBias 2Dh
	SetMotorCommand buffered 77h GetMotorCommand 69h
	SetMotorLimit 06h GetMotorLimit 07h
	SetMotorType 02h GetMotorType 03h
	SetOperatingMode 65h GetOperatingMode 66h
	SetOutputMode E0h GetOutputMode 6Eh
	SetOvertemperatureLimit 1Bh GetOvertemperatureLimit 1Ch
	SetOvertemperatureLimit (cont.) 1Bh GetOvertemperatureLimit 1Ch
	SetPhaseAngle 84h GetPhaseAngle 2Ch
	SetPhaseAngle (cont.) 84h GetPhaseAngle 2Ch
	SetPhaseCorrectionMode E8h GetPhaseCorrectionMode E9h
	SetPhaseCounts 75h GetPhaseCounts 7Dh
	SetPhaseCounts (cont.) 75h GetPhaseCounts 7Dh
	SetPhaseInitializeMode E4h GetPhaseInitializeMode E5h
	SetPhaseInitializeTime 72h GetPhaseInitializeTime 7Ch
	SetPhaseOffset 76h GetPhaseOffset 7Bh
	SetPhaseParameter 85h GetPhaseParameter 86h
	SetPhaseParameter (cont.) 85h GetPhaseParameter 86h
	SetPhasePrescale E6h GetPhasePrescale E7h
	SetPosition buffered 10h GetPosition 4Ah
	SetPositionErrorLimit 97h GetPositionErrorLimit 98h
	SetPositionLoop buffered 67h GetPositionLoop 68h
	SetProfileMode buffered A0h GetProfileMode A1h
	SetPWMFrequency 0Ch GetPWMFrequency 0Dh
	SetSampleTime 3Bh GetSampleTime 3Ch
	SetSerialPortMode 8Bh GetSerialPortMode 8Ch
	SetSettleTime AAh GetSettleTime ABh
	SetSettleWindow BCh GetSettleWindow BDh
	SetSignalSense A2h GetSignalSense A3h
	SetSPIMode 0Ah GetSPIMode 0Bh
	SetStartVelocity 6Ah GetStartVelocity 6Bh
	SetStepRange CFh GetStepRange CEh
	SetStopMode buffered D0h GetStopMode D1h
	SetSynchronizationMode F2h GetSynchronizationMode F3h
	SetTraceMode B0h GetTraceMode B1h
	SetTracePeriod B8h GetTracePeriod B9h
	SetTraceStart B2h GetTraceStart B3h
	SetTraceStart (cont.) B2h GetTraceStart B3h
	SetTraceStop B4h GetTraceStop B5h
	SetTraceVariable B6h GetTraceVariable B7h
	SetTrackingWindow A8h GetTrackingWindow A9h
	SetUpdateMask F9h GetUpdateMask FAh
	SetVelocity buffered 11h GetVelocity 4Bh
	Update 1Ah
	WriteBuffer C8h
	WriteIO 82h

	3. Instruction Summary Tables
	3.1 Descriptions by Functional Category
	3.2 Command Support by Product
	3.3 Alphabetical Listing
	3.4 Numerical Listing
	3.5 Magellan Compatibility

