
Juno Velocity & Torque Control IC
Programming Reference
Revision 1.1, May, 2020

Performance Motion Devices, Inc.
1 Technology Park Drive

Westford, MA 01886

NOTICE

This document contains proprietary and confidential information of Performance Motion Devices, Inc., and is pro-
tected by federal copyright law. The contents of this document may not be disclosed to third parties, translated, copied,
or duplicated in any form, in whole or in part, without the express written permission of Performance Motion Devices,
Inc.

The information contained in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form, by any means, electronic or mechanical, for any purpose, without the express
written permission of Performance Motion Devices, Inc.

Copyright 1998–2019 by Performance Motion Devices, Inc.

Juno, ATLAS, Magellan, ION, Prodigy, Pro-Motion, C-Motion, and VB-Motion are registered trademarks of
Performance Motion Devices, Inc.
ii Juno Velocity & Torque Control IC Programming Reference

Warranty

Performance Motion Devices, Inc. warrants that its products shall substantially comply with the specifications
applicable at the time of sale, provided that this warranty does not extend to any use of any Performance Motion
Devices, Inc. product in an Unauthorized Application (as defined below). Except as specifically provided in this
paragraph, each Performance Motion Devices, Inc. product is provided “as is” and without warranty of any type,
including without limitation implied warranties of merchantability and fitness for any particular purpose.

Performance Motion Devices, Inc. reserves the right to modify its products, and to discontinue any product or service,
without notice and advises customers to obtain the latest version of relevant information (including without limitation
product specifications) before placing orders to verify the performance capabilities of the products being purchased.
All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment,
including those pertaining to warranty, patent infringement and limitation of liability.

Unauthorized Applications

Performance Motion Devices, Inc. products are not designed, approved or warranted for use in any application where
failure of the Performance Motion Devices, Inc. product could result in death, personal injury or significant property
or environmental damage (each, an “Unauthorized Application”). By way of example and not limitation, a life support
system, an aircraft control system and a motor vehicle control system would all be considered “Unauthorized
Applications” and use of a Performance Motion Devices, Inc. product in such a system would not be warranted or
approved by Performance Motion Devices, Inc.

By using any Performance Motion Devices, Inc. product in connection with an Unauthorized Application, the
customer agrees to defend, indemnify and hold harmless Performance Motion Devices, Inc., its officers, directors,
employees and agents, from and against any and all claims, losses, liabilities, damages, costs and expenses, including
without limitation reasonable attorneys’ fees, (collectively, “Damages”) arising out of or relating to such use, including
without limitation any Damages arising out of the failure of the Performance Motion Devices, Inc. product to
conform to specifications.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must
be provided by the customer to minimize inherent procedural hazards.

Disclaimer

Performance Motion Devices, Inc. assumes no liability for applications assistance or customer product design.
Performance Motion Devices, Inc. does not warrant or represent that any license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property right of Performance Motion
Devices, Inc. covering or relating to any combination, machine, or process in which such products or services might
be or are used. Performance Motion Devices, Inc.’s publication of information regarding any third party’s products or
services does not constitute Performance Motion Devices, Inc.’s approval, warranty or endorsement thereof.

Patents

Performance Motion Devices, Inc. may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials
and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trade-
marks, copyrights, or other intellectual property rights.

Patents and/or pending patent applications of Performance Motion Devices, Inc. are listed at
https://www.pmdcorp.com/company/patents.
Juno Velocity & Torque Control IC Programming Reference iii

Related Documents

Juno Velocity & Torque Control IC User Guide

Complete description of all members of the Juno Velocity & Torque Control IC family including the
MC71112, MC71112N, MC73112, MC73112N, MC74113, MC74113N, MC75113, MC75113N, MC71113,
MC73113, and MC78113 ICs. Includes features and functions with detailed theory of operations.

MC78113 Electrical Specifications

Complete electrical specifications for MC78113 ICs containing physical and electrical characteristics, timing
diagrams, pinouts, and pin descriptions.

DK78113 Developer Kit User Manual

How to install and configure the DK78113 developer kit. This developer kit supports all 64-pin TQFP Juno
ICs including MC71112, MC73112, MC71113, MC73113, MC74113, MC75113, and MC78113.

Pro-Motion User Guide

User’s guide to Pro-Motion, the easy-to-use motion system development tool and performance optimizer.
Pro-Motion is a sophisticated, easy-to-use program which allows all motion parameters to be set and/or
viewed, and allows all features to be exercised.

DK74113N Developer Kit User Manual

How to install and configure the DK74113N developer kit. This developer kit supports the two 56-pin
VQFN Juno step motor control ICs; MC74113N and MC75113N.

DK73112N Developer Kit User Manual

How to install and configure the DK73112N Developer Kit. This developer kit supports the 56-pin VQFN
Juno torque control ICs in cluding MC71112N and MC73112N.

PMD Resource Access Protocol Programming Reference

Describes the PMD Resource access Protocol (PRP) used for communication between the host and a PRP
device, the software interfaces and binary protocols, the procedures and data types used for programs, soft-
ware libraries and C-Motion library code.
iv Juno Velocity & Torque Control IC Programming Reference

Table of Contents
1. The Juno MC78113 IC Family .. 7
1.1 Introduction... 7
1.2 Family Overview... 8

2. C-Motion .. 9
2.1 Introduction .. 9
2.2 C-Motion Versions ... 9
2.3 Files ...10
2.4 Using C-Motion ...10

3. Visual Basic Interface.. 13
3.1 Introduction ..13
3.2 Visual Basic Classes ...13

4. C# Interface ... 15
4.1 Introduction ..15
4.2 Visual C# Classes ..15

5. Script Interface.. 17
5.1 Introduction ..17

6. Non-Volatile (NVRAM) Storage.. 19
6.1 Introduction ..19

7. Instruction Reference ... 29
7.1 How to Use This Reference ..29

8. Instruction Summary Tables .. 177
8.1 Descriptions by Functional Category ... 177
8.2 Alphabetical Listing .. 179
8.3 Numerical Listing ... 182
Juno Velocity & Torque Control IC Programming Reference v

Table of Contents
This page intentionally left blank.
vi Juno Velocity & Torque Control IC Programming Reference

1

1.The Juno MC78113 IC Family

In This Chapter
Introduction
Family Overview

1.1 Introduction

This guide describes the programming interfaces to the MC78113, MC71113, MC73113, MC74113, MC74113N,
MC75113, MC75113N, MC71112, MC71112N, MC73112, and MC73112N ICs from Performance Motion Devices,
Inc. These devices comprise PMD’s Juno Velocity & Torque Control IC family.

The Juno ICs provide high performance velocity and current control for Brushless DC, DC Brush, and step motors.
They are ideal for a wide range of applications including precision liquid pumping, laboratory automation, scientific
automation, flow rate control, pressure control, high speed spindle control, and many other robotic, scientific, and
industrial applications.

Juno provides full four quadrant motor control and directly inputs quadrature encoder, index, and Hall sensor signals.
It interfaces to external bridge-type switching amplifiers utilizing PMD’s proprietary current and switch signal
technology for ultra smooth, ultra quiet motor operation.

Juno ICs can be pre-configured via NVRAM for auto power-up initialization and standalone operation with SPI (Serial
Peripheral Interface), direct analog input, or pulse & direction command input. Alternatively Juno can interface via SPI,
point-to-point serial, multi-drop serial, or CANbus to a host microprocessor.

Internal profile generation provides acceleration and deceleration to a commanded velocity with 32-bit precision.
Additional Juno features include performance trace, programmable event actions, FOC (field oriented control),
microstep signal generation, and external shunt resistor control.

All Juno ICs are available in 64-pin TQFPs (Thin Quad Flat Packages) measuring 12.0 mm x 12.0 mm including leads.
The MC74113 and MC75113 step motor control ICs and torque control ICs are also available in 56-pin VQFN (Very
thin Quad Flat Non-leaded) packages measuring 7.2 mm x 7.2 mm. These VQFN parts are denoted via a “N” suffix in
the part number;
MC74113N, MC75113N, MC71112, and MC73112N.
Juno Velocity & Torque Control IC Programming Reference 7

The Juno MC78113 IC Family1
1.2 Family Overview

The following table summarizes the operating modes and control interfaces supported by the Juno IC family:

MC74113
MC74113N
MC75113

MC75113N
MC78113

MC71112
MC71112N

MC71113
MC78113

MC73112
MC73112N

MC73113
MC78113

Motor Type & Control Mode
Motor Type Step motor DC Brush DC Brush Brushless DC Brushless DC
Velocity

Torque/current

Position & outer loop

Host Interface
Serial point-to-point

Serial multi-drop

SPI

CANbus

Command Input
Analog velocity or torque

SPI velocity or torque

Pulse & direction

SPI position increment

Motion I/O
Quadrature encoder input (MC74113 &

MC74113N only)

Hall sensor input

Tachometer input

AtRest input

FaultOut output

HostInterrupt output

Amplifier Control
PWM High/Low

PWM Sign/Magnitude

DC Bus & Safety
Shunt

Overcurrent detect

Over/undervoltage detect

Temperature input

Brake
8 Juno Velocity & Torque Control IC Programming Reference

2

2.C-Motion

2.1 Introduction

C-Motion is a C source code library that contains all the code required for communicating with either Juno or Magellan
Motion Control ICs.

C-Motion includes the following features:

• Axis virtualization.

• The ability to communicate to multiple Juno or Magellan Motion Control ICs.

• Can be easily linked to any C/C++ application.

C-Motion callable functions are broken into two groups, those callable functions that encapsulate motion control IC
specific commands, and those callable functions that encapsulate product-specific capabilities.

The motion control IC specific commands are detailed in Chapter 7, Instruction Reference. They are the primary commands
that you will use to control the major motion features including profile generation, servo loop closure, motor output
PWM signal generation, fault handling, trace operations, and many other functions.

Each Juno Motion Control IC command has a C-Motion command of the identical name, but prefaced by the letters
"PMD." For example, the Juno command SetVelocity is called PMDSetVelocity.

2.2 C-Motion Versions

To provide more efficient compiled code for the environments in which different C-Motion-based programs are likely
to be used, two separate implementations of C-Motion are provided:

• The CME SDK, for host programs that use either Microsoft Visual Basic or Microsoft Visual C#. This
version of C-Motion is also used to communicate with Magellan PRP devices, such as ION/CME digital
drives and Prodigy/CME boards. This version is also used for programming the C-Motion Engine on PRP
devices.

• The PMD SDK, for host programs written solely in C or C++. This version is simpler to port to non-
Windows targets, such as microcontrollers. It supports only the Juno/Magellan command protocols, and
does not support PRP.

Both of these C-Motion versions share the same calling sequences for all Magellan commands, however they may not
be mixed in the same program. They do not share the same mechanisms for opening a connection to a Motion Control
IC, as discussed for the PMD SDK in Section 2.4, “Using C-Motion (PMD SDK),” on page 10.

The CME SDK C-Motion supports both the Juno/Magellan protocols, which are used to communicate with Juno or
Magellan attached Motion Control ICs, and also PRP, which is used to communicate with Prodigy/CME boards and
ION/CME digital drives. The procedures of this library are exported in a DLL (dynamically linked library), which can
be used in Visual Basic or C# program. The DLL is not a managed .NET DLL, it just exports C-Motion procedures.

For more information on using the CME SDK, see the PMD Resource Access Protocol Programming Reference.
Juno Velocity & Torque Control IC Programming Reference 9

C-Motion2
10 Juno Velocity & Torque Control IC Programming Reference

2.3 Files

The following table lists the files that make up the C-Motion distribution in the PMD SDK.

2.4 Using C-Motion (PMD SDK)

C-Motion can be linked to your application code by including the above C language source files in your application.
Then, for any application source file that calls the C-Motion API, include “C-Motion.h.”

As distributed, C-Motion supports the National Instruments USB-8452 device for SPI communication, IXXAT
devices using the v3.x VCI (Virtual CAN Interface for CANBus), and the native Windows interface for serial ports.
By customizing a small number of base interface functions, C-Motion can be ported to almost any hardware interface.

C-Motion is a set of functions that encapsulate the motion control IC command set. Every command has as its first
parameter an “axis handle.” The axis handle is a structure containing information about the interface to the motion
control IC and the axis number that the handle represents. Before communicating to the motion control IC, the axis
handle must be initialized using the following sequence of commands:

// the axis handles
PMDAxisHandle hAxis1;

// open interface to PMD Juno processor on COM1
PMDSetupAxisInterface_Serial(&hAxis1, PMDAxis1, 1);

The above is an example of initializing communication using the serial communication interface. Each interface .c
source file contains an example of initializing the interface. Once the axis handle has been initialized, any of the motion
control IC commands can be executed.

The header file “C-Motion.h” includes the function prototypes for all motion control IC commands as implemented
in C-Motion. See this file for the required parameters for each command. For information about the operation and
purpose of each command, see Chapter 4, C# Interface..

Many functions require additional parameters. Some standard values are defined by C-Motion and can be used with
the appropriate functions. See “PMDtypes.h” for a complete list of defined types. An example of calling one of the C-
Motion functions with the pre-defined types is shown below:

PMDSetEventAction(&hAxis1, PMDEventActionMotionError, PMDEventActionPassveBraking);

C-Motion.h Declarations for the PMD Juno and Magellan command set
C-Motion.c Implementation of the PMD Juno and Magellan command set
PMDW32ser.h/PMDW32ser.c Windows serial communication interface functions
PMDutil.h/PMDutil.c General utility functions
PMDtrans.h/PMDtrans.c Generic transport (interface) functions
PMDecode.h Defines the PMD Magellan and C-Motion error codes
PMDocode.h Defines the control codes for Magellan commands
PMDtypes.h Defines the basic types required by C-Motion
PMDCAN.h/PMDCAN.c CAN interface command/data transfer functions.
PMDIXXATCAN.h CAN interface for IXXAT VCI (Virtual Can Interface) API
PMDIXXATCAN3.c CAN interface for IXXAT VCI (Virtual Can Interface) API v3.x
PMDNISPI.h SPI interface for National Instruments USB-8452
PMDNISPI.c SPI interface for National Instruments USB-8452
PMDcommon.c Miscellaneous procedures
PMDdevice.h
PMDdiag.h/PMDdiag.c Diagnostic functions
IXXAT*.* IXXAT VCI v3.x (CAN) include and library files
NI*.* National Instruments (SPI) include and library files

C-Motion 2
2.4.1 C-Motion Functions (PMD SDK)

The table below describes the functions that are provided by C-Motion in addition to the standard chip command set.

C-Motion functions Arguments Function description
PMDSerial_SetConfig axis_handle.transport_data

baudrate
parity

Used to set serial port configuration after
PMDSetupAxisInterface_Serial.

PMDSerial_SetProtocol axis_handle.transport_data
mode

Used to set serial port mode after
PMDSetupAxisInterface_Serial, required for multi-
drop communication.

PMDSerial_SetMultiDropAddress axis_handle.transport_data
address

Used to set multi-drop address after
PMDSetupAxisInterface_Serial, required for multi-
drop communication.

PMDCreateMultiDropHandle dest_axis_handle
src_axis_handle
axis_number
nodeID

Used to open an axis interface to a CAN or multi-
drop serial axis using an existing handle on the same
bus. Must be used for connections after the first.

PMDSetupAxisInterface_Serial axis_handle,
axis_number
port_number

Used to setup an axis interface connection for com-
municating over a RS232 or RS485 serial bus.

PMDSetupAxisInterface_CAN axis_handle,
axis_number
board_number

Used to setup an axis interface connection for com-
municating over a CAN bus.

PMDSetupAxisInterface_SPI axis_handle
axis_number
device

Used to setup an axis interface connection for com-
municating over an SPI bus.

PMDCloseAxisInterface axis_handle Should be called to terminate an interface connec-
tion.

PMDGetErrorMessage ErrorCode Returns a character string representation of the cor-
responding PMD chip or C-Motion error code.

GetCMotionVersion MajorVersion
MinorVersion

Returns the major and minor version number of C-
Motion.
Juno Velocity & Torque Control IC Programming Reference 11

C-Motion2
This page intentionally left blank.
12 Juno Velocity & Torque Control IC Programming Reference

3

3. Visual Basic Interface

3.1 Introduction
The CME SDK provides a language binding to Microsoft Visual Basic .NET to the PMD C-Motion library for control
of Juno and Magellan Motion Processors. It can be easily integrated with any .NET application. The library supports
communication to Juno Developers Kit boards and Juno Motion Controllers via serial (point to point or multi-drop)
and CAN (IXXAT). SPI communication is not supported.

There are two parts to the Visual Basic interface code:

1 “C-Motion.dll” is a dynamically loadable library of all documented procedures in the PMD host libraries, in-
cluding all C-Motion procedures. A source project called "DLLBuild" and all files needed to build the dll are
included in the SDK.

2 “PMDLibrary.vb” is Visual Basic source code containing definitions and declarations for DLL procedures,
enumerated types, and data structures supporting the use of C-Motion.dll from Visual Basic. “PMDLibrary.vb”
should be included in any Visual Basic project for PMD device control.

3 “PMDLibrary.dll” is a .NET library compiled from “PMDLibrary.vb” and can be used with both Visual Basic
and C# projects. “PMDLibrary.dll” should be included in any C# project for PMD device control.

Both debug and release versions of “C-Motion.dll” and “PMDLibrary.dll” are provided in directories “CMESDK\Host-

Code\Debug” and “CMESDK\HostCode\Release,” respectively. Both 32- and 64-bit versions are included. The library
input file “C-Motion.lib” is also provided so that “C-Motion.dll” may be used with C/C++ language programs. When
compiling C/C++ programs to be linked against the DLL the preprocessor symbol PMD_IMPORTS must be de-
fined.

“C-Motion.dll” must be in the executable path when using it, either from a C or a Visual Basic program. Frequently
the easiest and safest way of doing this is to put it in the same directory as the executable file.

“PMDLibrary.vb” is located in the directory “CMESDK\HostCode\DotNet.”

3.2 Visual Basic Classes
The file “PMDLibrary.vb” defines a Visual Basic class for each of the opaque data types used in the PMD library:

PMDPeripheral, PMDDevice, PMDAxis, and PMDMemory. PMDPeripheral is inherited by a set of derived
classes for each peripheral type: PMDPeripheralCOM and PMDPeripheralCAN. Each class takes care of allo-
cating and freeing the memory used for the “handle” structures used in the C language interface. Please see the PMD
Resource Access Protocol Programming Reference for more information.

The following example illustrates how to obtain a Juno axis object connected to a serial port.

Public Class Examples
Public Sub Example2()

Dim periph As PMDPeripheral
Dim Juno As PMDDevice
Dim axis1 As PMDAxis

' Open the connection on COM1, using appropriate serial port parameters
Juno Velocity & Torque Control IC Programming Reference 13

Visual Basic Interface3
periph = New PMDPeripheralCOM(1, PMDSerialBaud.Baud57600, _
PMDSerialParity.None, PMDSerialStopBits.Bits1)

' Obtain a Juno device object using the peripheral.
Juno = New PMDDevice(periph, PMDDeviceType.MotionProcessor)

' Finally instantiate an axis object for axis number 1.
axis1 = New PMDAxis(Magellan, PMDAxisNumber.Axis1)

' Example operation: Get the event status
Dim status As UInt16
status = axis1.EventStatus

End Sub
End Class
14 Juno Velocity & Torque Control IC Programming Reference

4

4. C# Interface

4.1 Introduction
The CME SDK provides a language binding to Microsoft Visual C# .NET to the PMD C-Motion library for control
of Juno and Magellan Motion Processors. It can be easily integrated with any .NET application. The library supports
communication to Juno Developers Kit boards and Juno Motion Controllers via serial (point to point or multi-drop)
and CAN (IXXAT). SPI communication is not supported.

There are three parts to the Visual Basic interface code:

1 “C-Motion.dll” is a dynamically loadable library of all documented procedures in the PMD host libraries,
including all C-Motion procedures.

2 “PMDLibrary.vb” is Visual Basic source code containing definitions and declarations for DLL procedures,
enumerated types, and data structures supporting the use of “C-Motion.dll” from .NET applications. The
PMDLibrary project should be included in any Visual C# project for PMD device control.

3 “PMDLibrary.dll” is a .NET library compiled from “PMDLibrary.vb” and can be used with both Visual
Basic and C# projects. “PMDLibrary.dll” should be included in any C# project for PMD device control.
Both debug and release versions of “C-Motion.dll” and “PMDLibrary.dll” are provided in directories
“CMESDK\Host-Code\Debug and CMESDK\HostCode\Release,” respectively. The library input file
“C-Motion.lib” is also provided so that “C-Motion.dll” may be used with C/C++ language programs . When
compiling C/C++ programs to be linked against the DLL the preprocessor symbol PMD_IMPORTS
must be defined.

“C-Motion.dll” and “PMDLibrary.dll” must be in the executable path when using them, either from a C or a Visual
Basic program. Frequently the easiest and safest way of doing this is to put it in the same directory as the executable
file. “PMDLibrary.vb” is located in the directory “CMESDK\HostCode\DotNet.”

4.2 Visual C# Classes
The file “PMDLibrary.dll” defines a class for each of the opaque data types used in the PMD library:

PMDPeripheral, PMDDevice, PMDAxis, and PMDMemory.

PMDPeripheral is inherited by a set of derived classes for each peripheral type: PMDPeripheralCOM and PM-
DPeripheralCAN. Each class takes care of allocating and freeing the memory used for the “handle” structures used
in the C language interface.

The following example illustrates how to obtain a Juno axis object connected to a serial port.

using PMDLibrary;
class Example
 {
 PMD.PMDPeripheral periph;
 PMD.PMDDevice device;
 PMD.PMDMemory memory;
 PMD.PMDAxis axis;

 public void Run()
Juno Velocity & Torque Control IC Programming Reference 15

C# Interface4
 {
 try
 {
 // connect to Juno product over the COM1 serial interface.
 periph = new PMD.PMDPeripheralCOM(0, 57600, PMD.PMDSerialParity.None, PMD.PMDSe-

rialStopBits.SerialStopBits1);
 device = new PMD.PMDDevice(periph, PMD.PMDDeviceType.MotionProcessor);

 // Set up the axis handle
 PMD.PMDAxis axis = new PMD.PMDAxis(device, PMD.PMDAxisNumber.Axis1);

 Int32 pos;
 // C-Motion procedures returning a single value become class properties, and may be
 // retrieved or set by using an assignment. The "Get" or "Set" part of the name is dropped.
 pos = axis.ActualPosition;

 // Close the connection
 axis.Close();
 device.Close();
 periph.Close();
 }

 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
 }
 }
16 Juno Velocity & Torque Control IC Programming Reference

5

5.Script Interface

5.1 Introduction

The Juno command interface can be expressed in a simple script language used by the Pro-Motion setup and tuning
application. This interface may be used in an interactive command window used to communicate with a Juno or
Magellan device. It is also used to specify initialization command sequences to be written by Pro-Motion to NVRAM.

Pro-Motion script files consist of ASCII text, with one statement on each line. An example script is shown in
Figure 5-1. Each Juno command is a statement, and there are a small number of other directives. There are no control
flow or conditional statements, all commands are executed in order.

Figure 5-1:
Sample Pro-
Motion Script
File

The initial script version statement is included to allow some flexibility in upgrading the script language. As of this
writing the current script version is 1.

Statements beginning with a colon indicate PSF (PMD Structured Data Format) data. PSF is used to store both
NVRAM initialization sequences and data about them, or about the Juno configuration, for example text descriptions,
version information, measurement scaling factors and so forth. The :DESC statement contains a description of the Juno
configuration, the :CVER statement contains a user version number.

User-specified, labeled data, either as strings or numbers, may be added to NVRAM and later read by a host processor.
PSF is described in Chapter 6, Non-Volatile (NVRAM) Storage.

Any line beginning with an apostrophe ' is a comment, and will not affect script processing.

Lines beginning with alphabetic characters are command statements.

The first word of a command is the mnemonic name, followed by zero to three arguments. Each argument is one or
two 16 bit words. Currently all command arguments are literal numbers, decimal by default or hexadecimal if prefixed
by "0x".

#ScriptVersion 1
:DESC "Motor 2 settings"
:CVER 1.3
SetDrivePWM 1 561
SetDrivePWM 2 0x80ff
SetDrivePWM 4 8
SetDrivePWM 5 2013
SetDrivePWM 6 2013
SetOutputMode 7
SetMotorCommand 0
SetSignalSense0x0001
SetPhaseParameter 0 0
SetCurrentControlMode 1
SetFOC 512 680

ETC...
Juno Velocity & Torque Control IC Programming Reference 17

Script Interface5
In a few cases multiple command arguments are encoded as bitfields in a single word, and must be combined by the
user. The arithmetic needed to do so, and an example, will be included in the "Script API" section of the command
description.
18 Juno Velocity & Torque Control IC Programming Reference

6.Non-Volatile (NVRAM)
Storage
6.1 Introduction

A primary purpose of the NVRAM is to allow Juno initialization information to be stored so that upon power up it can
be automatically loaded rather than requiring an external controller to perform this function. In addition however the
NVRAM can be used for other functions such as labeling the stored initialization sequence, or for general purpose user-
defined storage.

All data stored in the Juno NVRAM utlizes a data format known as PMD Structured data Juno Storage Format (PSF).
Users who rely only on PMD’s Pro-Motion software package to communicate with Atlas and store and retrieve
initialization parameters may not need to concern themselves with the details of PSF. Users who want to address the
NVRAM from their own software, or who want to create their own user-defined storage on the Juno NVRAM will
utilize the PSF format details provided in the subsequent sections.

PSF is also used as the NVRAM format for Atlas Digital Amplifiers, although the command set and command encoding
are different. For more information see the Atlas Digital Amplifier Complete Technical Reference.

6.1.1 PMD Structured Data Format

Figure 6-1:
High-Level
Format of a
PSF (PMD
Structured
Data Format)
Memory Space

PSF (PMD Structured data Format) is a general purpose data storage format designed for use with non-volatile storage
memory such as provided by Juno IC. PSF provides a method to store and label initialization information used by Juno
during startup, as well as to allow user-defined storage in NVRAM.

Figure 6-1 shows the overall format of a PSF-managed memory area. The PSF memory space begins with a 4-word start
sequence and a 4-word user programmable sequence. Each word is 16 bits in size, as are future references to words in
the following sections unless otherwise noted. The start sequence must contain, in order, the values 0x0, 0x0, 0x0, and
0x1. The user sequence can be specified by the user and may contain any values. The user sequence can be used for any
purpose but is often used to identify the type of information stored in the PSF memory space.

PSF
Start Sequence

Word 4Word 3Word 2Word 1

Word 8Word 7Word 6Word 5

0x0 0x10x00x0

Segment 1

Segment 2

Segment N...

PSF
Segment

Storage Area

PSF
User Sequence
VB-Motion Getting Started Tutorials 19

Non-Volatile (NVRAM) Storage6
Following the eight words of sequence words are one or more data storage blocks known as segments, which are
themselves structured memory blocks which must follow a specific format.

6.1.2 PSF Data Segments

Figure 6-2:
PSF Data
Segment
Format

The central mechanism which PSF provides to store data is called a data segment. PSF data segments come with their
own headers which allow structuring and data integrity checks of the PSF memory space. Figure 6-2 shows the format
of a PSF data segment. The following section details each of the elements in this data structure.

Checksum - is the ones complement of an 8-bit ones complement checksum with a seed of 0xAA. It is computed over
the entire segment space including the header. If the checksum field is computed correctly then the checksum will be
255 (0xff). The size of this field is one byte.

Segment type - specifies the formatting of the data stored in the segment. This 8 bit field encodes the values 0 through
255. Users may assign segment type values 192-255 for segment types of their own design while all other values are
reserved. The size of this field is one byte.

Data length low word & high word - contains a 32 bit value encoding the number of 16-bit words of data (data0, data1,
etc…) included with this segment. Data segments can be defined such that a variable number of data words is expected
or a fixed number of words is expected. Whether the number of data words varies or not, the data length word must
always be specified correctly for the number of data words actually contained in the segment.

Identifier - contains an unformatted 16-bit value that may be used for any purpose but is generally used to identify
separate instances of multiply stored segments of the same segment type. For example if there was an array of stored
segments, each of the same segment type, the identifier field might be used to identify a specific element within of the
overall array of segments.

Data0, Data1, etc… is the data that is being stored in this segment. The exact format of this data is determined by the
segment type.

Header Word 1 Checksum Segment Type

Data Length (low)

Identifier

Data Length (high)

Header Word 3

Header Word 2

Header Word 5

Header Word 4

Reserved

Data1

Data2Data2

Data1

DataN...DataN...
20 Juno Velocity & Torque Control IC Programming Reference

Non-Volatile (NVRAM) Storage 6
6.1.3 Pre-Defined Segment Types

There are two pre-defined Juno PSF storage segment types. The Initialization Commands storage type defines the
segment that holds configuration information used during power-up while the Parameter List segment holds
information that is useful to label the contents of the Initialization Commands segment.

During power up Juno scans the NVRAM space for a properly formatted segment with type ‘Initialization Commands,’
and if found it initializes itself using the information provided. The Initialization Commands segment type is defined in
detail in Section 6.1.4, “Initialization Commands Segment Type,” on page 21.

A segment of type Parameter List, when preceding another segment and when containing certain specific values in the
data, stores identification information associated with that segment. For example a human-readable name for the
segment can be assigned along with information such as when the segment data was stored. This segment-identifying
data is not utilized directly by Juno but rather by software programs such as Pro-Motion. The Parameter List segment
type is discussed in detail in Section 6.1.5, “Parameter List Segment Type,” on page 23.

6.1.4 Initialization Commands Segment Type

Figure 6-3:
Initialization
Commands
Segment
Format

The Initialization Commands segment type selects a segment format that holds the PMD commands that are processed
during powerup. The segment type value for the Initialization Commands segment type is 0x92. The overall format of
this segment type is shown in Figure 6-3.

Juno commands stored into the segment data portion of the Initialization Commands segment is formatted similarly
to SPI host commands, see Juno Velocity and Torque Control IC User Guide, section 13.4, SPI (Serial Peripheral Interface)
Communications for more information. The one difference is the order of the two first words, in the SPI format the
opcode and axis is sent first, but in the NVRAM format the checksum is first, and the axis and opcode second.

Figure ? and the following table show the details of the command format.

The table below shows a portion of an example initialization command sequence. These example commands enable
automatic event recovery mode, delay for 256 cycles so that other system components may initialize themselves, and
enable motor output and current control.

Segment
Data
Address Mnemonic

Stored Code
(in hex) Comments

Data1 SetDriveFaultParameter 2 1 0x00EF Checksum
Data2 0x0062 Axis (0) and opcode
Data3 0x0002 Argument 1: event handling mode
Data4 0x0001 Argument 2: automatic event recovery
Data5 ExecutionControl 0 256 0x001F Checksum
Data6 0x0035 Axis (0) and opcode
Data7 0x0000 Argument 1: time delay
Data8 0x0000 Argument 2: delay, high word

Segment Header

Command1
Command2
Command3

Command4...

Segment Data

Segment Header For
Initialization Commands Segment Type (0x92)
Juno Velocity & Torque Control IC Programming Reference 21

Non-Volatile (NVRAM) Storage6
See Section 6.1.4, “Initialization Commands Segment Type,” on page 21 for an example of a complete PSF memory
image including an initialization command sequence.

See Juno Velocity and Torque Control IC User Guide, section 12, Power-Up, Configuration Storage, & NVRAM. for more
information on initialization command processing during power up.

Figure 6-4:
NVRAM
Command
Format

This is shown in Figure 6-4 which shows the overall sequence and format for NVRAM commands. The following
table details the content of these words:

The additional word writes argument1, argument2, shown in Figure 6-4 contain data (if any) associated with the
command. For example for the command SetMotorCommand, then a single 16-bit data word, consisting of the
programmed command value is stored in argument1. Only the required number of argument data words should be
present.

Data9 0x0100 Argument 2: delay, low word
Data10 SetOperatingMode 7 0x00E8 Checksum
Data11 0x0065 Axis (0) and opcode
Data12 0x0007 Argument 1: Enable output, current loop

Segment
Data
Address Mnemonic

Stored Code
(in hex) Comments

Field Bit Name Description
Wchk 0-7 Write check-

sum
Contains the logical negation of an 8-bit ones complement checksum
computed over all bits in the command except for the checksum
field, and a seed of 0xAA. If the checksum computed by Juno is incor-
rect (does not equal 0xff), the command will not be exe-
cuted,NVRAM processing will halt, motor output will be disbaled,
and an Instruction Error event signaled.

r2 8-15 Reserved Reserved, must contain 0.
Opcode 0-7 Opcode Contains the 8 bit command opcode
r1 8-15 Reserved Reserved, must contain 0.

Word 2 r1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 3 Argument 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word 4 Argument 2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A Axis Opcode

Word 1 Wchkr2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
22 Juno Velocity & Torque Control IC Programming Reference

Non-Volatile (NVRAM) Storage 6
6.1.5 Parameter List Segment Type

Figure 6-5:
Parameter List
Segment
Format

The Parameter List segment type provides a general purpose mechanism for the assignment of values to parameters. A
major use of the Parameter List segment type is to allow human-readable identification information to be recorded and
read back, thereby assisting with the identification of PSF-stored data. See Section 6.1.5.2, “Using the ID Segment
Mechanism,” on page 24 for information on how this segment ID mechanism is used within the PSF system. The
segment type value for the Parameter List segment type is 0x90. The overall format of this segment type is shown in
Figure 6-5.

The parameter list segment type contains one or more assignments of the general form:

Parameter = Assigned Value

Parameter specifies the name of the parameter being assigned. Assigned Value contains the value to assign to the
parameter. Assigned Value may be formatted as a character string, an integer, a floating point number, or other formats
depending on the Parameter being assigned.

The data structure that is used to encode each such assignment in the Parameter List segment data area is called a
parameter assignment entry. The following section details the format of this data structure.

6.1.5.1 Parameter Assignment Entry

Figure 6-6:
Format of
Parameter
Assignment
Entry

Figure 6-6 shows the encoding of the data words for a parameter assignment entry.

Segment Header

Parameter Assignment Entry1

Parameter Assignment Entry2

Parameter Assignment Entry3...

Segment Data

Segment Header For
Parameter List Segment Type (0x90)

Parameter2

Data2

Data1

Data3

Parameter1

Parameter4 Parameter3

LengthType

Data4 Assigned Value1

Assigned Value0Data5 Assigned Value2

Assigned Value3...Data6...
Juno Velocity & Torque Control IC Programming Reference 23

Non-Volatile (NVRAM) Storage6
The Parameter field is specified as four byte-length ASCII characters.

The Type determines the encoding of the Assigned Value data. This field has a length of four bits.

The Length field determines the number of words contained in the Assigned Value. This field has a length of 12 bits.

Assigned Value1, Assigned Value2, etc… hold the data words comprising the Assigned Value.

Six specific parameters can be assigned for the purpose of segment identification. Note that not all of these parameters
need to be recorded. If not found, Pro-Motion will simply not display the contents for those specific segment ID-
related parameters. The following table provides details on the six available segment-ID related parameters

6.1.5.2 Using the ID Segment Mechanism

Collectively the six parameters from the table above are known as an ID segment. ID Segments specify information
for the data segment that immediately follows it in the NVRAM PSF memory space.

When used to provide segment identifying information Pro-Motion, or a similar software program, takes ID
information provided by the user and stores it in the correct format into the Parameter List segment. The same software
program can later search the PSF memory space for segments of type Parameter List which hold the correct parameters
to retrieve these assigned values for display to the user.

For example if the segment name (see Section 6.1.5.1, “Parameter Assignment Entry,” on page 23 for the various types
of ID information that can be stored) was specified and saved to NVRAM as “Axis 1 motor gains” by the user during

Parameter
Field
Encoding

Data Encoding
Length & Type Description

C, N, [0], [0] The Assigned Value fields contain a
UTF-16 uni-code character string
of a variable length set via the
length field. The type code for a
UTF-16 encoded string is 0.

The CN parameter specifies a general purpose name identifier for
the segment to follow. An example name might be “X axis motor
init. cmds.” Note that the two unused parameter field words after
“CN” are filled with zeroes.

C,V,E,R See above The CVER parameter specifies a version identifier for the seg-
ment to follow. An example version might be “version12.3.”

D,E,S,C See above The DESC parameter specifies a general purpose comment for
the segment to follow. An example comment might be “These
gain factors were determined using the prototype unit in the engi-
neering lab.”

F,N,[0],[0] See above The FN parameter specifies the script file name used to store or
retrieve the data in the segment to follow. An example file name
might be “xaxis.txt.” Note that the two unused parameter field
bytes after "FN" are filled with ASCII nuls.

F,D,[0],[0] See above The FD parameter specifies the modification time of the script file
used to store the data in the segment to follow. Times should be
recorded in ISO-8601 format “YYYY-MM-DDThh:mm:ss”, with
hh recorded in 24 hour format. If desired only the year, month
and day need be specified. The time portion of this assigned value
is optional. An example assigned value might be "2017-01-
25T17:13:00" to store a date and time of January 25, 2017 at
5:13pm. Note that the two unused parameter field bytes after
“FD” are filled with ASCII nuls.

W,D,[0],[0] See above The WD parameter specifies the time that data in the segment to
follow was written to NVRAM. See “FD” description for encoding
and usage example. Note that the two unused parameter field
bytes after “WD” are filled with ASCII nuls.
24 Juno Velocity & Torque Control IC Programming Reference

Non-Volatile (NVRAM) Storage 6
development, Pro-Motion would read from a Juno IC with unknown contents and retrieve this same string for display
to the user.

6.1.6 User Defined Segment Types

PSF is a highly flexible data storage system that allows the user to store and if desired, label via the ID segment
mechanism structured data into the Juno NVRAM.

Other than ensuring that the overall NVRAM memory size is not exceeded and that the segment header format is
followed there are no restrictions placed on what can be stored in the PSF memory space.

Although not required, PMD recommends that each user-defined segment be preceded with an ID segment that
identifies the contents as detailed in Section 6.1.5, “Parameter List Segment Type,” on page 23. Doing so will assist in
keeping track of what data was stored, when, etc… It will also allow the user to develop software tools that can scan
the content of the PSF NVRAM space and display a summary of what is stored there, or to utilize Pro-Motion to
provide this function.

6.1.7 Complete Example PSF Memory Space

Figure 6-7 provides a word-by-word example of an NVRAM image used to store PSF-formatted initialization
commands along with associated segment ID content.

Other than checking the segment checksum the Juno IC does not read or otherwise process the ID segment. ID
segment information is recorded and retrieved by programs such as Pro-Motion for the convenience and utility
of the user. Inclusion of an ID-containing segment is therefore optional.
Juno Velocity & Torque Control IC Programming Reference 25

Non-Volatile (NVRAM) Storage6
Figure 6-7:
Example PSF
Memory Space
Image

The Juno command interface can be expressed in a simple script language used by the Pro-Motion setup and tuning
application. This interface may be used in an interactive command window used to communicate with a Juno or
Magellan device. It is also used to specify initialization command sequences to be written by Pro-Motion to
NVRAM.

See Chapter 5, Script Interface, for the script file format.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Addr

0x0000
0x0000
0x0000
0x0001
0x0005
0x0006
0x0007
0x0008
0x2D90
0x0000
0x0000
0x002D
0x0000
0x4E43
0x0000
0x0005
0x0049
0x006E
0x0069
0x0074
0x0031
0x5643
0x5245
0x0003
0x0031
0x002E
0x0032
0x4544
0x4353
0x0004
0x0074
0x0065
0x0073
0x0074
0x4E46
0x0000
0x0008
0x0066
0x0069

Word

PSF Start Sequence

PSF User Sequence

Parameter List
Segment

Assign CN = "Init1"

Assign CVER="1.2"

Assign DESC = "test"

Assign FN = "file.txt"

0
0
0
1
5
6
7
8
Chksm, seg. type
identifier
reserved
length low
length high
‘C’, 'N'
nul, nul
type, length
"I"
"n"
"i"
"t"
"1"
‘C’, ‘V’
'E', 'R'
type, length
"1"
"."
"2"
‘D’, ‘E’
‘S', 'C'
type, length
"t"
"e"
"s"
"t"
‘F’, ‘N’
nul, nul
type, length
"f"
"i"

Contents Comments

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Addr

0x006c
0x0065
0x002E
0x0074
0X0078
0x0074
0x4457
0x0000
0x000A
0x0032
0x0030
0x0031
0x0037
0x002D
0x0030
0x0031
0x002D
0x0032
0x0035
0xB692
0x0000
0x0000
0x000C
0x0000
0x00EF
0x0062
0x0002
0x0001
0x001F
0x0035
0x0000
0x0000
0x0100
0x00E8
0x0065
0x0007

Word

"l"
"e"
"."
"t"
"x"
"t"
‘W’, ‘D’
nul, nul
type, length
"2"
"0"
"1"
"7"
"-"
"0"
"1"
"-"
"2"
"5"
chksum, seg. type
identifier
reserved
length low
length high

Contents Comments

Assign WD =
“2017-01-25”

Initialization Comments
Segment

SetDriveFault
Parameter 2 1

ExecutionControl 0 256

SetOperatingMode 7
26 Juno Velocity & Torque Control IC Programming Reference

Non-Volatile (NVRAM) Storage 6
Figure 6-8:
Sample Pro-
Motion Script
File

The initial script version statement is included to allow some flexibility in upgrading the script language. As of this
writing the current script version is 1.

Statements beginning with a colon indicate PSF (PMD Structured Data Format) data. PSF is used to store both
NVRAM initialization sequences and data about them, or about the Juno configuration, for example text
descriptions, version information, measurement scaling factors and so forth. The :DESC statement contains a
description of the Juno configuration, the :CVER statement contains a user version number.

User-specified, labeled data, either as strings or numbers, may be added to NVRAM and later read by a host
processor. PSF is described in Section 6.1.1, “PMD Structured Data Format,” on page 19

Any line beginning with an apostrophe ' is a comment, and will ont affect script processing.

Lines beginning with alphabetic characters are command statements.

The first word of a command is the mnemonic name, followed by zero to three arguments. Each argument is one or
two 16 bit words. Currently all command arguments are literal numbers, decimal by default or

hexadecimal if prefixed by "0x".

In a few cases multiple command arguments are encoded as bitfields in a single word, and must be combined by the
user. The arithmetic needed to do so, and an example, will be included in the "Script API" section of the command
description.

#ScriptVersion 1
:DESC "Motor 2 settings"
:CVER 1.3
SetDrivePWM 1 561
SetDrivePWM 2 0x80ff
SetDrivePWM 4 8
SetDrivePWM 5 2013
SetDrivePWM 6 2013
SetOutputMode 7
SetMotorCommand 0
SetSignalSense0x0001
SetPhaseParameter 0 0
SetCurrentControlMode 1
SetFOC 512 680

ETC...
Juno Velocity & Torque Control IC Programming Reference 27

Non-Volatile (NVRAM) Storage6
This page intentionally left blank.
28 Juno Velocity & Torque Control IC Programming Reference

7

7. Instruction Reference

7.1 How to Use This Reference
The instructions are arranged alphabetically, except that all “Set/Get” pairs (for example, SetVelocity and GetVelocity)
are described together. Each description begins on a new page and most occupy no more than a single page. Each page
is organized as follows:

Name The instruction mnemonic is shown at the left, its hexadecimal code at the right.
Motor Types The motor types to which this command applies. Supported motor types are printed in black;

unsupported motor types for the command are greyed out.
Arguments There are two types of arguments: encoded-field and numeric.

Encoded-field arguments are packed into a single 16-bit data word, except for axis, which occupies
bits 8–9 of the instruction word. The name of the argument (in italic) is that shown in the generic
syntax. Instance (in italic) is the mnemonic used to represent the data value. Encoding is the value
assigned to the field for that instance.
For numeric arguments, the parameter value, the type (signed or unsigned integer), and the range of
acceptable values are given. Numeric arguments may require one or two data words. For 32-bit
arguments, the high-order part is transmitted first.

Packet Structure This is a graphic representation of the 16-bit words transmitted in the packet: the instruction, which
is identified by its name, followed by 1, 2, or 3 data words. Bit numbers are shown directly below
each word. For each field in a word, only the high and low bits are shown. For 32-bit numeric data,
the high-order bits are numbered from 16 to 31, the low-order bits from 0 to 15.
The hex code of the instruction is shown in boldface.
Argument names are shown in their respective words or fields.
For data words, the direction of transfer—read or write—is shown at the left of the word's diagram.
Unused bits are shaded. All unused bits must be 0 in data words and instructions sent (written) to
the motion control IC.

Description Describes what the instruction does and any special information relating to the instruction.
Restrictions Describes the circumstances in which the instruction is not valid, that is, when it should not be

issued. For example, velocity, acceleration, deceleration, and jerk parameters may not be issued
while an S-curve profile is being executed.

Errors Lists the error codes that may be returned by the instruction and what they mean in the context of
the instruction.

C-Motion API The syntax of the C function call in the PMD C-Motion library that implements this motion control
IC command.

Script API The syntax for the command in Pro-Motion scripts used for programming NVRAM.
C# API The syntax for the function in the C# binding for C-Motion. The type of each argument is included as

in a declaration, in the actual call syntax the type names would not be included.
Visual Basic API The Visual syntax for the function in the Visual Basic binding for C-Motion. The type of each

argument is included as in a declaration, In the actual call syntax the type names would not be
included.

see Refers to related instructions.
Juno Velocity & Torque Control IC Programming Reference 29

30

7
 AdjustActualPosition F5h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Type Range Scaling Units
position signed 32 bits –231 to 231–1 unity counts

microsteps

Packet
Structure

Description The position specified as the parameter to AdjustActualPosition is summed with the actual position
register (encoder position) for the specified axis. This has the effect of adding or subtracting an
offset to the current actual position. At the same time, the commanded position is replaced by the
new actual position value minus the position error. This prevents a servo “bump” when the new
axis position is established. In effect, this command establishes a new reference position from
which subsequent positions can be calculated. It is commonly used to set a known reference
position after a homing procedure.

Errors None

C-Motion API PMDresult PMDAdjustActualPosition(PMDAxisInterface axis_intf,
 PMDint32 position);

Script API AdjustActualPosition position

C# API PMDAxis.AdjustActualPosition(Int32 position);

Visual Basic
API

PMDAxis.AdjustActualPosition(ByVal position As Int32)

see GetPositionError (p. 60), GetActualVelocity (p. 41), Set/GetActualPositionUnits (p. 87),
Set/GetActualPosition (p. 86)

DC Brush Brushless DC Microstepping

AdjustActualPosition
0 axis F5h

15 12 11 8 7 0

write position (high-order part)
31 16

write position (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7
CalibrateAnalog 6Fh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0
option leg currents 0

analog command 1
tachometer 2

Returned data None

Packet
Structure

Description The CalibrateAnalog command is used to adjust the adjustable offsets for some analog input channels.
The leg current option calibrates only the leg current sensors used for the current motor type. The
analog command and tachometer options calibrate a single input. The option argument controls the set
of analog channels calibrated, currently the only choice is to calibrate the four leg current inputs for a
Juno motion control IC.

The calibration process assumes that the actual input to the analog channels will be zero. For the leg
current sensors it is generally sufficient to set the motor command to zero and ensure that the motor is
not moving. Whether motor output should be enabled or not depends on external circuitry.

Calibration is accomplished by averaging a number of readings; 100 ms after sending the command the
process may be assumed to be complete. When the calibration process starts the Calibrated bit in the
Drive Status register will be cleared, when the process is completed it will be set. The Drive Status
register may be polled in order to determine when calibration is complete.

The calibration offsets computed by the CalibrateAnalog command are stored in volatile RAM, they
may be read using the GetAnalogCalibration command. Calibration offsets are preserved across calls
to the SetMotorType command, but are lost during a reset. It is possible to store calibration offsets in
NVRAM using the NVRAM command, see Chapter 6 “Non-Volatile (NVRAM) Storage” for more
information. It is also possible to call the CalibrateAnalog command from NVRAM, in which case the
ExecutionControl command should be used afterwards to wait for the Activity Status Calibrated bit to
be set.

Errors Invalid Parameter: Unrecognized option.

C-Motion API PMDresult PMDCalibrateAnalog(PMDAxisInterface axis_intf,
PMDuint16 option);

Script API CalibrateAnalog option

C# API PMDAxis.CalibrateAnalog(Int16 option);

Visual Basic
API

PMDAxis.CalibrateAnalog(ByVal option As Int16)

see GetDriveStatus (p. 48), Set/GetAnalogCalibration (p. 88), ReadAnalog (p. 75), NVRAM (p. 72),
ExecutionControl (p. 35)

DC Brush Brushless DC Microstepping

0 axis 6Fh
15 12 11 8 7 0

write option
15 0
Juno Velocity & Torque Control IC Programming Reference 31

32

7
 ClearDriveFaultStatus 6Ch
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Packet
Structure

Description ClearDriveFaultStatus clears all bits in the Drive Fault Status register. A bit is cleared only if it has
been read by GetDriveFaultStatus since the last detection of the fault condition, so that
information on faults detected between GetDriveFaultStatus and ClearDriveFaultStatus is not
lost.

Errors None

C-Motion API PMDresult PMDClearDriveFaultStatus (PMDAxisInterface axis_intf);

Script API ClearDriveFaultStatus

C# API PMDAxis.ClearDriveFaultStatus();

Visual Basic
API

PMDAxis.ClearDriveFaultStatus()

see GetDriveFaultStatus (p. 46)

DC Brush Brushless DC Microstepping

ClearDriveFaultStatus
0 axis 6Ch

15 12 11 8 7 0
Juno Velocity & Torque Control IC Programming Reference

7
ClearInterrupt ACh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Packet
Structure

Description ClearInterrupt resets the /HostInterrupt signal to its inactive state. If interrupts are still pending, the
/HostInterrupt line will return to its active state within one chip cycle. See Set/GetSampleTime (p. 151)

for information on chip cycle timing. This command is used after an interrupt has been recognized and
processed by the host; it does not affect the Event Status register. The ResetEventStatus command should
be issued prior to the ClearInterrupt command to clear the condition that generated the interrupt. The
ClearInterrupt command has no effect if it is executed when no interrupts are pending.

When communicating using CAN, this command resets the interrupt message sent flag. When an
interrupt is triggered on an axis, a single interrupt message is sent and no further messages will be sent
by that axis until this command is issued.

When serial or parallel communication is used, the axis number is not used.

Errors None

C-Motion API PMDresult PMDClearInterrupt (PMDAxisInterface axis_intf);

Script API ClearInterrupt

C# API PMDAxis.ClearInterrupt();

Visual Basic
API

PMDAxis.ClearInterrupt()

see Set/GetInterruptMask (p. 132), ResetEventStatus (p. 82).

DC Brush Brushless DC Microstepping

ClearInterrupt
0 axis 4Ch

15 12 11 8 7 0
Juno Velocity & Torque Control IC Programming Reference 33

34

7
 ClearPositionError 47h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Packet
Structure

Description ClearPositionError sets the profile’s commanded position equal to the actual position (encoder
input), thereby clearing the position error for the specified axis. This command can be used when
the axis is at rest, or when it is moving.

Errors None

C-Motion API PMDresult PMDClearPositionError (PMDAxisInterface axis_intf);

Script API ClearPositionError

C# API PMDAxis.ClearPositionError();

Visual Basic
API

PMDAxis.ClearPositionError()

see GetPositionError (p. 60)

DC Brush Brushless DC Microstepping

ClearPositionError
0 axis 47h

15 12 11 8 7 0
Juno Velocity & Torque Control IC Programming Reference

7
ExecutionControl 35h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0
condition delay 0

— (Reserved) 1-7
event status 8
activity status 9
signal status 10
drive status 11
— (Reserved) 12-255

timeScale multiply by 2 0
multiply by 256 (28) 1
multiply by 32768 (215) 2
multiply by 4194034 (222)3

timeValue unsigned 6 bit 0-63 51.2 µs
value unsigned 32bit see below

Packet
Structure

Description ExecutionControl is used to delay execution during NVRAM initialization, usually so that some
hardware external to the Juno IC may become ready. In all cases the timeout value is measured in units
of the 51.2 µs commutation time.

If the condition is delay, then a pure delay for a fixed time. In this case the value argument is an unsigned
count of commutation cycles to wait. The exit status in this case is always zero, or no error. In this case
the timeScale and timeValue arguments must both be zero.

If the condition is event status, activity status, signal status, or drive status, then execution will be delayed
until either a specified condition becomes true for the specified register, or a timeout expires. The
condition is defined by the supplied value – the high order part is a selection mask for the register value,
and the low order part is a sense mask. The wait will end successfully when the register value, logically
ANDed with the selection mask is equal to the sense mask.

For example, to wait for phase initialization to complete, the condition should be activity status, because
bit 0 of the activity status register is defined as Phasing Initialized. The selection mask in this case would
be 0001h, and the sense mask also 00001h.

Brush DC Brushless DC Microstepping

ExecutionControl
0 axis 1h

15 12 11 8 7 0

write timeScale timeValue condition
15 14 13 8 7 0

write value (high-order part)
15 0

write value (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference 35

36

7
 ExecutionControl (cont.) 35h
Description
(cont.)

As another example, to wait until the ~Enable signal is low (active), one should wait until bit 13 of
the Signal Status register is clear. The condition should be signal status, the selection mask 2000h,
and the sense mask 0000h.

When waiting conditionally on a register value, the timeScale and timeValue arguments specify a
timeout period in commutation cycles. If the timeout period elapses before the condition becomes
true then the command will exit with an error status of Wait Timed Out, NVRAM command
processing will stop, and motor output will be disabled. The Instruction Error bit of the event status
register will be set, and the GetInstructionError command may be used to read the error status.

A timeValue of zero means “wait forever”; a timeout will never occur.

timeValue is multiplied by timeScale, to give a wider range. The minimum timeout is 2 commutation

cycles, the maximum value is 63 x 222 = 264,241,152, or approximately 3.7 hours.

Juno does not normally accept host input on the serial, CAN, or SPI channels until NVRAM
initialization has completed, however if an ExecutionControl wait is started then the host interfaces
will be initialized and host commands accepted. In this situation it is possible for NVRAM
commands to be executed after outside host commands, changing Juno state. In all cases only one
command, from any source, is executed at a time.

The script interface combines the condition, timeValue and timeScale arguments into a single option
argument as shown below. For example, if the condition is event status (8), and the desired timeout
value is 768 commutation cycles, then the timeScale x256 (1) and the timeValue is 3. The option
argument should be 8 + 256*3 + 16384*1 = 17160

Restrictions Valid only when executed from NVRAM.

Errors Invalid Parameter: Condition is not a supported value, tvalue or tscale nonzero for pure delay.

Initialization Only: Command was sent using serial, CAN, or SPI host channel.

Wait Timed Out: Timeout elapsed before condition became true.

C-Motion API PMDresult PMDExecutionControl(PMDAxisInterface axis_intf, PMDuint8
condition, PMDuint8 timeScale, PMDuint16
timeValue, PMDint32 value);

Script API ExecutionControl option value
where option = condition + 256*timeValue + 16384*timeScale

C# API PMDAxis.ExecutionControl(Int16 condition, Int16 timeValue,
Int16 timeScale, Int32 value);

Visual Basic
API

PMDAxis.ExecutionControl(ByVal condition As Int16, ByVal timeValue
As Int16,ByVal timeScale As Int16,ByVal
value as Int32)

see NVRAM (p. 72), GetEventStatus (p. 52), GetActivityStatus (p. 40), GetDriveStatus (p. 48),
GetSignalStatus (p. 64), GetInstructionError (p. 56)
Juno Velocity & Torque Control IC Programming Reference

7
GetActiveMotorCommand 3Ah
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned data Type Range Scaling Units
command signed 16 bits –215 to 215–1 100/215 % output

Packet
Structure

Description GetActiveMotorCommand returns the value of the motor output command for the specified axis. This
is the input to the commutation or FOC current control. Its source depends on the motor type, as well
as the operating mode of the axis.

For brushless DC or DC brush motors: If the velocity loop is enabled, it is the output of the velocity
servo filter, if the position/outer loop is enabled but the velocity loop is not, it is the output of the outer
loop servo filter, divided by 65536. If the command source is enabled without either the position/outer
loop nor the velocity loop then it is the command input divided by 65536.

For microstepping motors: It is the contents of the motor output command register, subject to holding
current reduction.

Errors None

C-Motion API PMDresult PMDGetActiveMotorCommand (PMDAxisInterface axis_intf,
 PMDint16* command);

Script API GetActiveMotorCommand

C# API Int16 command = PMDAxis.ActiveMotorCommand;

Visual Basic
API

Int16 command = PMDAxis.ActiveMotorCommand

see Set/GetMotorCommand (p. 138), Set/GetOperatingMode (p. 144),
GetActiveOperatingMode (p. 38)

DC Brush Brushless DC Microstepping

GetActiveMotorCommand
0 axis 3Ah

15 12 11 8 7 0

Data
read command

15 0
Juno Velocity & Torque Control IC Programming Reference 37

38

7
 GetActiveOperatingMode 57h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned Data Type
mode unsigned 16 bits bit field

Packet
Structure

Description GetActiveOperatingMode gets the actual operating mode that the axis is currently in. This may or
may not be the same as the static operating mode, as safety responses or programmable conditions
may change the Active Operating Mode. When this occurs, the Active Operating Mode can be
changed to the programmed static operating mode using the RestoreOperatingMode command.
The bit definitions of the operating mode are given below.

When the axis is disabled, no processing will be done on the axis, and the axis outputs will be at
their reset states. When the axis motor output is disabled, the axis will function normally, but its
motor outputs will be in their disabled state. When a loop is disabled (position or current loop), it
operates by passing its input directly to its output, and clearing all internal state variables (such as
integrator sums, etc.). When the command source is disabled, if either the position/outer or velocity
loops are active then the command is set to zero, otherwise if motor output is enabled it is set to
the value of the motor command register.

The braking and smooth stop bits may not be set directly by using SetOperatingMode, they are
only set as a part of event processing. The braking bit means that passive braking has been triggered,
and, as a result, normal PWM output is suppressed. When braking the motor output, command
source, and all control loops will be disabled. After clearing the responsible event bits the operating
mode may be set or restored to re-enable PWM output.

DC Brush Brushless DC Microstepping

GetActiveOperatingMode
0 axis 57h

15 12 11 8 7 0

read mode
15 0

Name Bit Description
— 0 Reserved
Motor Output Enabled 1 0: axis motor outputs disabled. 1: axis motor outputs enabled.
Current Control Enabled 2 0: axis current control bypassed. 1: axis current control active.
Velocity Loop 3 0: velocity loop bypassed, 1: velocity loop active
Position Loop Enabled 4 0: axis position loop bypassed. 1: axis position loop active.
Command Source Enabled 5 0: command source disabled. 1: command source enabled.
— 6-7 Reserved
Braking 8 PWM output is set for passive braking.
Smooth Stop 9 A smooth stop is in progress.
— 10–15 Reserved
Juno Velocity & Torque Control IC Programming Reference

7
GetActiveOperatingMode (cont.) 57h
Description
(cont.)

The smooth stop bit means that a smooth stop has been triggered as a part of event processing while
the command source was something other than the internal profile. In this case a smooth stop is
arranged by switching the command source to the internal profile, starting with the commanded velocity
from the previous command source, and using the value of the maximum deceleration register for
deceleration. If the maximum deceleration value is zero then the value of the maximum acceleration
value will be used instead. If the maximum acceleration value is also zero then an abrupt stop will be
done by simply disabling the command source.

After a smooth stop restoring the operating mode will automatically restore the command source to its
commanded value, typically the one it had before the smooth stop began.

Restrictions The possible modes of an axis are product specific, and in some cases axis specific. See the product user
guide for a description of what modes are supported on each axis.

Errors None

C-Motion API PMDresult PMDGetActiveOperatingMode(PMDAxisInterface axis_intf,
PMDuint16* mode);

Script API GetActiveOperatingMode

C# API UInt16 mode = PMDAxis.ActiveOperatingMode;

Visual Basic
API

UInt16 mode = PMDAxis.ActiveOperatingMode

see GetOperatingMode (p. 144), RestoreOperatingMode (p. 83), Set/GetEventAction (p. 125),
SetDeceleration (p. 113), SetAcceleration (p. 84)
Juno Velocity & Torque Control IC Programming Reference 39

40

7
 GetActivityStatus A6h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned Data Type
status unsigned 16 bits see below

Packet
Structure

Description GetActivityStatus reads the 16-bit Activity Status register for the specified axis. Each of the bits in
this register continuously indicate the state of the motion control IC without any action on the part
of the host. There is no direct way to set or clear the state of these bits, since they are controlled by
the motion control IC.

The following table shows the encoding of the data returned by this command.

Errors None

C-Motion API PMDresult PMDGetActivityStatus(PMDAxisInterface axis_intf,
 PMDuint16* status);

Script API GetActivityStatus

C# API UInt16 status = PMDAxis.ActivityStatus;

Visual Basic
API

UInt16 status = PMDAxis.ActivityStatus

see GetEventStatus (p. 52), GetSignalStatus (p. 64), GetDriveStatus (p. 48)

DC Brush Brushless DC Microstepping

GetActivityStatus
0 axis A6h

15 12 11 8 7 0

Data
read 0

15 0

Name Bit(s) Description
Phasing Initialized 0 Set to 1 if phasing is initialized (brushless DC axes only).
At Maximum Velocity 1 Set to 1 when the trajectory is at maximum velocity. This bit is

determined by the trajectory generator, not the actual encoder
velocity.

— 2-8 Reserved
Position Capture 9 Set to 1 when a value has been captured by the high speed

position capture hardware but has not yet been read.
In-motion 10 Set to 1 when the trajectory generator is executing a profile.
— 11-15 Reserved
Juno Velocity & Torque Control IC Programming Reference

7
GetActualVelocity ADh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned Data Type Range Scaling Units
actual velocity signed 32 bits –231 to 231–1 1/216 counts/cycle

Packet
Structure

Description GetActualVelocity reads the value of the actual velocity for the specified axis. The actual velocity is
derived by subtracting the actual position during the previous chip cycle from the actual position for this
chip cycle. The result of this subtraction will always be integer because position is always integer. As a
result the value returned by GetActualVelocity will always be a multiple of 65,536 since this represents
a value of one in the 16.16 number format. The low word is always zero (0). This value is the result of
the last encoder input, so it will be accurate to within one cycle.

Scaling example: If a value of 1,703,936 is retrieved by the GetActualVelocity command (high word:
01Ah, low word: 0h), this corresponds to a velocity of 1,703,936/65,536 or 26 counts/cycle.

C-Motion API PMDresult PMDGetActualVelocity(PMDAxisInterface axis_intf,
 PMDint32* velocity);

Script API GetActualVelocity

C# API Int32 velocity = PMDAxis.ActualVelocity;

Visual Basic
API

Int32 velocity = PMDAxis.ActualVelocity

see GetCommandedVelocity (p. 45), GetActualPosition (p. 86)

DC Brush Brushless DC Microstepping

GetActualVelocity
0 axis ADh

15 12 11 8 7 0

read actual velocity (high-order part)
31 16

read actual velocity (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference 41

42

7
 GetCaptureValue 36h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned data Type Range Scaling Units
position signed 32 bits –231 to 231–1 unity counts

microsteps

Packet
Structure

Description GetCaptureValue returns the contents of the position capture register for the specified axis. This
command also resets bit 9 of the Activity Status register, thus allowing another capture to occur.

If actual position units is set to steps, the returned position will be in units of steps.

Errors None

C-Motion API PMDresult PMDGetCaptureValue(PMDAxisInterface axis_intf,
 PMDint32* position);

Script API GetCaptureValue

C# API Int32 position = PMDAxis.CaptureValue;

Visual Basic
API

Int32 position = PMDAxis.CaptureValue

see Set/GetActualPositionUnits (p. 87), GetActivityStatus (p. 40)

DC Brush Brushless DC Microstepping

GetCaptureValue
0 axis 36h

15 12 11 8 7 0

read position (high-order part)
31 16

read position (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7
GetCommandedAcceleration A7h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned data Type Range Scaling Units
acceleration signed 32 bits –231 to 231–1 1/224 counts/cycle2

microsteps/cycle2

Packet
Structure

Description GetCommandedAcceleration returns the commanded acceleration value for the specified axis.
Commanded acceleration is the instantaneous acceleration value output by the trajectory generator.

Scaling example: If a value of 11, 468,890 is retrieved using this command then this corresponds to

11,468,890/16,777,216 = 0.6836 counts/cycle2 acceleration value.

Restrictions Does not return a meaningful value unless command source is internal profile.

Errors None

C-Motion API PMDresult PMDGetCommandedAcceleration(PMDAxisInterface axis_intf,
PMDint32* acceleration);

Script API GetCommandedAcceleration

C# API Int32 acceleration = PMDAxis.CommandedAcceleration;

Visual Basic
API

Int32 acceleration = PMDAxis.CommandedAcceleration

see GetCommandedPosition (p. 44), GetCommandedVelocity (p. 45), Set/GetDriveCommandMode
(p. 114)

DC Brush Brushless DC Microstepping

GetCommandedAcceleration
0 axis A7h

15 12 11 8 7 0

read acceleration (high-order part)
31 16

read acceleration (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference 43

44

7
 GetCommandedPosition 1Dh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned data Type Range Scaling Units
position signed 32 bits –231 to 231–1 unity counts

microsteps

Packet
Structure

Description GetCommandedPosition returns the commanded position for the specified axis. Commanded
position is the instantaneous position value output by the trajectory generator.

This command functions in all drive command modes.

Errors None

C-Motion API PMDresult PMDGetCommandedPosition(PMDAxisInterface axis_intf,
 PMDint32* position);

Script API GetCommandedPosition

C# API Int32 position = PMDAxis.CommandedPosition;

Visual Basic
API

Int32 position = PMDAxis.CommandedPosition

see GetCommandedAcceleration (p. 43), GetCommandedVelocity (p. 45)

DC Brush Brushless DC Microstepping

GetCommandedPosition
0 axis 1Dh

15 12 11 8 7 0

read position (high-order part)
31 16

read position (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7
GetCommandedVelocity 1Eh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned data Type Range Scaling Units
velocity signed 32 bits –231 to 231–1 1/216 counts/cycle

microsteps/cycle

Packet
Structure

Description GetCommandedVelocity returns the commanded velocity value for the specified axis. Commanded
velocity is the instantaneous velocity value output by the command source.

Scaling example: If a value of –1,234,567 is retrieved using this command (FFEDh in high word,
2979h in low word) then this corresponds to –1,234,567/65,536 = –18.8380 counts/cycle velocity value.

When the command source is internal profile the commanded velocity is taken directly from the profile
output.

When the command source is analog or direct SPI for servo motors the commanded velocity is the
command value divided by the velocity scalar to convert it to counts/cycle.

When the command source is pulse & direction or direct SPI for step motors the commanded velocity
is the difference between two successive commanded positions, and may be quite noisy.

Errors None

C-Motion API PMDresult PMDGetCommandedVelocity(PMDAxisInterface axis_intf,
 PMDint32* velocity);

Script API GetCommandedVelocity

C# API Int32 velocity = PMDAxis.CommandedVelocity;

Visual Basic
API

Int32 velocity = PMDAxis.CommandedVelocity

see GetCommandedAcceleration (p. 43), GetCommandedPosition (p. 44),
Set/GetDriveCommandMode (p. 114)

DC Brush Brushless DC Microstepping

GetCommandedVelocity
0 axis 1Eh

15 12 11 8 7 0

read velocity (high-order part)
31 16

read velocity (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference 45

46

7
 GetDriveFaultStatus 6Dh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned Data Type
status unsigned 16 bits see below

Packet
Structure

Description GetDriveFaultStatus reads the Drive Fault Status register, which is a bitmap of fault conditions.

Several of the faults recorded in the Drive Fault Status register are handled by raising a Drive
Exception event. Reading the Drive Fault Status register is required after detecting a Drive
Exception event, in order to determine what happened.

An Overcurrent fault occurs when either the bus supply current or the bus return current exceeds
the limit that was set using SetDriveFaultParameter. The bus supply current is measured using
an analog input signal. The bus return current is calculated from the measured leg currents and the
PWM duty cycles.

When an Overcurrent fault is detected the Drive Exception event will be raised and an action
specified by SetEventAction is performed. The default action is to disable all motor output.

An Undervoltage or Overvoltage fault occurs when the measured bus voltage falls below the
minimum or rises above the maximum specified using SetDriveFaultParameter. When an
Undervoltage or Overvoltage fault is detected a Bus Voltage Fault event will be raised and an action
specified by SetEventAction is performed. The default action is to disable all motor output.

An Overtemperature fault occurs when the analog temperature signal exceeds the minimum value
specified using SetDriveFaultParameter. When an Overtemperature fault is detected an
Overtemperature event is raised, and an action specified by SetEventAction is performed. The
default action is to disable all motor output.

A Brake Signal fault occurs when the Brake signal becomes active. When an active Brake signal is
detected a Drive Exception event is raised, and an action specified by SetEventAction is
performed. The default action is to begin passive braking.

An SPI Mode Change occurs when the SPI command mode is direct input, and a particular input
sequence is sent in order to restore SPI host command input. See “GetSPIMode 0Bh” on page 65.
When an SPI mode change request is detected a Drive Exception event will be raised, an action
specified by SetEventAction is performed, the direct input bit in the SPI mode register is cleared,
and host commands will read on the SPI bus and serviced.

All bits in the Drive Fault Status register are latched, and may be cleared by using the
ClearDriveFaultStatus command, which unconditionally clears all bits that have been previously
been read. The Drive Fault Status register should be cleared before attempting to handle any
disabling condition, so the cause of subsequent failures may be determined.

DC Brush Brushless DC Microstepping

GetDriveFaultStatus
0 axis 6Dh

15 12 11 8 7 0

read Status
15 0
Juno Velocity & Torque Control IC Programming Reference

7
GetDriveFaultStatus (cont.) 6Dh
Description
(cont.)

The table below shows the bit definitions of the Drive Fault Status register.

Restrictions This command is not available in products without drive amplifier support.

C-Motion API PMDresult PMDGetDriveFaultStatus(PMDAxisInterface axis_intf,
PMDuint16* status);

Script API GetDriveFaultStatus

C# API Uint16 status = PMDAxis.DriveFaultStatus;

Visual Basic
API

Uint16 status = PMDAxis.DriveFaultStatus

see ClearDriveFaultStatus (p. 32), SetMotorType (p. 142), SetEventAction (p. 125),
Set/GetDriveFaultParameter (p. 116), GetSPIMode (p. 65)

Name Bit
Overcurrent Fault 0
— (Reserved) 1-3
SPI Mode Change 4
Overvoltage Fault 5
Undervoltage Fault 6
— (Reserved) 7
Current Foldback 8
Overtemperature Fault 9
— (Reserved) 10
Watchdog Timeout 11
— (Reserved) 12
Brake signal 13
— (Reserved) 14-15
Juno Velocity & Torque Control IC Programming Reference 47

48

7
 GetDriveStatus 0Eh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned data Type
status unsigned 16 bits see below

Packet
Structure

Description GetDriveStatus reads the Drive Status register for the specified axis. All of the bits in this status
word are set and cleared by the motion control IC. They are not settable or clearable by the host.
The bits represent staes or conditions in the motion control IC that are of a transient nature.

The Calibrated bit is set by the AnalogCalibration command, and may be polled to determine that
the calibration is complete.

The Initializing bit is set when the initialization command sequence in NVRAM is begun, and is
cleared when it is complete, or has been aborted due to an error. NVRAM initialization is begun
before enabling host communication, reading this bit set normally means that initialization is
waiting for some condition using the ExecutionControl command. GetBufferReadIndex for
buffer 1 may be used to determine the address of the NVRAM command currently being executed.

Restrictions The bits available in this register depend upon the products. See the product user guide.

Errors None

DC Brush Brushless DC Microstepping

GetDriveStatus
0 axis 0Eh

15 12 11 8 7 0

read Status
15 0

Name Bit(s) Description
Calibrated 0 Set to 0 at the start of a calibration, set to 1 when

complete.
In Foldback 1 Set to 1 when the unit is in the current foldback state–

the output current is limited by the foldback limit.
Overtemperature 2 Set to 1 when the overtemperature condition is

present.
Shunt active 3 The bus voltage limiting shunt PWM is active.
In Holding 4 Set to 1 when the unit is in the holding current state–

the output current is limited by the holding current
limit.

Overvoltage 5 Set to 1 when the overvoltage condition is present.
Undervoltage 6 Set to 1 when the undervoltage condition is present.
— 7 Reserved, may be 0 or 1.
— 8–11 Reserved; not used; may be 0 or 1.
Output Clipped 12 Drive output is limited because it has reached 100%, or

the Drive PWM limit, or the current loop integrator
limit.

— 13 Reserved; not used; may be 0 or 1.
Initializing 14 Set to 1 at the beginning of initialization from NVRAM,

set to 0 when initialization is complete
Juno Velocity & Torque Control IC Programming Reference

7
GetDriveStatus (cont.) 31h
C-Motion API PMDresult PMDGetDriveStatus(PMDAxisInterface axis_intf,
 PMDuint16* status);

Script API GetDriveStatus

C# API Uint16 status = PMDAxis.DriveStatus;

Visual Basic
API

Uint16 status = PMDAxis.DriveStatus

see ExecutionControl (p. 35), CalibrateAnalog (p. 31), GetBufferReadIndex (p. 94)
Juno Velocity & Torque Control IC Programming Reference 49

50

7
 GetDriveValue 70h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0
node Bus Voltage 0

Temperature 1
Bus Current Supply 2
Bus Current Return 3

Returned data Type Range/Scaling
value signed or unsigned see below

16 bits

Packet
Structure

Description GetDriveValue is used to read values associated with drive output or state, and enumerated by
node.

The following nodes are supported:

Bus Voltage is the most recent bus voltage reading from the axis, returned as an unsigned 16 bit
value. Zero corresponds to 0V (corrected for offset) at the analog input, 65535 to 3.3V.

Temperature is the most recent temperature reading from temperature sensor monitoring axis,
returned as a signed 16 bit value. Zero corresponds to 0V (corrected for offset) at the analog input,
32767 to 3.3V. If the temperature limit set by SetDriveFaultParameter is negative then the sense
of the temperature is inverted by subtracting the measured value from 32768.

Bus Current Supply is the most recent reading from the bus current supply sensor, returned as an
unsigned 16 bit value. Zero corresponds to 0V (corrected for offset) at the analog input, 32767 to
3.3V.

Bus Current Return is the most recent current return reading computed from all leg current
readings and PWM duty cycles, returned as a signed 16 bit number. The scaling is the same as the
leg current scaling.

Restrictions GetDriveValue is currently supported only by MC58113 series motion control ICs.

Errors Invalid parameter: node is not a supported value.

C-Motion API PMDresult PMDGetDriveValue(PMDAxisInterface axis_intf,
PMDuint8 node,
PMDuint16 * value);

Script API GetDriveValue node

DC Brush Brushless DC Microstepping

GetDriveValue
0 axis 70h

15 12 11 8 7 0

write node
15 0

read value
15 0
Juno Velocity & Torque Control IC Programming Reference

7
GetDriveValue (cont.) 70h
C# API UInt16 value = PMDAxis.DriveValue(PMDDriveValue node);

Visual Basic
API

UInt16 value = PMDAxisDriveValue(ByVal node As PMDDriveValue)

see Set/GetAnalogCalibration (p. 88), CalibrateAnalog (p. 31), SetDriveFaultParameter (p. 116)
Juno Velocity & Torque Control IC Programming Reference 51

52

7
 GetEventStatus 31h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned data Type

status unsigned 16 bits see below

Packet
Structure

Description GetEventStatus reads the Event Status register for the specified axis. All of the bits in this status word
are set by the motion control IC and cleared by the host. To clear these bits, use the ResetEventStatus
command. The following table shows the encoding of the data returned by this command.

Errors None

C-Motion API PMDresult PMDGetEventStatus(PMDAxisInterface axis_intf,
 PMDuint16* status);

Script API GetEventStatus

C# API UInt16 status = PMDAxis.EventStatus;

DC Brush Brushless DC Microstepping

GetEventStatus
0 axis 31h

15 12 11 8 7 0

Data
read status

15 0

Name Bit(s) Description
— 0 Reserved, may be 0 or 1.
Wrap-around 1 Set to 1 when the actual (encoder) position has wrapped from

maximum allowed position to minimum, or vice versa.
— 2 Reserved, may be 0 or 1.
Capture Received 3 Set to 1 when a position capture has occurred.
Motion Error 4 Set to 1 when a motion error has occurred.
— 5-6 Reserved, may be 0 or 1.
Instruction Error 7 Set to 1 when an instruction error has occurred.
Disabled 8 Set to 1 when a “disable” event due to user /Enable line has

occurred.
Overtemperature Fault 9 Set to 1 when overtemperature condition has occurred.
Drive Exception 10 An drive event occurred causing output to be disabled. This bit is

used on ION products to indicate a bus voltage fault, and with an
attached Atlas amplifier to indicate any disabling drive event.

Commutation Error 11 Set to 1 when a commutation error has occurred.
Current Foldback 12 Set to 1 when current foldback has occurred.
Runtime Error 13 Set to 1 when a runtime error occurs. A runtime error is an

error condition not directly caused by an erroneous command.
— 14 Set to 1 when breakpoint 2 has been triggered.
— 15 Reserved; not used; may be 0 or 1.
Juno Velocity & Torque Control IC Programming Reference

7
GetEventStatus (cont.) 31h
Visual Basic
API

UInt16 status = PMDAxis.EventStatus

see GetActivityStatus (p. 40), GetRuntimeError (p. 63), GetSignalStatus (p. 64), GetDriveStatus (p.
48), GetDriveFaultStatus (p. 46)
Juno Velocity & Torque Control IC Programming Reference 53

54

7
 GetFOCValue 5Ah
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

loop Direct (D) 0
Quadrature (Q) 1

node Reference (D,Q) 0
Feedback (D,Q) 1
Error (D,Q) 2
Integrator Sum (D,Q) 3
— (Reserved) 4,5
Output (D,Q) 6
FOC Output (Alpha,Beta) 7
Actual Current (A,B) 8
I2t Energy 10

Returned data Type Range/Scaling
value signed 32 bits see below

Packet
Structure

Description GetFOCValue is used to read the value of a node of the FOC current control. See the product user
guide for more information on the location of each node in the FOC current control algorithm.

Though the data returned is signed 32 bits regardless of the node, the range and format vary
depending on the node, as follows:

Brushless DC Microstepping

GetFOCValue
0 axis 5Ah

15 12 11 8 7 0

write 0 loop node
15 12 11 8 7 0

read value (high-order part)
31 16

read value (low-order part)
15 0

Node Range Scaling Units
Reference (D,Q) –215 to 215–1 100/214 % max current

Feedback (D,Q) –215 to 215 –1 100/214 % max current

Error (D,Q) –215 to 215–1 100/214 % max current

Integrator Contribution (D,Q) –231 to 231–1 100/214 % PWM

Output (D,Q) –215 to 215–1 100/214 % PWM

FOC Output (Alpha,Beta) –215 to 215–1 100/214 % PWM

Actual Current (A,B) –215 to 215–1 100/214 % max current

I2t Energy –231 to 231–1 100/230 % max energy
Juno Velocity & Torque Control IC Programming Reference

7
GetFOCValue (cont.) 5Ah
Description
(cont.)

Most of the nodes have units of % maximum representable current, and most have a scaling of 100/214.

That is, a value of 214 corresponds to 100% maximum representable current. The maximum representable
current is greater than the maximum measureable current by a factor of 1.6.

Nodes labeled “(Alpha, Beta)” reference the non-rotating FOC frame; loop 0 means the alpha component,
and loop 1 the beta component.

Nodes labeled “(A, B)” reference the actual motor phases. For one-phase motors the only phase is A, D,
or alpha. For two-phase motors phase A is identical with the alpha phase, and phase B is identical with the
beta phase. For three-phase motors loop 0 means phase A, and loop 1 means phase B. Phase C current
may be computed by noting that the three phase currents must sum to zero.

The script interface combines the loop and node arguments in a single option argument as shown below.
For example, if the loop is q (1), and the node is Output (6), then option = 1*256 + 6 = 262.

Errors Invalid parameter: node is not a supported value.

C-Motion API PMDresult PMDGetFOCValue (PMDAxisInterface axis_intf,
PMDuint8 loop,
PMDuint8 node,
PMDint32* value);

Script API GetFOCValue option
where option = loop*256 + node

C# API Int32 value = PMDAxis.FOCValue(PMDFOC loop, PMDFOCValueNode node);

Visual Basic
API

Int32 value = PMDAxis.FOCValue(ByVal loop As PMDFOC, ByVal node As
PMDFOCValueNode)

see Set/Get Current (p. 106), Set/GetCurrentControlMode (p. 108), Set/GetFOC (p. 130)
Juno Velocity & Torque Control IC Programming Reference 55

56

7
 GetInstructionError A5h
Motor Types

Arguments None

Returned data Type Range
error unsigned 16 bits 0 to 35

Packet
Structure

Description GetInstructionError returns the code for the first instruction error since the last read operation,
and then resets the error to zero (0). Generally, this command is issued only after the instruction
error bit in the Event Status register indicates there was an instruction error.

All Juno products will return both the first and second errors after the last read operation. This is
especially helpful in debugging initialization commands executed at startup from non-volatile RAM,
since the first error is always a Processor reset (1).The error codes are encoded as defined below:

DC Brush Brushless DC Microstepping

GetInstructionError
0 A5h

15 12 11 8 7 0

Data
read second error first error

15 8 7 0

Error Code Encoding
No error 0
Processor reset 1
Invalid instruction 2
Invalid axis 3
Invalid parameter 4
Trace running 5
— (Reserved) 6
Buffer 7
Trace buffer zero (0) 8
Bad serial checksum 9
— (Reserved) 10
— (Reserved) 11-14
Command invalid in NVRAM mode 15
Invalid operating mode restore after event-triggered change 16
Invalid operating mode for command 17
Invalid register state for command 18
— (Reserved) 19-26
Read-only buffer 27
Command valid only for NVRAM 28
Incorrect data count for command 29
Move in error 30
Wait timed out 31
NVRAM buffer busy 32
Invalid clock signal 33
NVRAM initialization delayed 34
Invalid interface for command 35
Juno Velocity & Torque Control IC Programming Reference

7
GetInstructionError (cont.) A5h
Errors None

C-Motion API PMDresult PMDGetInstructionError (PMDAxisInterface axis_intf,
 PMDuint16* error);

Script API GetInstructionError

C# API UInt16 error = PMDAxis.InstructionError;

Visual Basic
API

UInt16 error = PMDAxis.InstructionError

see GetEventStatus (p. 52), ResetEventStatus (p. 82)
Juno Velocity & Torque Control IC Programming Reference 57

58

7
 GetLoopValue 38h
Motor Types

Argument Name Instance Encoding
Node

Velocity Loop Reference 0
Velocity Loop Feedback 1
Velocity Loop Error 2
Velocity Loop Integrator Sum 3
— (Reserved) 4
Velocity Loop Output 5
Feedback Biquad Input 6
Command Biquad Input 7
— (Reserved) 8-255
Position Loop Reference 256
Position Loop Feedback 257
Position Loop Error 258
Position Loop Integrator Sum 259
— (Reserved) 260
Position Loop Output 261

Returned Data Type Range Scaling/Units

value signed 32bits –231 to 231–1 see below

Packet
Structure

Description GetLoopValue is used to find the value of a node in either the velocity loop or the position/outer
loop. See the Juno Velocity & Torque Control IC User Guide for more information on the location of
each node in the position loop processing. For the velocity loop, or for the outer loop (analog or
SPI feedback to the position/outer loop), all quantities are 16.16 fixed point fractional values. For
the position loop the reference and feedback values have units of encoder counts; consult the Juno
Velocity & Torque Control IC User Guide for the scaling of other loop nodes.

Errors Invalid parameter: node or loop is not a supported value.

C-Motion API PMDresult PMDGetLoopValue (PMDAxisInterface axis_intf, PMDuint16 node,
PMDint32* value);

Script API GetLoopValue node

DC Brush Brushless DC Microstepping

GetLoopValue
0 axis 38h

15 12 11 8 7 0

write node
15 0

read value (high-order part)
31 16

read value (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7
GetLoopValue (cont.) 38h
C# API Int32 value = PMDAxis.LoopValue(PMDLoop value node);

Visual Basic
API

Int32 value = PMDAxis.LoopValue(ByVal node As PMDLoop value)

see
Juno Velocity & Torque Control IC Programming Reference 59

60

7
 GetPositionError 99h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned data Type Range Scaling Units

error signed 32 bits –231 to 231–1 unity counts
microsteps

Packet
Structure

Description GetPositionError returns the position error of the specified axis. The error is the difference
between the actual position (encoder position) and the commanded position (instantaneous output
of the trajectory generator). When used with the motor type set to microstepping or pulse &
direction, the error is defined as the difference between the encoder position (represented in
microsteps or steps) and the commanded position (instantaneous output of the trajectory
generator).

C-Motion API PMDresult PMDGetPositionError(PMDAxisInterface axis_intf,
PMDint32* error);

Script API GetPositionError

C# API Int32 error = PMDAxis.PositionError;

Visual Basic
API

Int32 error = PMDAxis.PositionError

see SetLoop (p. 134)

DC Brush Brushless DC Microstepping

GetPositionError
0 axis 99h

15 12 11 8 7 0

read error (high-order part)
31 16

read error (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7
GetProductInfo 1h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

index firmware state 0
version 1
product class 2
checksum 3
— (Reserved) 4
part number 3:0 5
part number 7:4 6
part number 11:8 7
part number 15:12 8
— (Reserved) 9-12
RAM size 13
NVRAM size 14
— (Reserved) 15-256
boot version 257
boot product class 258
boot checksum 259
boot part number 3:0 261
boot part number 7:4 262
boot part number 11:8 263
boot part number 15:12 264

Returned Data Type
value unsigned 32 bits

Packet
Structure

Description GetProductInfo is used to retrieve fixed information about the Juno IC. All data is read in 32-bit units,
most of the values are split into fields as explained below.

The firmware state is a an enumerated value, 0 means that the normal application firmware is running, and
1 indicates that the boot firmware, which is used for programming NVRAM, is running.

The version, and boot version consist of four 8-bit bytes, the least significant byte numbered zero. Byte 1 is
the firmware major version, byte 0 is the minor version. Byte 2 is a custom code, zero for standard
products. Byte 3 is reserved.

DC Brush Brushless DC Microstepping

GetProductInfo
0 axis 1h

15 12 11 8 7 0

write index
15 0

read value (high-order part)
31 16

read value (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference 61

62

7
 GetProductInfo (cont.) 1h
Description
(cont.)

The checksum and boot checksum are 32 bit numbers that may be used to verify the identity of a
product. The checksum values are documented in product release notes.

The part number and boot part number are 16 character strings indicating the IC and boot firmware part
numbers . There is one ASCII character per 8-bit byte. The first character is stored in the least
significant byte of part number 3:0, the second character in bits 15:8 of part number 3:0. The fourth
character is stored in the least significant byte of part number 7:4, and so forth. Any unused
characters at the end of the string are encoded as zero, ASCII null, but the string may not be null
terminated.

The RAM size is the number of 32-bit words available for trace RAM.

The NVRAM size is the number of 16-bit words of non-volatile storage available.

GetProductInfo replaces and extends the Magellan commands GetVersion and GetChecksum.
Juno supports GetVersion, but that command always returns zero.

A value of zero returned by GetVersion should be taken to mean that GetProductInfo is
supported.

Errors Invalid parameter: index is not a supported value.

C-Motion API PMDresult PMDGetProductInfo (PMDAxisInterface axis_intf, PMDuint16 in-
dex, PMDuint32* value);

Script API GetProductInfo index

C# API Int32 value = PMDAxis.GetProductInfo(PMDProductInfo index);

Visual Basic
API

Int32 value = PMDAxis.GetProductInfo(ByVal index As PMDProductInfo)

see NVRAM (p. 72), SetBufferStart (p. 96), SetBufferLength (p. 92), ReadBuffer (p. 76),
ReadBuffer16 (p. 77), GetVersion (p. 70)
Juno Velocity & Torque Control IC Programming Reference

7
GetRuntimeError 3Dh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned Data Type Range/scaling
unsigned 16 bits see below

Packet
Structure

Description GetRuntimeError is used to retrieve an error code describing a runtime error condition, that is, an error
not directly caused by an incorrect command. When a runtime error ocurs bit 13 of the event status
register is set. This bit may be cleared by using ResetEventStatus, merely reading the error code does
not clear the event bit.

Currently only two runtime error codes are used by Juno products, 0 means no error, and 5 means an
overflow ocurred when multiplying actual or commanded velocity by the velocity scalar.

Errors None

C-Motion API PMDresult PMDGetRuntimeError (PMDAxisInterface axis_intf, PMDuint16* er-
ror);

Script API GetRuntimeError

C# API PMDRuntimeError error = PMDAxis.RuntimeError;

Visual Basic
API

PMDRuntimeError error = PMDAxis.RuntimeError

see GetEventStatus (p. 52), ResetEventStatus (p. 82)

DC Brush Brushless DC Microstepping

GetRuntimeError
0 axis 30h

15 12 11 8 7 0

Data
read error code

15 0
Juno Velocity & Torque Control IC Programming Reference 63

64

7
 GetSignalStatus A4h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned data Type
status unsigned 16 bits

Packet
Structure

Description GetSignalStatus returns the contents of the Signal Status register for the specified axis. The Signal
Status register contains the value of the various hardware signals connected to each axis of the
motion control IC. The value read is combined with the Signal Sense register (see SetSignalSense
(p. 155)) and then returned to the user. For each bit in the Signal Sense register that is set to 1, the
corresponding bit in the GetSignalStatus command will be inverted. Therefore, a low signal will
be read as 1, and a high signal will be read as a 0. Conversely, for each bit in the Signal Sense register
that is set to 0, the corresponding bit in the GetSignalStatus command is not inverted. Therefore,
a low signal will be read as 0, and a high signal will be read as a 1.

All of the bits in the GetSignalStatus command are inputs, except FaultOut. The value read for
these bits is equal to the value output by the FaultOut mechanism. See SetFaultMask (p. 128) for
more information. The bit definitions are as follows:

Errors None

C-Motion API PMDresult PMDGetSignalStatus(PMDAxisInterface axis_intf,
 PMDuint16* status);

Script API GetSignalStatus

C# API UInt16 status = PMDAxis.SignalStatus;

Visual Basic
API

UInt16 status = PMDAxis.SignalStatus

see GetActivityStatus (p. 40), GetEventStatus (p. 52), GetSignalSense (p. 155)

DC Brush Brushless DC Microstepping

GetSignalStatus
0 axis A4h

15 12 11 8 7 0

Data
read status

15 0

Description Bit Number Description Bit Number
Encoder A 0 — (Reserved) 10
Encoder B 1 Positive Input 11
Encoder Index 2 — (Reserved) 12
— (Reserved) 3-6 /Enable 13
Hall A 7 FaultOut 14
Hall B 8 Direction Input 15
Hall C 9
Juno Velocity & Torque Control IC Programming Reference

7
GetSPIMode 0Bh
Motor Types

Argument None

Returned Data Name Instance Encoding
mode Host Command 0

Direct 8000h

Packet
Structure

Description GetSPIMode may be used to determine the mode of the SPI input port. If bit 15 is 0, then the port is
in Host Command mode, and can be used for reading state or setting parameters using any of the
commands in this section. If bit 15 is 1, then the port is in Direct Input mode, and cannot be used for
normal host commands.

In Direct Input mode simple SPI data is written to set the current velocity, torque, or position command,
or to set the current outer loop feedback value.

Direct Input mode may be entered by using SetDriveCommandMode, or by using SetLoop to set the
outer loop feedback source.

If no communication channel other than SPI is available then direct input mode may be terminated, and
host command mode resumed, by sending three specific 16-bit SPI words in the same packet, eg with
only one falling edge and one rising edge of the ~SPIEnable signal. The three words are 55AAh, 33CCh,
and 0FF0h. When this message is received, a Drive Exception event will be raised, and bit 4 of the Drive
Fault status register set to 1 to indicate an SPI mode change. The action to take in this case is
programmable, for example motor output could be disabled, or a smooth stop executed.

C-Motion API PMDresult PMDGetSPIMode(PMDAxisInterface axis_intf, PMDuint16* mode);

Script API GetSPIMode

C# API PMDSPIMode mode = PMDAxis.SPIMode;

Visual Basic
API

PMDSPIMode mode = PMDAxis.SPIMode

see SetOutputMode (p. 146), SetDriveCommandMode (p. 114), SetLoop (p. 134), GetEventStatus (p.
52), SetEventAction (p. 125), GetDriveFaultStatus (p. 46)

DC Brush Brushless DC Microstepping

GetSPIMode
0 0Bh

15 8 7 0

Data
read mode

15 0
Juno Velocity & Torque Control IC Programming Reference 65

66

7
 GetTime 3Eh
Motor Types

Arguments None

Returned data Name Type Range Scaling Units
time unsigned 32 bits 0 to 232–1 unity cycles

Packet
Structure

Description GetTime returns the number of cycles which have occurred since the motion control IC was last
reset. The time per cycle is determined by SetSampleTime.

Errors None

C-Motion API PMDresult PMDGetTime(PMDAxisInterface axis_intf,
 PMDuint32* time);

Script API GetTime

C# API UInt32 time = PMDAxis.Time;

Visual Basic
API

UInt32 time = PMDAxis.Time

see Set/GetSampleTime (p. 151)

DC Brush Brushless DC Microstepping

GetTime
0 3Eh

15 8 7 0

read time (high-order part)
31 16

read time (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7
GetTraceCount BBh
Motor Types

Arguments None

Returned data Name Type Range Scaling Units
count unsigned 32 bits 0 to 232–1 unity samples

Packet
Structure

Description GetTraceCount returns the number of points (variable values) stored in the trace buffer since the
beginning of the trace. If the trace mode is rolling buffer than the trace count may include values that
have been overwritten.

Errors None

C-Motion API PMDresult PMDGetTraceCount(PMDAxisInterface axis_intf,
PMDuint32* count);

Script API GetTraceCount

C# API UInt32 count = PMDAxis.TraceCount;

Visual Basic
API

UInt32 count = PMDAxis.TraceCount

see GetTraceStatus (p. 68), ReadBuffer (p. 76), Set/GetBufferLength (p. 92), Set/GetTraceMode (p.
157), Set/GetTraceStart (p. 159), Set/GetTraceStop (p. 162),

DC Brush Brushless DC Microstepping

GetTraceCount
0 BBh

15 8 7 0

read count (high-order part)
31 16

read count (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference 67

68

7
 GetTraceStatus BAh
Motor Types

Arguments None

Returned data Name Type
status unsigned 16 bits

Packet
Structure

Description GetTraceStatus returns the trace status. The definitions of the individual status bits are as follows:

Restrictions Trace Overrun and NotEmpty conditions make sense only if all trace reads are done using buffer
1, but another buffer could be set up to read trace data as well.

Errors None

C-Motion API PMDresult PMDGetTraceStatus(PMDAxisInterface axis_intf,
 PMDuint16* status);

Script API GetTraceStatus

C# API UInt16 status = PMDAxis.TraceStatus;

Visual Basic
API

UInt16 status = PMDAxis.TraceStatus

see Set/GetTraceStart (p. 159), Set/GetTraceMode (p. 157)

DC Brush Brushless DC Microstepping

GetTraceStatus
0 BAh

15 8 7 0

Data
read status

15 0

Name Bit Number Description
Wrap Mode 0 Set to 0 when trace is in one-time mode, 1 when in rolling mode.
Activity 1 Set to 1 when trace is active (currently tracing), 0 if trace not

active.
Data Wrap 2 Set to 1 when trace has wrapped, 0 if it has not wrapped. If 0, the

buffer has not yet been filled, and all recorded data is intact. If 1,
the trace has wrapped to the beginning of the buffer; any previous
data may have been overwritten if not explicitly retrieved by the
host using the ReadBuffer command while the trace is active.

Overrun 3 Set to 0 at trace start, set to 1 if values are overwritten before
being read from buffer 1.

NotEmpty 4 Set to 1 only if some values have been written by trace but not yet
read from buffer 1, 0 otherwise.

— 5-15 — (Reserved)
Juno Velocity & Torque Control IC Programming Reference

7
GetTraceValue 28h
Motor Types

Arguments Name Type Encoding
variableID unsigned 8 bit see below

Returned data Value Type Range/Scaling
32 bit see below

Packet
Structure

Description GetTraceValue returns a single sample of any trace variable, without using the trace mechanism. The
variableID encoding is the same as for SetTraceVariable. The use of this command does not change
or depend upon any of the trace parameters. The scaling depends on the variableID, and is the same as
for trace.

Errors Invalid parameter: variableID is not a supported value.

C-Motion API PMDresult PMDGetTraceValue(PMDAxisInterface axis_intf,
 PMDuint8 variable, PMDuint32 *value);

Script API GetTraceValue variableID

C# API Int32 value = PMDAxis.GetTraceValue(PMDTraceVariable variableID);

Visual Basic
API

Int32 value = PMDAxis.GetTraceValue(ByRef variableID
As PMDTraceVariable)

see SetTraceVariable (p. 164)

DC Brush Brushless DC Microstepping

GetTraceValue
0 28h

15 8 7 0

write 0 variableID
15 8 7 0

read Value (high order part)
31 16

read Value (low order part)
15 0
Juno Velocity & Torque Control IC Programming Reference 69

70

7
 GetVersion 8Fh
Motor Types

Arguments None

Returned data Name Type
version unsigned 32 bits

Packet
Structure

Description GetVersion is used in Magellan products to return product information. It is retained in Juno only
for backwards compatibility, and always returns zero. The GetProductInfo command may be used
to read product version and other information.

Errors None

C-Motion API PMDresult PMDGetVersion(PMDAxisInterface axis_intf,
PMDuint16* family,
PMDuint16* motorType,
PMDuint16* numberAxes,
PMDuint16* special_and_chip_count,
PMDuint16* custom,
PMDuint16* major,
PMDuint16* minor);

Script API GetVersion

C# API PMDAxis.GetVersion(ref UInt16 family,
Ref PMDMotorTypeVersion MotorType,
Ref UInt16 NumberAxes,
Ref UInt16 special_and_chip_count,
Ref UInt16 custom,
Ref UInt16 major,
Ref UInt16 minor);

Visual Basic
API

PMDAxis.GetVersion(ByRef family As UInt16,
ByRef MotorType As PMDMotorTypeVersion,
ByRef NumberAxes As UInt16,
ByRef special_and_chip_count As UInt16,
ByRef custom As UInt16,
ByRef major As UInt16,
ByRef minor As UInt16)

see GetProductInfo (p. 61)

DC Brush Brushless DC Microstepping

GetVersion
0 8Fh

15 8 7 0

read 0
31 16

read 0
15 0
Juno Velocity & Torque Control IC Programming Reference

7
InitializePhase 7Ah
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned data None

Packet
Structure

Description InitializePhase initializes the phase angle for the specified axis using the mode (Hall-based or pulse)
specified by the SetPhaseInitializationMode command.

The Activity Status Phasing Initialized bit is cleared by the InitializePhase command, and set when the
initialization process is complete. In the case of pulse phase initialization the Activity Status register may
be polled to determine when initialization is complete. The Event Status Commutation Error bit will be
set during phase initialization in case an error occurred that might have resulted in incorrect phasing.

In the case of Hall-based phase initialization the Phasing Initialized bit is not set until the motor has
moved past a Hall sensor transition. The Commutation Error bit is set and the phase initialization
process halted in case an incorrect (all high or all low) Hall state is detected.

Restrictions Warning: If the phase initialization mode has been set to pulse, then, after this command is sent, the
motor may suddenly move in an uncontrolled manner.

Errors Invalid register state for command: Phase counts less than 4 or less than 4 times phase denominator.
Invalid operating mode for command: Motor output not enabled, or position loop, velocity loop, or
command source enabled.

C-Motion API PMDresult PMDInitializePhase(PMDAxisInterface axis_intf);

Script API InitializePhase

C# API PMDAxis.InitializePhase();

Visual Basic
API

PMDAxis.InitializePhase()

see GetActivityStatus (p. 40), GetEventStatus (p. 52), Set/GetCommutationMode (p. 102)

Brushless DC

InitializePhase
0 axis 7Ah

15 12 11 8 7 0
Juno Velocity & Torque Control IC Programming Reference 71

72

7
 NVRAM 30h
Arguments Name Instance Encoding
axis Axis1 0

option NVRAM mode 256
Erase NVRAM 1
Write 2
Block Write Begin 3
Block Write End 4
Skip 8

Type Range
value unsigned 16 bit see below

Packet
Structure

Description The NVRAM command is used to write the non-volatile RAM (NVRAM) used for initialization.
The NVRAM command is first used to put the processor to be programmed into NVRAM mode,
which supports only the commands necessary for its purpose. Once the processor is in NVRAM
mode more NVRAM commands are used to erase and re-program NVRAM. NVRAM mode is
exited by using the reset command.

Changing to NVRAM mode, erasing, or writing NVRAM data may take more time than the other
commands. When programming the MC78113 NVRAM the timeout period should be increased to
at least 10 seconds; after each operation fully completes the return status may be read to confirm
that the operation succeeded.

The option argument to NVRAM specifies the particular operation to perform:

NVRAM mode (256) will put an MC78113 series motion control IC into NVRAM mode. Motor
output must be disabled.

The remaining operations will succeed only if either the Juno processor is in NVRAM mode,
otherwise an Invalid register state for command error will be raised. The value argument should be
zero for this command.

Erase NVRAM (1) will erase the entire non-volatile memory, meaining that all bits will be set.
NVRAM must be completely erased before any words may be written. The value argument should
be zero for this command.

Write (2) will write a single word of NVRAM, which is specified by the value argument. Words are
written in sequence, from the beginning.

Skip (8) may be used to leave the number of words specified in the value argument unwritten, that
is, with a value of 0xFFFF. Writing may resume afterwards. It is not necessary to use this command
in the usual case.

NVRAM
0 axis 30h

15 12 11 8 7 0

write option
15 0

write value
15 0
Juno Velocity & Torque Control IC Programming Reference

7
NVRAM (cont.) 30h
Description
(cont’d)

Block Write Begin (3) and Block Write End (4) may be used to speed up NVRAM operations that are
limited by communication bandwidth; their use is not required.

A block write operation is begun by using the BlockWriteBegin command, with the number of words
that will be sent as a block specified in the value argument. A block may be at most 32 words. No polling
procedure is required after a Block Write Begin command.

The next step is to send the data words. These are sent without the usual Magellan command format,
therefore no other commands may be sent until the entire block is transmitted.

If using serial communications the words are sent as is, high byte first.

If using CANBus, the words are sent without any additional formatting. At most four words may be
sent per CAN packet.

If using SPI communications, the words are sent without any additional formatting. at most four words
may be sent for each cycle of the ~HostSPIEnable signal.

If using parallel communications the words are sent without any additional formatting, with the
~HostWrite signal high, that is, as though they were command words. At most one word may be sent per
~HostWrite cycle.

The block write operation is concluded by sending a BlockWriteEnd comamnd. The value argument
to this command must be the 16-bit ones complement checksum of all words sent since the
BlockWriteBegin command. If the checksum matches then the processor will write all words to
NVRAM, in order. When programming MC58113 NVRAM a long wait may be required. When
programming Atlas NVRAM the polling procedure described above for NVRAM writes should be
followed.

Restrictions Once put in NVRAM mode an Atlas amplifier or MC58113 series motion control IC will accept only a
restricted set of commands. There is no way to enable motor output, and Atlas will not accept torque
commands.

Errors Invalid parameter: option not supported or value incorrect.
Invalid register state for command: Attempt to call NVRAM command from NVRAM.
Invalid register state for command: Attempt to write flash before erasing, or to write past sector end.

C-Motion API PMDresult PMDNVRAM (PMDAxisInterface axis_intf,
 PMDuint16 option,

PMDuint16 value);

Script API NVRAM option value

C# API PMDAxis.NVRAM(PMDNVRAMOption option, UInt16 value);

Visual Basic
API

PMDAxis.NVRAM(ByRef option As PMDNVRAMOption, ByRef value As UInt16)

see GetDriveStatus (p. 48), GetEventStatus (p. 52), GetInstructionError (p. 56), Reset (p. 78)
Juno Velocity & Torque Control IC Programming Reference 73

74

7
 NoOperation 00h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Returned data None

Packet
Structure

Description The NoOperation command has no effect on the motion control IC. It may be used to verify
communication.

Errors None

C-Motion API PMDresult PMDNoOperation(PMDAxisInterface axis_intf);

Script API NoOperation

C# API PMDAxis.NoOperation();

Visual Basic
API

PMDAxis.NoOperation()

see

DC Brush Brushless DC Microstepping

NoOperation
0 axis 00h

15 12 11 8 7 0
Juno Velocity & Torque Control IC Programming Reference

7
ReadAnalog EFh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Name Type Range Scaling Units
portID unsigned 16 bits 0 to 10 unity -

Returned data Type Range Scaling Units
value unsigned 16 bits 0 to 216-1 100/216 % input

Packet
Structure

Description ReadAnalog returns a 16-bit value representing the voltage presented to the specified analog input. See
the Juno Velocity & Torque Control IC User Guide and MC78113 Electrical Specifications for more information
on analog input and scaling.

Errors Invalid parameter: portID not supported.

C-Motion API PMDresult PMDReadAnalog(PMDAxisInterface axis_intf, PMDuint16 portID,
PMDuint16* value);

Script API ReadAnalog portID

C# API UInt16 value = PMDAxis.ReadAnalog(Int16 portID);

Visual Basic
API

UInt16 value = PMDAxis.ReadAnalog(ByVal portID As Int16)

see

DC Brush Brushless DC Microstepping

ReadAnalog
0 axis EFh

15 12 11 8 7 0

write 0 portID
15 4 3 0

read value
15 0
Juno Velocity & Torque Control IC Programming Reference 75

76

7
 ReadBuffer C9h
Motor Types

Arguments Name Type Range
bufferID unsigned 16 bits 0 to 7

Returned data Type Range
data signed 32 bits –231 to 231–1

Packet
Structure

Description ReadBuffer returns the 32-bit contents of the location pointed to by the read buffer index in the
specified buffer. After the contents have been read, the read index is incremented by 1. If the result
is equal to the buffer length (set by SetBufferLength), the index is reset to zero (0).

Two buffers are used for special purposes: Data is written automatically to Buffer 0 during trace,
and the read index of buffer 1 is used to indicate the current NVRAM command executing during

initialization. An error is signaled if an attempt is made to read from buffer 0 when trace is active,
or to read from buffer 1 when NVRAM initialization is active.

Errors Invalid parameter: bufferID out of range.
Block out of bounds: Attempt to read from a zero length buffer.
Trace running: Attempt to read buffer 0 when trace is running.
NVRAM buffer busy: Attempt to read buffer 1 when NVRAM initialization is running.
Invalid register state for command: 32 bit read from an NVRAM buffer when read index is odd.

C-Motion API PMDresult PMDReadBuffer(PMDAxisInterface axis_intf, PMDuint16 bufferID,
 PMDint32* data);

Script API ReadBuffer bufferID

C# API Int32 data = PMDAxis.ReadBuffer(Int16 BufferId);

Visual Basic
API

Int32 data = PMDAxis.ReadBuffer(ByVal BufferId As Int16)

see Set/GetBufferReadIndex (p. 94), Set/GetBufferStart (p. 96), Set/GetBufferLength (p. 92)

DC Brush Brushless DC Microstepping

ReadBuffer
0 C9h

15 8 7 0

write 0 bufferID
15 5 4 0

read data (high-order part)
31 16

read data (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7
ReadBuffer16 CDh
Motor Types

Arguments Name Type Range
bufferID unsigned 16 bits 0 to 7

Returned data Type Range
data signed 16 bits –215 to 215–1

Packet
Structure

Description ReadBuffer16 returns the 16-bit contents of the location pointed to by the read buffer index in the
specified buffer. After the contents have been read, the read index is incremented by 1. If the result is
equal to the buffer length (set by SetBufferLength), the index is reset to zero (0). This command is
intended to read from a buffer located in non-volatile RAM, which has a 16-bit word size. ReadBuffer
should be used for all other buffers.

Restrictions This command is only available on products that support non-volatile RAM.

Errors Invalid parameter: bufferID out of range or attempt to read from a buffer in 32 bit RAM.
Block out of bounds: Attempt to read from a zero length buffer.
NVRAM buffer busy: Attempt to read buffer 1 when NVRAM initialization is running.

C-Motion API PMDresult PMDReadBuffer16(PMDAxisInterface axis_intf,
PMDuint16 bufferID, PMDint32* data);

Script API ReadBuffer16 bufferID

C# API Int16 data = PMDAxis.ReadBuffer16(Int16 BufferId);

Visual Basic
API

Int16 data = PMDAxis.ReadBuffer16(ByVal BufferId As Int16)

see Set/GetBufferReadIndex (p. 94), WriteBuffer (p. 176), Set/GetBufferStart (p. 96),
Set/GetBufferLength (p. 92)

DC Brush Brushless DC Microstepping

ReadBuffer
0 CDh

15 8 7 0

write 0 bufferID
15 5 4 0

read data
31 16
Juno Velocity & Torque Control IC Programming Reference 77

78

7
 Reset 39h
Motor Types

Arguments None

Returned data None

Packet
Structure

Description Reset restores the motion control IC to its initial condition, setting all motion control IC variables to
their default values. Most variables are motor-type independent; however several default values
depend upon the configured motor type of the axis. Some of the default values also depend on the
state of Magellan pin OutputMode0 when power is applied, if this pin is grounded, Magellan will be
in an “Atlas-compatible” state, if it is floating, “backwards-compatible.” MC58113 series products
always behave in an Atlas-compatible way. The motor-type independent values are listed here.

DC Brush Brushless DC Microstepping

Reset
0 39h

15 8 7 0

Default Value
Interrupts
Interrupt Mask 0
Commutation
Commutation Mode motor dependent
Phase Angle 0
Phase Counts motor dependent
Phase Denominator 1
Phase Offset –1
Phase Initialize Mode 0
Phase Initialize Ramp Time 0
Phase Initialize Negative Pulse Time 0
Phase Initialize Positive Pulse Time 0
Phase Initialize Ramp Command 0
Phase Initialize Pulse Command 0
Phase Correction Mode motor dependent
Current Control
Currrent Control Mode 1
FOC Kp (both D and Q loops) 0
FOC Ki (both D and Q loops) 0
FOC Integrator Sum Limit 0
Holding Motor Limit 32767
Step Drive Current 0
Position/Outer Loop
Position Error Limit 65535
Position Loop Kp 0
Position Loop Ki 0
Position Loop Kd 0
Position Loop Integrator Sum Limit 0
Position Loop Derivative Time 1
Position Loop Kout 65535
Current Limit 32767
Juno Velocity & Torque Control IC Programming Reference

7
Reset (cont.) 39h
Description
(cont.)

Position/Outer Loop (cont.) Default Value
Motor Command 0
Outer Loop Feedback Source 0
Outer Loop Period 1
Outer Loop Output Upper Limit 7FFFFFFFh
Outer Loop Output Lower Limit -80000000h
Encoder
Actual Position 0
Actual Position Units motor dependent
Encoder Source motor dependent
Encoder To Step Ratio 04000400h
Motor Output
Operating Mode 0001h
Active Operating Mode 0001h
Output Mode 10
Motor Type 0
PWM Frequency 5000
PWM Limit 16384
PWM Dead Time 16879 must be changed
PWM Signal Sense 80FFh
PWM Refresh Period 1
PWM Refresh Time 32767 must be changed
PWM Current Sense Time 32767 must be changed
Position Servo Loop Control
Sample Time 102
Profile Generation
Acceleration 0
Deceleration 0
Profile Mode 1
Start Velocity 0
Velocity Loop
Velocity Loop Kp 0
Velocity Loop Ki 0
Velocity Loop Integrator Sum Limit 1
Velocity Scalar 0
Velocity Error Limit 7FFFFFFFh
Velocity Feedback Source 0
Deadband Upper Limit 0
Deadband Lower Limit 0
RAM Buffer
Buffer Length buffer 0 3072

buffer 1 8192
others 0

Buffer Read Index 0
Buffer Start buffer 1 20000000h

others 0
Buffer Write Index 0
Juno Velocity & Torque Control IC Programming Reference 79

80

7
 Reset (cont.) 39h
Description
(cont.)

The motor-type dependent default values are listed in the following tables.

Notes See Set/GetSampleTime (p. 151) for more information regarding SampleTime.

Restrictions Not all of the listed variables are available on all products. See the product user guide.

Errors No errors. GetInstructionError will indicate Parameter Reset error the first time it is called after
reset.

Default Value
Safety
Motion Error Event Action 4
Current Foldback Event Action 7
OvervoltageThreshold 65535
Undervoltage Threshold 0
OvertemperatureThreshold 32767
FaultOut Mask 0600h
Continuous Current Limit 32768
Energy Limit 32768
Status Registers and AxisOut Indicator
Signal Sense 0
Traces
Trace Mode 0
Trace Period 1
Trace Start 0
Trace Stop 0
Trace Variables all are 0
Trace Trigger Values all are 0
Miscellaneous
CAN Mode C000h (see Notes)
Serial Port Mode 0004h (see Notes)

Variable DC Brush
Brushless DC
(3 phase)

Actual Position Units 0 0
Commutation Mode - 0
Encoder Source 0 0
Phase Correction Mode - 1
Phase Counts - 1

Variable
Microstepping
(2 phase)

Actual Position Units 1
Commutation Mode 0
Encoder Source 2
Phase Correction Mode -
Phase Counts 256
Juno Velocity & Torque Control IC Programming Reference

7
Reset (cont.) 39h
C-Motion API PMDresult PMDReset(PMDAxisInterface axis_intf);

Script API reset

C# API PMDAxis.Reset ();

Visual Basic
API

PMDAxis.Reset()

see
Juno Velocity & Torque Control IC Programming Reference 81

82

7
 ResetEventStatus 34h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

mask Wrap-around FFFDh
Capture Received FFF7h
Motion Error FFEFh
Instruction Error FF7Fh
Disable FEFFh
Overtemperature Fault FDFFh
Drive Exception FBFFh
Commutation Error F7FFh
Current Foldback EFFFh
Runtime Error DFFFh

Returned data None

Packet
Structure

Description ResetEventStatus clears (sets to 0), for the specified axis, each bit in the Event Status register that
has a value of 0 in the mask sent with this command. All other Event Status register bits (bits that
have a mask value of 1) are unaffected.

Events that cause changes in operating mode or trajectory require, in general, that the
corresponding bit in Event Status be cleared prior to returning to operation. That is, prior to
restoring the operating mode (in cases where the event caused a change in it) or prior to performing
another trajectory move (in cases where the event caused a trajectory stop). The one exception to
this is Motion Error, which is not required to be cleared if the event action for it includes disabling
of the position or velocity loops.

Restrictions Not all bits in ResetEventStatus are supported in some products. See the product user guide.

Errors None

C-Motion API PMDresult PMDResetEventStatus(PMDAxisInterface axis_intf,
PMDuint16 status);

Script API ResetEventStatus mask

C# API PMDAxis.ResetEventStatus(UInt16 mask);

isual Basic API PMDAxis.ResetEventStatus(ByVal mask As UInt16)

see GetEventStatus (p. 52)

DC Brush Brushless DC Microstepping

ResetEventStatus
0 axis 34h

15 12 11 8 7 0

Data
write mask

15 0
Juno Velocity & Torque Control IC Programming Reference

7
RestoreOperatingMode 2Eh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Packet
Structure

Description RestoreOperatingMode is used to command the axis to return to its static operating mode. It should
be used when the active operating mode has changed due to actions taken from safety events or other
programmed events. Calling RestoreOperatingMode will re-enable all loops that were disabled as a
result of events.

Restrictions Before using RestoreOperatingMode to return to the static operating mode, the event status bits should
all be cleared. If a bit in event status that caused a change in operating mode is not cleared, this command
will return an error. An exception to this is Motion Error, which does not have to be cleared prior to
restoring the operating mode.

Though RestoreOperatingMode will re-enable the profile generator (if it was disabled as a result of an
event action), it will not resume a move. This must be done using SetVelocity.

If the current command source is analog or SPI instead of the trajectory generator then motion may
resume immediately. The external command source may have to be managed to avoid any problems.

Errors Invalid operating mode restore after event triggered change.

C-Motion API PMDresult PMDRestoreOperatingMode(PMDAxisInterface axis_intf);

Script API RestoreOperatingMode

C# API PMDAxis.RestoreOperatingMode();

Visual Basic
API

PMDAxis.RestoreOperatingMode()

see GetActiveOperatingMode (p. 38), Set/GetOperatingMode (p. 144), Set/GetEventAction (p. 125)

DC Brush Brushless DC Microstepping

RestoreOperatingMode
0 axis 2Eh

15 12 11 8 7 0
Juno Velocity & Torque Control IC Programming Reference 83

84

7

SetAcceleration 90h
GetAcceleration 4Ch
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Type Range Scaling Units
acceleration unsigned 32 bits 0 to 231–1 1/28 counts/cycle2

microsteps/cycle2

Packet
Structure

Description SetAcceleration loads the maximum acceleration buffer register for the specified axis. This
command is used with the internal profile generator.

SetAcceleration may also be used to specify the maximum acceleration used during a smooth stop
when the command mode is analog or SPI.

GetAcceleration reads the maximum acceleration buffer register.

Scaling example: To load a value of 1.750 counts/cycle2, multiply by 224 (giving 29,360,128) and
load the resultant number as a 32-bit number, giving 01C0h in the high word and 0200h in the low
word. Values returned by GetAcceleration must correspondingly be divided by 224 to convert to
units of counts/cycle2 or steps/cycle2.

Errors Invalid Parameter: A negative acceleration was supplied.

C-Motion API PMDresult PMDSetAcceleration(PMDAxisInterface axis_intf,
PMDuint32 acceleration);

PMDresult PMDGetAcceleration(PMDAxisInterface axis_intf,
PMDuint32* acceleration);

DC Brush Brushless DC Microstepping

SetAcceleration
0 axis 90h

15 12 11 8 7 0

write acceleration (high-order part)
31 16

write acceleration (low-order part)
15 0

GetAcceleration
0 axis 4Ch

15 12 11 8 7 0

read acceleration (high-order part)
31 16

read acceleration (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetAcceleration (cont.) 90h
GetAcceleration 4Ch
Script API GetAcceleration
SetAcceleration acceleration

C# API UInt32 acceleration = PMDAxis.Acceleration;
PMDAxis.Acceleration = acceleration;

Visual Basic
API

UInt32 acceleration = PMDAxis.Acceleration
PMDAxis.Acceleration = acceleration

see Set/GetDeceleration (p. 113), Set/GetVelocity (p. 174)
Juno Velocity & Torque Control IC Programming Reference 85

86

7

SetActualPosition 4Dh
GetActualPosition 37h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Type Range Scaling Units
position signed 32 bits –231 to 231–1 unity counts

microsteps
Packet
Structure

Description SetActualPosition loads the position register (encoder position) for the specified axis. At the same
time, the commanded position is replaced by the loaded value minus the position error. This
prevents a servo “bump” when the new axis position is established. In effect, this instruction
establishes a new reference position from which subsequent positions can be calculated. It is
commonly used to set a known reference position after a homing procedure.

Note: For axes configured as microstepping motor types, actual position units determines if the
position is specified and returned in units of counts or steps.

GetActualPosition reads the contents of the encoder’s actual position register. This value will be
accurate to within one cycle (as determined by Set/GetSampleTime).

Errors None

C-Motion API PMDresult PMDSetActualPosition(PMDAxisInterface axis_intf,
PMDint32 position);

PMDresult PMDGetActualPosition(PMDAxisInterface axis_intf,
PMDint32* position);

Script API GetActualPosition
SetActualPosition position

C# API Int32 position = PMDAxis.ActualPosition;
PMDAxis.ActualPosition = position;

Visual Basic
API

Int32 position = PMDAxis.ActualPosition
PMDAxis.ActualPosition = position

see GetPositionError (p. 60), Set/GetActualPositionUnits (p. 87), AdjustActualPosition (p. 30)

DC Brush Brushless DC Microstepping

SetActualPosition
0 axis 4Dh

15 12 11 8 7 0

write position (high-order part)
31 16

write position (low-order part)
15 0

GetActualPosition
0 axis 37h

15 12 11 8 7 0

read position (high-order part)
31 16

read position (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetActualPositionUnits BEh
GetActualPositionUnits BFh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

mode Counts 0
Steps 1

Packet
Structure

Description SetActualPositionUnits determines the units used by the Set/GetActualPosition, AdjustActualPosition
and GetCaptureValue for the specified axis. It also affects the trace variable Actual Position. When set to
Counts, position units are in encoder counts. When set to Steps, position units are in microsteps. The step
position is calculated using the ratio as set by the SetEncoderToStepRatio command.

GetActualPositionUnits returns the position units for the specified axis.

Restrictions The trace variable, capture value, is not affected by this command. The value is always in counts.

Errors Invalid Parameters: mode other than 0 or 1.

C-Motion API PMDresult PMDSetActualPositionUnits(PMDAxisInterface axis_intf,
 PMDuint16 mode);

PMDresult PMDGetActualPositionUnits(PMDAxisInterface axis_intf,
 PMDuint16* mode);

Script API GetActualPositionUnits
SetActualPositionUnits mode

C# API PMDActualPositionUnits mode = PMDAxis.ActualPositionUnits;
PMDAxis.ActualPositionUnits = mode;

Visual Basic
API

PMDActualPositionUnits mode = PMDAxis.ActualPositionUnits
PMDAxis.ActualPositionUnits = mode

see Set/GetActualPosition (p. 86), Set/GetEncoderToStepRatio (p. 123), AdjustActualPosition (p. 30),
GetCaptureValue (p. 42), Set/GetTraceVariable (p. 164)

Microstepping

SetActualPositionUnits
0 axis BEh

15 12 11 8 7 0

Data
write 0 mode

15 1 0

GetActualPositionUnits
0 axis BFh

15 12 11 8 7 0

Data
read 0 mode

15 1 0
Juno Velocity & Torque Control IC Programming Reference 87

88

7

SetAnalogCalibration 29h
GetAnalogCalibration 2Ah
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

channel current leg A offset 0
current leg B offset 1
current leg C offset 2
current leg D offset 3
Analog command offset 7
Tachometer offset 8
Analog command gain 0x207

Type Range Scaling Units

offset signed 16 bits –215 to 215-1 100/2816 % input
gain unsigned 15 bits 0 to 32767 1/215 dimensionless

Packet
Structure

Description The SetAnalogCalibration command sets the offset applied to the specified analog input channel,
to compensate for the vagaries of external amplification circuitry. The offset is subtracted from the
raw analog reading, as returned by the ReadAnalog command, before any scaling is applied.

It is frequently more convenient to use the CalibrateAnalog command than to compute the
apropriate offsets.

SetAnalogCalibration may also be used to set the gain associated with the analog command
channel. The gain is applied to the analog command signal after the offset, and may be used to scale
the command appropriately for an application. By default the the analog command gain is 50%
(16384), which is frequently reasonable for velocity control.

GetAnalogCalibration retrieves the values set by SetAnalogCalibration.

DC Brush Brushless DC Microstepping

SetAnalogCalibration
axis 29h

15 12 11 8 7 0

write channel
15 0

write offset or gain
15 0

GetAnalogCalibration
axis 2Ah

15 12 11 8 7 0

write channel
15 0

read offset or gain
15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetAnalogCalibration (cont.) 29h
GetAnalogCalibration 2Ah
Errors

C-Motion API PMDresult PMDSetAnalogCalibration(PMDAxisInterface axis_intf,
PMDuint16 channel,
PMDint16 offset);

PMDresult PMDGetAnalogCalibration(PMDAxisInterface axis_intf,
PMDuint16 channel,
PMDint16 *offset);

Script API GetAnalogCalibration channel
SetAnalogCalibration channel offset

C# API Int16 offset = PMDAxis.GetAnalogCalibration(UInt16 channel);
PMDAxis.SetAnalogCalibration(UInt16 channel, Int16 offset);

Visual Basic
API

Int16 offset = PMDAxis.SetAnalogCalibration(UInt16 channel)
PMDAxis.SetAnalogCalibration(Uint16 channel, Int16 offset)

see ReadAnalog (p. 75), CalibrateAnalog (p. 31)
Juno Velocity & Torque Control IC Programming Reference 89

90

7

SetTraceTriggerValue D6h
GetTraceTriggerValue D7h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

ID start 256
stop 257
stop delay 258

value (see below)

Packet
Structure

Description SetTraceTriggerValue sets the comparison trigger value for some trace start or stop conditions.

Not all trace start/stop conditions require a value.

The value parameter is interpreted according to the trigger condition for trace start or stop; see
SetTraceStart. The data format for each trigger condition is as follows:

The value parameter is interpreted according to the trigger condition for the selected ID; see
SetTraceStart (p. 159). The data format for each trigger condition is as follows:

DC Brush Brushless DC Microstepping

SetTraceTrigger
0 axis D6h

15 12 11 8 7 0

write ID
15 0

write value (high-order part)
31 16

write value (low-order part)
15 0

GetTraceTrigger
0 axis D7h

15 12 11 8 7 0

write ID
15 0

read value (high-order part)
31 16

read value (low-order part)
15 0

Trace Trigger Value Type Range Units
Signed greater than trace value signed 32-bit –231 to 231–1 same as trace value

Signed less than trace value signed 32-bit –231 to 231–1 same as trace value

Unsigned higher than trace value unsigned 32-bit 0 to 232–1 same as trace value

Unsigned lower than trace value unsigned 32-bit 0 to 232–1 same as trace value

Bitwise match for trace value 2 word mask - boolean status values
Juno Velocity & Torque Control IC Programming Reference

7

SetTraceTriggerValue (cont.) D6h
GetTraceTriggerValue D7h
Description
(cont.)

For the bitwise match condition, the high order part of value is the selection mask, and the low-order
part is the sense mask. The condition will trigger when the bitwise logical AND of the selection mask
with the lower 16 bits of the trace value is equal to the sense mask.

For example, to trigger a trace start when both the Hall A and Hall B signals are high and the Hall C
signal is low, set the trace start value to 03800180h, set the first trace variable to the signal status register
(14), then set the trace start condition to bitwise match (11).

SetTraceTriggerValue is also used to set the number of trace periods between the time the trace stop
condition is satisfied and the time trace actually stops. This delay allows collecting trace data after the
point of interest identified by the trace stop condition. The maximum delay is 65536. The delay register
is set to zero during a trace stop; the delay value must be set each time.

GetTraceTriggerValue returns any of the values set by SetTraceTriggerValue. Each value will be used
for only one trigger, the value must be set again before the condition will trigger.

Restrictions Always load the breakpoint comparison value (SetTraceTriggerValue command) before setting a new
breakpoint condition (SetTraceStart, SetTraceStop command). Failure to do so will likely result in
unexpected behavior.

Errors Invalid Parameter: ID not supported.

C-Motion API PMDresult PMDSetTraceTrigger(PMDAxisInterface axis_intf,
PMDuint16 breakpointID,
PMDint32 value);

PMDresult PMDGetTraceTrigger(PMDAxisInterface axis_intf,
PMDuint16 breakpointID,
PMDint32* value);

Script API GetTraceTriggerValue ID
SetTraceTriggerValue ID value

C# API Int32 value = PMDAxis.GetTraceTriggerValue(PMDTraceTriggerID ID);
PMDAxis.SetTraceTriggerValue(PMDTraceTriggerID ID, Int32 value);

Visual Basic
API

Int32 value = PMDAxis.GetTraceTriggerValue(PMDTraceTriggerID ID)
PMDAxis.SetTraceTriggerValue(ByVal ID As PMDTraceTriggerID, ByVal value As
Int32)

see
Juno Velocity & Torque Control IC Programming Reference 91

92

7

SetBufferLength C2h
GetBufferLength C3h
Motor Types

Arguments Name Type Range
bufferID unsigned 16 bits 0 to 7
length unsigned 32 bits 1 to 230 – 1

Packet
Structure

Description SetBufferLength sets the length, in numbers of 32-bit elements, of the buffer in the memory block
identified by bufferID. For buffers pointing to non-volatile RAM, the length should be specified in
16-bit words.

Note: The SetBufferLength command resets the buffers read and write indexes to 0.

The GetBufferLength command returns the length of the specified buffer.

Restrictions The buffer length plus the buffer start address cannot exceed the memory size of the product. See
the product user guide.

Errors Invalid Parameter: bufferID not supported, or length out of range.
Trace Running: Attempt to set length of buffer 0 when trace is running.
NVRAM buffer busy: Attempt to set length of buffer 1 before NVRAM initialization is complete.

C-Motion API PMDresult PMDSetBufferLength(PMDAxisInterface axis_intf,
 PMDuint16 bufferID, PMDuint32 length);

PMDresult PMDGetBufferLength(PMDAxisInterface axis_intf,
 PMDuint16 bufferID, PMDuint32* length);

DC Brush Brushless DC Microstepping

SetBufferLength
0 C2h

15 8 7 0

write 0 bufferID
15 5 4 0

write length (high-order part)
31 16

write length (low-order part)
15 0

GetBufferLength
0 C3h

15 8 7 0

write 0 bufferID
15 5 4 0

read length (high-order part)
31 16

read length (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetBufferLength (cont.) C2h
GetBufferLength C3h
Script API GetBufferLength bufferID
SetBufferLength bufferID length

C# API Int32 length = PMDAxis.GetBufferLength(Int16 BufferId);
PMDAxis.SetBufferLength(Int16 BufferId, Int32 length);

Visual Basic
API

Int32 length = PMDAxis.GetBufferLength(ByVal BufferId As Int16)
PMDAxis.SetBufferLength(ByVal BufferId As Int16, ByVal length As Int32)

see Set/GetBufferReadIndex (p. 94), Set/GetBufferStart (p. 96), Set/GetBufferWriteIndex (p. 98)
Juno Velocity & Torque Control IC Programming Reference 93

94

7

SetBufferReadIndex C6h
GetBufferReadIndex C7h
Motor Types

Arguments Name Type Range Scaling Units
bufferID unsigned 16 bits 0 to 7 unity -
index unsigned 32 bits 0 to buffer unity double words

length - 1

Packet
Structure

Description SetBufferReadIndex sets the address of the read index for the specified bufferID. For buffers
pointing to non-volatile RAM, the read index should be specified in 16-bit words.

GetBufferReadIndex returns the current read index for the specified bufferID.

Restrictions If the read index is set to an address beyond the length of the buffer, the command will not be
executed and will return host I/O error code 7, buffer bound exceeded.

Errors Invalid Parameter: bufferID not supported.
Block out of bounds: index greater than or equal to buffer length.
Trace Running: Attempt to set read index of buffer 0 when trace is running.
NVRAM buffer busy: Attempt to set read index of buffer 1 before NVRAM initialization is
complete.

C-Motion API PMDresult PMDSetBufferReadIndex(PMDAxisInterface axis_intf,
PMDuint16 bufferID,
PMDuint32 index);

PMDresult PMDGetBufferReadIndex(PMDAxisInterface axis_intf,
PMDuint16 bufferID,
PMDuint32* index);

DC Brush Brushless DC Microstepping

SetBufferReadIndex
0 C6h

15 8 7 0

write 0 bufferID
15 5 4 0

write index (high-order part)
31 16

write index (low-order part)
15 0

GetBufferReadIndex
0 C7h

15 8 7 0

write 0 bufferID
15 5 4 0

read index (high-order part)
31 16

read index (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetBufferReadIndex (cont.) C6h
GetBufferReadIndex C7h
Script API GetBufferReadIndex bufferID
SetBufferReadIndex bufferID index

C# API Int32 index = PMDAxis.GetBufferReadIndex(Int16 BufferId);
PMDAxis.SetBufferReadIndex(Int16 BufferId, Int32 index length);

Visual Basic
API

Int32 index = PMDAxis.GetBufferReadIndex(ByVal BufferId As Int16)
PMDAxis.SetBufferReadIndex(ByVal BufferId As Int16, ByVal index As Int32)

see Set/GetBufferLength (p. 92), Set/GetBufferStart (p. 96), Set/GetBufferWriteIndex (p. 98)
Juno Velocity & Torque Control IC Programming Reference 95

96

7

SetBufferStart C0h
GetBufferStart C1h
Motor Types

Arguments Name Type Range Units
bufferID unsigned 16 bits 0 to 7 -
address unsigned 32 bits 0 to 231 – 1 double words

Packet
Structure

Description SetBufferStart sets the starting address for the specified buffer, in double-words, of the buffer in
the memory block identified by bufferID. In products with non-volatile RAM (NVRAM), the
address range beginning at 20000000h is used for NVRAM. Buffers pointing to NVRAM use a
word size of 16 bits, unlike buffers pointing to DRAM, which use a word size of 32 bits. For
NVRAM buffers the start should be specified in 16-bit words pluse 20000000h.

Note: The SetBufferStart command resets the buffers read and write indexes to 0.

The GetBufferStart command returns the starting address for the specified bufferID.

Restrictions The buffer start address plus the buffer length cannot exceed the memory size of the product. See
the product user guide.

Errors Invalid Parameter: bufferID not supported, start address not in RAM or NVRAM, or start
address plus length out of bounds.
Trace Running: Attempt to set starting address of buffer 0 when trace is running.
NVRAM buffer busy: Attempt to set starting address of buffer 1 before NVRAM initialization
is complete.

DC Brush Brushless DC Microstepping

SetBufferStart
0 C0h

15 8 7 0

write 0 bufferID
15 5 4 0

write address (high-order part)
31 16

write address (low-order part)
15 0

GetBufferStart
0 C1h

15 8 7 0

write 0 bufferID
15 5 4 0

read address (high-order part)
31 16

read address (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetBufferStart (cont.) C0h
GetBufferStart C1h
C-Motion API PMDresult PMDSetBufferStart(PMDAxisInterface axis_intf,
PMDuint16 bufferID, PMDuint32 address);

PMDresult PMDGetBufferStart(PMDAxisInterface axis_intf,
PMDuint16 bufferID, PMDuint32* address);

Script API GetBufferStart bufferID
SetBufferStart bufferID address

C# API Int32 address = PMDAxis.GetBufferStart(Int16 BufferId);
PMDAxis.SetBufferStart(Int16 BufferId, Int32 address);

Visual Basic
API

Int32 address = PMDAxis.GetBufferStart(ByVal BufferId As Int16)
PMDAxis.SetBufferStart(ByVal BufferId As Int16, ByVal address As Int32)

see Set/GetBufferLength (p. 92), Set/GetBufferReadIndex (p. 94), Set/GetBufferWriteIndex (p. 98)
Juno Velocity & Torque Control IC Programming Reference 97

98

7

SetBufferWriteIndex C4h
GetBufferWriteIndex C5h
Motor Types

Arguments Name Type Range Scaling Units
bufferID unsigned 16 bits 0 to 7 unity -
index unsigned 32 bits 0 to buffer unity double words

length - 1

Packet
Structure

Description SetBufferWriteIndex sets the write index for the specified bufferID. For buffers pointing to non-
volatile RAM, the write index should be specified in 16-bit words.

GetBufferWriteIndex returns the write index for the specified bufferID.

Errors Invalid Parameter: bufferID not supported.
Block out of bounds: index greater than or equal to buffer length.
Trace Running: Attempt to set write index of buffer 0 when trace is running.

C-Motion API PMDresult PMDSetBufferWriteIndex(PMDAxisInterface axis_intf,
 PMDuint16 bufferID, PMDuint32 index);

PMDresult PMDGetBufferWriteIndex(PMDAxisInterface axis_intf,
 PMDuint16 bufferID, PMDuint32* index);

Script API GetBufferWriteIndex bufferID
SetBufferWriteIndex bufferID index

DC Brush Brushless DC Microstepping

SetBufferWriteIndex
0 C4h

15 8 7 0

write 0 bufferID
15 4 3 0

write index (high-order part)
31 16

write index (low-order part)
15 0

GetBufferWriteIndex
0 C5h

15 8 7 0

write 0 bufferID
15 4 3 0

read index (high-order part)
31 16

read index (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetBufferWriteIndex (cont.) C4h
GetBufferWriteIndex C5h
C# API Int32 index = PMDAxis.GetBufferWriteIndex(Int16 BufferId);
PMDAxis.SetBufferWriteIndex(Int16 BufferId, Int32 index length);

Visual Basic
API

Int32 index = PMDAxis.GetBufferWriteIndex(ByVal BufferId As Int16)
PMDAxis.SetBufferWriteIndex(ByVal BufferId As Int16,

ByVal index As Int32)

see Set/GetBufferLength (p. 92), Set/GetBufferReadIndex (p. 94), Set/GetBufferStart (p. 96)
Juno Velocity & Torque Control IC Programming Reference 99

100

7

SetCANMode 12h
GetCANMode 15h
Motor Types

Arguments Name Type Encoding
mode unsigned 16 bits see below

Packet
Structure

Description SetCANMode sets the CAN 2.0B communication parameters for the motion control IC. After
completion of this command, the motion control IC will respond to a CAN receive message
addressed to 600h + nodeID. CAN responses are sent to 580h + nodeID. The CAN transmission rate
will be as specified in the transmission rate parameter. Note that when this command is used to
change to a new nodeID, the command response (for this command) will be sent to the new
nodeID. The following table shows the encoding of the data used by this command.

The script interface combines the nodeID and transmission rate arguments into a single mode
argument as shown below. For example, if the nodeID is 3, and the transmission rate is 500,000
baud (2), then option = 2*8192 + 3 = 16387.

Errors Invalid Parameter: Transmission rate code not supported.

C-Motion API PMDresult PMDSetCANMode(PMDAxisHandle axis_handle, PMDuint8 nodeID,
PMDuint8 transmission_rate);

PMDresult PMDGetCANMode(PMDAxisHandle axis_handle, PMDuint8* nodeID,
 PMDuint8* transmission_rate);

DC Brush Brushless DC Microstepping

SetCANMode
0 12h

15 8 7 0

Data
write transmission rate 0 nodeID

15 13 12 7 6 0

GetCANMode
0 15h

15 8 7 0

Data
read transmission rate 0 nodeID

15 13 12 7 6 0

Bits Name Instance Encoding
0–6 CAN NodeID Address 0

Address 1
...
Address 127

0
1
...
127

7–12 — (Reserved)
13–15 Transmission Rate 1,000,000 baud

Reserved
500,000
250,000
125,000
50,000
20,000
10,000

0
1
2
3
4
5
6
7

Juno Velocity & Torque Control IC Programming Reference

7

SetCANMode (cont.) 12h
GetCANMode 15h
Script API GetCANMode
SetCANMode mode
where mode = transmissionRate*8192 + nodeID

C# API PMDAxis.GetCANMode(ref byte NodeId, ref PMDCANBaud TransmissionRate);
PMDAxis.SetCANMode(byte NodeId, PMDCANBaud TransmissionRate);

Visual Basic
API

PMDAxis.GetCANMode(ByRef NodeId As Byte,
ByRef TransmissionRate As PMDCANBaud)

PMDAxis.SetCANMode(ByVal NodeId As Byte,
ByVal TransmissionRate As PMDCANBaud)

see
Juno Velocity & Torque Control IC Programming Reference 101

102

7

SetCommutationMode E2h
GetCommutationMode E3h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

mode Sinusoidal 0
Hall-based 1

Packet
Structure

Description SetCommutationMode sets the phase commutation mode for the specified axis.

When set to Sinusoidal, as the motor turns, the encoder input signals are used to calculate the phase
angle. This angle is in turn used to generate sinusoidally varying outputs to each motor winding.

When set to Hall-based, the Hall effect sensor inputs are used to commutate the motor windings
using a “six-step” or “trapezoidal” waveform method.

When using FOC current control, this command is used to define the method used for motor phase
determination.

GetCommutationMode returns the value of the commutation mode.

Errors Invalid Parameter: Mode code not supported.

C-Motion API PMDresult PMDSetCommutationMode(PMDAxisInterface axis_intf,
PMDuint16 mode);

PMDresult PMDGetCommutationMode(PMDAxisInterface axis_intf,
PMDuint16* mode);

Script API GetCommutationMode
SetCommutationMode mode

C# API PMDCommutationMode mode = PMDAxis.CommutationMode;
PMDAxis.CommutationMode = mode;

Visual Basic
API

PMDCommutationMode mode = PMDAxis.CommutationMode
PMDAxis.CommutationMode = mode

see

Brushless DC

SetCommutationMode
0 axis E2h

15 12 11 8 7 0

Data
write 0 mode

31 1 0

GetCommutationMode
0 axis E3h

15 12 11 8 7 0

Data
read 0 mode

31 1 0
Juno Velocity & Torque Control IC Programming Reference

7

SetCommutationParameter 63h
GetCommutationParameter 64h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

parameter phase counts 0
phase angle 1
phase offset 2
phase denominator 3

Type Range Scaling/Units

value unsigned 32-bits 0 to 231-1 counts

Packet
Structure

Description SetCommutationParameter is used to set several 32-bit quantities used for motor commutation or
microstep generation.

For brushless DC motors, the PhaseCounts and PhaseDenominator registers specify the number of
encoder counts per electrical revolution. If this number is an integer, PhaseDenominator may be left at
its default value of 1, and PhaseCounts set to the counts per electrical revolution. Alternatively,
PhaseDenominator may be set to the number of motor pole pairs, and PhaseCounts to the number of
encoder counts per mechanical revolution.

Brushless DC Microstepping

SetCommutationParameter
0 axis 33h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

write parameter
15 0

write value (high-order part)
15 0

write value (low-order part)
15 0

GetCommutationParameter
0 axis 64h

15 12 11 8 7 0

write parameter
15 0

read value (high-order part)
15 0

read value (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference 103

104

7

SetCommutationParameter (cont.) 63h
GetCommutationParameter 64h
For example, for a six pole motor using an encoder with 1024 counts per revolution there are 341
1/3 encoder counts per electrical revolution, PhaseCounts may be set to 1024, and
PhaseDenominator to 3.

PhaseAngle and PhaseOffset are both values that may be set by command but are normally altered
by the commutation process. PhaseAngle gives the current position in the electrical cycle; to convert
to degrees divide PhaseAngle by PhaseCounts and multiply by 360. For example, for the motor in
the example above, a PhaseAngle of 256 corresponds to an angle of (256/1024)*360 = 90 degrees.

PhaseOffset is the non-negative offset from the index mark to the internal zero phase angle. Setting
PhaseOffset has no immediate effect, but, if phase correction is enabled, sets the phase angle when
an index pulse is detected. The default value of PhaseOffset is -1, which means that at the first index
pulse the PhaseOffset should be set equal to the current phase angle. If phase initialization is
correctly set up it is normally not necessary to set PhaseOffset.PhaseOffset may be read to
determine whether an index pulse has been detected since phase initialization.

Setting the PhaseAngle has the side-effect of setting PhaseOffset to the default value of -1.

The maximum value for PhaseOffset is 231- 1, any value with bit 31 set is interpreted as negative,
and equivalent to -1. If set by command PhaseOffset should be less than PhaseCounts, but that
condition is not checked.

For microstep motors PhaseCounts sets the number of microsteps per electrical revolution, and
PhaseAngle the current position in the electrical cycle. Each electrical revolution is four full steps.
The maximum supported value is 1024 microsteps per electrical revolution, or 256 microsteps per
full step. The PhaseDenominator parameter is ignored for microstep motors.

For microstep motors PhaseOffset, which is zero by default, specifies an offset to be added to
PhaseAngle to produce the current electrical phase angle. 08000h corresponds to 360 degrees for
PhaseOffset.

To obtain traditional full-stepping both phases are always driven at full output, either positive or
negative, set PhaseCounts to 4, and set Offset to 01000h or 45 degrees.

The minimum value for PhaseCounts, for either step or BLDC motors, is 4. The minimum value
for PhaseDenominator is 1, and the maximum possible value is 32767. For proper commutation
PhaseCounts must be greater than PhaseDenominator, although that condition is not checked.

Errors Invalid Parameter: Unrecognized parameter or value out of bounds.

C-Motion API PMDresult PMDGetCommutationParameter (PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDint32* value);

PMDresult PMDSetCommutationParameter (PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDint32 value);

Script API GetCommutationParameter parameter
SetCommutationParameter paramter value
Juno Velocity & Torque Control IC Programming Reference

7

SetCommutationParameter (cont.) 63h
GetCommutationParameter 64h
C# API Int32 value = PMDAxis.GetCommutationParameter(PMDCommutationParameter
parameter);

PMDAxis.SetCommutationParameter(PMDCommutationParameter parameter,
Int32 value);

Visual Basic
API

Int32 value = PMDAxis.GetCommutationParameter(ByVal parameter
As PMDCommutationParameter)

PMDAxis.SetCommutationParameter(ByVal parameter
As PMDCommutationParameter,
ByVal value As Int32)

see Set/GetPhaseCorrectionMode
Juno Velocity & Torque Control IC Programming Reference 105

106

7

SetCurrent 5Eh
GetCurrent 5Fh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0
parameter Holding Motor Limit 0

— (Reserved) 1
Drive Current 2

Type Range/Scaling
value unsigned 16-bit see below

Packet
Structure

Description SetCurrent configures the operation of the holding current. The Holding Motor Limit is applied
whenever the AtRest signal is active.

The Holding Motor Limit is in units of % maximum current, with scaling of 100/215. Its range is 0 to

215–1. It defines the value to which the current will be limited when in the holding state. This limit
is applied as an additional limit to the current limit, so the lower of the two will affect the true limit.

The Drive Current is in units of % maximum current, with a scaling of 100/215. Its range is 0 to

215- 1. It defines the value used for the active motor command when driving a step motor, that is,
when not in a holding state.

GetCurrent gets the indicated holding current parameter.

Errors Invalid Parameter: Unrecognized parameter code or parameter out of bounds.

C-Motion API PMDresult PMDSetCurrent (PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDuint16 value);

PMDresult PMDGetCurrent (PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDuint16* value);

Microstepping

SetCurrent
0 axis 5Eh

15 12 11 8 7 0

write parameter
15 0

write value
15 0

GetCurrent
0 axis 5Fh

15 12 11 8 7 0

write parameter
15 0

read value
15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetCurrent (cont.) 5Eh
GetCurrent 5Fh
Script API GetCurrent parameter
SetCurrent parameter value

C# API UInt16 value = GetCurrent(PMDCurrent parameter);
SetCurrent(PMDCurrent parameter, UInt16 value);

Visual Basic
API

UInt16 value = GetCurrent(ByVal parameter As PMDCurrent)
SetCurrent(ByVal parameter As PMDCurrent, ByVal value As UInt16)

see GetDriveStatus (p. 48), Set/GetSampleTime (p. 151), SetMotorCommand (p. 138)
Juno Velocity & Torque Control IC Programming Reference 107

108

7

SetCurrentControlMode 43h
GetCurrentControlMode 44h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

mode reserved 0
FOC 1
Third leg floating 2

Packet
Structure

Description SetCurrentControlMode configures an axis controlling a three phase BLDC motor to use either
the default field oriented control (FOC) method, or the third leg floating method, in which only two
of the three motor terminals is actively driven at any time, the remaining terminal being left floating
(both high- and low-side switches off). The third leg floating method may be appropriate for
motors intended for commutation by Hall effect sensors.

In third leg floating mode there is only one current control loop, to control the current between the
two active terminals. This current loop uses the q-phase parameters.

For two phase motors FOC is the only supported current control scheme.

For single phase DC motors there is only one phase current to control; it uses the q-phase
parameters.

Errors Invalid Parameter: Unsupported mode.

C-Motion API PMDresult PMDSetCurrentControlMode(PMDAxisInterface axis_intf,
PMDuint16 mode);

PMDresult PMDGetCurrentControlMode(PMDAxisInterface axis_intf,
PMDuint16* mode);

Script API GetCurrentControlMode
SetCurrentControlMode mode

C# API PMDCurrentControlMode mode = PMDAxis.CurrentControlMode;
PMDAxis.CurrentControlMode = mode;

Visual Basic
API

PMDCurrentControlMode mode = PMDAxis.CurrentControlMode
PMDAxis.CurrentControlMode = mode

see GetFOCValue (p. 54), Get/SetFOC (p. 130)

Brushless DC Microstepping

SetCurrentControlMode
0 axis 43h

15 12 11 8 7 0

write mode
15 0

GetCurrentControlMode
0 axis 44h

15 12 11 8 7 0

read mode
15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetCurrentFoldback 41h
GetCurrentFoldback 42h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

parameter Continuous Current Limit 0
Energy Limit 1

Type Range/Scaling
value unsigned 16-bit see below

Packet
Structure

Description SetCurrentFoldback is used to set various I2t foldback-related parameters. Two parameters can be set,
the Continuous Current Limit, and the Energy Limit. The range is from 0% to the factory default
continuous current limit setting. The scaling for the continuous current limit is exactly the same as for
the leg current sensors.

The units of Energy Limit are convertible to A2s. The scaling factor is 2-31/51.2e-6 μs / (A/count)2,
where A/count is the current scaling factor and 51.2e-6 μs is the current loop cycle time.
The Continuous Current Limit is used by the current foldback algorithm. When the current output of the

drive exceeds this setting, accumulation of the I2 energy above this setting begins. Once the accumulated

excess I2 energy exceeds the value specified by the Energy Limit parameter, a current foldback condition

exists and the commanded current will be limited to the specified Continuous Current Limit. When this
occurs, the Current Foldback bit in the Event Status and Drive Status registers will be set. When the

accumulated I2 energy above the Continuous Current Limit drops to zero (0), the limit is removed, and
the Current Foldback bit in the Drive Status register is cleared.

DC Brush Brushless DC Microstepping

SetCurrentFoldback
0 axis 41h

15 12 11 8 7 0

write parameter
15 0

write value
15 0

GetCurrentFoldback
0 axis 42h

15 12 11 8 7 0

write parameter
15 0

read value
15 0
Juno Velocity & Torque Control IC Programming Reference 109

110

7

SetCurrentFoldback (cont.) 41h
GetCurrentFoldback 42h
Description
(cont.)

SetEventAction can be used to configure a change in operating mode when current foldback
occurs. Doing this does not interfere with the basic operation of Current Foldback described above.
If this is done, the Current Foldback bit in the Event Status register must be cleared prior to
restoring the operating mode, regardless of whether the system is in current foldback or not.

When current control is not active, a current foldback event always causes a change to the disabled
state (all loops and motor output are disabled), regardless of the programmed Event Action.
Changing the operating mode from disabled requires clearing of the Current Foldback bit in Event
Status.

GetCurrentFoldback gets the maximum continuous current setting.

Errors Invalid Parameter: Unrecognized parameter code, or value greater than 32768.

C-Motion API PMDresult PMDSetCurrentFoldback(PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDuint16 value);

PMDresult PMDGetCurrentFoldback(PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDuint16* value);

Script API GetCurrentFoldback parameter
SetCurrentFoldback parameter value

C# API UInt16 value = PMDAxis.GetCurrentFoldback(PMDCurrentFoldback parame-
ter);
PMDAxis.SetCurrentFoldback(PMDCurrentFoldback parameter, UInt16 val-
ue);

Visual Basic
API

UInt16 value = PMDAxis.GetCurrentFoldback(ByVal parameter
As PMDCurrentFoldback)

PMDAxis.SetCurrentFoldback(ByVal parameter As PMDCurrentFoldback,
ByVal value As UInt16)

see GetEventStatus (p. 52), ResetEventStatus (p. 82), GetDriveStatus (p. 48),
RestoreOperatingMode (p. 83), GetActiveOperatingMode (p. 38)
Juno Velocity & Torque Control IC Programming Reference

7

SetCurrentLimit 06h
GetCurrentLimit 07h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Type Range Scaling Units
limit unsigned 16 bits 0 to 214–1 100/215 % representable

current

Packet
Structure

Description SetCurrentLimit sets the maximum value for the commanded current allowed by the digital servo filter
of the specified axis. Current command values beyond this value will be clipped to the specified current
command limit. For example if the current limit was set to 1,000 and the servo filter determined that the
current command value should be 1,100, the actual command value would be 1,000. Conversely, if the
output value was –1,100, then it would be clipped to –1,000. This command is useful for protecting
amplifiers, motors, or system mechanisms when it is known that a current exceeding a certain value will
cause damage.

GetCurrentLimit reads the motor limit value.

Scaling example: If it is desired that a current limit of 25% of full scale be established, then this register
should be loaded with a value of 25.0 * 32,768/100 = 8,192 (decimal). This corresponds to a
hexadecimal value of 02000h.

Restrictions This command only affects the motor output when the current loop is enabled. When the motion
control IC is in open loop mode, this command has no effect.

Errors Invalid Parameter: Limit out of range.
Invalid Register State for Command: Microstep motor type.

C-Motion API PMDresult PMDSetMotorLimit(PMDAxisInterface axis_intf,
 PMDuint16 limit);

PMDresult PMDGetMotorLimit(PMDAxisInterface axis_intf,
 PMDuint16* limit);

Script API GetMotorLimit
SetMotorLimit limit

C# API Int16 limit = PMDAxis.MotorLimit;
PMDAxis.MotorLimit = limit;

DC Brush Brushless DC

SetMotorLimit
0 axis 06h

15 12 11 8 7 0

Data
write limit

15 0

GetMotorLimit
0 axis 07h

15 12 11 8 7 0

Data
read limit

15 0
Juno Velocity & Torque Control IC Programming Reference 111

112

7

SetCurrentLimit (cont.) 06h
GetCurrentLimit 07h
Visual Basic
API

Int16 limit = PMDAxis.MotorLimit
PMDAxis.MotorLimit = limit

see Set/GetMotorCommand (p. 138), Set/GetOperatingMode (p. 144)
Juno Velocity & Torque Control IC Programming Reference

7

SetDeceleration 91h
GetDeceleration 92h
Motor Types
Arguments Name Instance Encoding

axis Axis1 0

Type Range Scaling Units
deceleration unsigned 32 bits 0 to 231–1 1/28 counts/cycle2

microsteps/cycle2

Packet
Structure

Description SetDeceleration loads the maximum deceleration register for the specified axis.

GetDeceleration returns the value of the maximum deceleration.

Scaling example: To load a value of 1.750 counts/cycle2 multiply by 65,536 (giving 114,688) and load the
resultant number as a 32-bit number, giving 0001 in the high word and C000h in the low word. Retrieved numbers
(GetDeceleration) must correspondingly be divided by 65,536 to convert to units of counts/cycle2 or
steps/cycle2

Note: If deceleration is set to zero (0), then the value specified for acceleration (SetAcceleration) will
automatically be used to set the magnitude of deceleration.

Errors Invalid Parameter: negative deceleration value.

C-Motion API PMDresult PMDSetDeceleration(PMDAxisInterface axis_intf,
 PMDuint32 deceleration);

PMDresult PMDGetDeceleration(PMDAxisInterface axis_intf,
 PMDuint32* deceleration);

Script API GetDeceleration
SetDeceleration deceleration

C# API UInt32 deceleration = PMDAxis.Deceleration;
PMDAxis.Deceleration = deceleration;

Visual Basic
API

UInt32 deceleration = PMDAxis.Deceleration
PMDAxis.Deceleration = deceleration

see Set/GetAcceleration (p. 84), Set/GetVelocity (p. 174)

DC Brush Brushless DC Microstepping

SetDeceleration
0 axis 91h

15 12 11 8 7 0

write deceleration (high-order part)
31 16

write deceleration (low-order part)
15 0

GetDeceleration
0 axis 92h

15 12 11 8 7 0

read deceleration (high-order part)
31 16

read deceleration (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference 113

114

7

SetDriveCommandMode 7Eh
GetDriveCommandMode 7Fh
Motor Type

Arguments Name Instance Encoding
mode — (Reserved) 0-31

Analog command 32
SPI twos complement 33
Internal Profile 34
Pulse and Direction 35

Packet
Structure

Description SetDriveCommandMode is used to change the source or format of the external command that
drives Juno output. The default value is 34 for all motor types, meaning use the internal profile
generator.

Analog command means use the AnalogCmd input. This mode is supported only for servo (BLDC
or brush DC) motors. If the velocity and position/outer loops are disabled then the command input
is used to control either motor voltage or, if the current loop is enabled, current. In the case of
current control the analog reading as a 16-bit signed number is divided by two to obtain the
commanded current.

If the velocity loop is enabled, but the position/outer loop is not, then the analog reading is

multiplied by 216 to obtain the scaled commanded velocity.

If the position/outer loop is enabled, and is in position mode, that is, the outer loop feedback
source is encoder, then the commanded position will be obtained by integrating the scaled
commanded velocity.

If the position/outer loop is enabled, and is in outer loop mode, that is, the outer loop feedback

source is either analog or SPI, then analog reading is multiplied by 216 and used as the outer loop
command. In the case of analog command and analog feedback the outer loop, if properly tuned,
will act so as to make the two analog signals the same.

SPI twos complement means to expect a stream commands, interpreted as 16-bit twos complement
numbers, on the SPI port. In this mode SPI host commands are not possible. For servo motors the
signed SPI input reading is used in the same way as the analog reading, except that the SPI port may
not be used as the outer loop feedback source.

For microstep motors SPI command input is interpreted as an increment in the commanded
position, in microsteps.

DC Brush Brushless DC Microstepping

SetDriveCommandMode
0 7Eh

15 8 7 0

write mode
15 0

GetDriveCommandMode
0 7Fh

15 8 7 0

read mode
15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetDriveCommandMode (cont.) 7Eh
GetDriveCommandMode 7Fh
Description
(cont.)

Internal Profile means to use the internal profile generator to compute the commanded voltage, current,
or velocity from the commanded acceleration, deceleration, and velocity limits. The output of the profile
generator is multiplied by the velocity scalar to produce the scaled commanded velocity, which is used
as the command input to the velocity loop.

In the case the velocity and position/outer loops are disabled the scaled commanded velocity is divided

by 216 to produce the motor command, which is divided by 2 to produce the commanded current if the
current loops are enabled.

When the position/outer loop is in outer loop mode, that is, the feedback source is analog or SPI, then
the scaled commanded velocity is used as the outer loop command.

Pulse and Direction means to use external pulse and direction signals to set the commanded position.
SPI host commands are not possible in this mode, because the pulse and direction signals are shared
with SPIClock and SPIRcv. For step motors the commanded position is computed in microsteps. For
servo motors the commanded position is necessarily in encoder counts, but the raw command is
multiplied by the encoder counts/microstep ratio specified by the SetEncoderToStepRatio command.

It is not recommended to use pulse and direction input for servo motors with only current or voltage
control enabled, or with the position/outer loop in outer loop mode.

Errors Invalid Parameter: Unrecognized mode.
Invalid register state for command: Command source temporarily changed to internal profile while
performing a smooth stop (operating mode must be restored). Or, outer loop feedback source is already
SPI.

C-Motion API PMDresult PMDSetDriveCommandMode(PMDAxisInterface axis_intf,
PMDuint16 mode);

PMDresult PMDGetDriveCommandMode(PMDAxisInterface axis_intf,
PMDuint16* mode);

Script API GetDriveCommandMode
SetDriveCommandMode mode

C# API PMDDriveCommandMode mode = PMDAxis.DriveCommandMode;
PMDAxis.DriveCommandMode = mode;

Visual Basic
API

PMDDriveCommandMode mode = PMDAxis.DriveCommandMode
PMDAxis.DriveCommandMode = mode

see SetAcceleration (p. 84), SetDeceleration (p. 113), SetLoop (p. 134), SetVelocity (p. 174)
Juno Velocity & Torque Control IC Programming Reference 115

116

7

SetDriveFaultParameter 62h
GetDriveFaultParameter 60h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0
parameter Overvoltage Limit 0

Undervoltage Limit 1
Event Recovery Mode 2
Watchdog Limit 3
Temperature Limit 4
Temperature Hysteresis 5
— (Reserved) 6,7
Shunt voltage limit 8
Shunt duty 9
Bus current supply limit 10
Bus current return limit 11

Type Range Scaling
value unsigned 16 bits see below see below

Packet
Structure

Description SetDriveFaultParameter sets various drive operation limits. The particular limit set depends on
the parameter argument. When an operation limit is exceeded, motor output will be disabled and
either a Drive Exception or Overtemperature event will be raised, and a bit set in the Drive Fault
Status register to indicate the fault.

Not all products support all limits, consult product-specific documentation for more detail.

GetDriveFaultParameter returns the limits set by SetDriveFaultParameter.

DC Brush Brushless DC Microstepping

SetDriveFaultParameter
0 axis 62h

15 12 11 8 7 0

write parameter
15 0

write value
15 0

GetDriveFaultParameter
0 axis 60h

15 12 11 8 7 0

write parameter
15 0

read value
15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetDriveFaultParameter (cont.) 62h
GetDriveFaultParameter 60h
Description
(cont’d)

The Overvoltage and Undervoltage limit parameters set the thresholds for determination of overvoltage
and undervoltage conditions. If the bus voltage exceeds the Overvoltage Limit value, an overvoltage
condition occurs. If the bus voltage is less than the Undervoltage Limit value, an undervoltage condition

occurs. Both the Overvoltage Limit and Undervoltage Limit have ranges of 0 to 216 - 1; the scaling is
product-dependent.

For example, to set the overvoltage threshold to 30V, Overvoltage Limit should be set to 30V/1.3612mv
= 22039.

GetDriveFaultParameter reads the indicated limit.

The Event Recovery Mode is used to enable or disable automatic event recovery. The default mode is
disabled, meaning that in order to return to normal operation after output is disabled by a fault host
commands must be used to clear event status bits and to restore the active operating mode. Automatic
event recovery mode is typically used when the system controlling Juno is not capable of sending host
commands. Only two digital signals, FaultOut and ~Enable, are used to control Juno state.

When using automatic event recovery the FaultOut signal should be configured using SetFaultOutMask
so that any event resulting in output being disabled will also result in FaultOut asserted. When FaultOut
becomes active the external controller should wait for at least 150 μs, de-assert the ~Enable signal, wait
again for at least 150 μs, and re-assert ~Enable. After ~Enable is re-asserted Juno will continue to
attempt to clear all event status bits and re-enable the operating mode, until it succeeds in re-establishing
output.

A parameter code of 0 means automatic event recover is disabled, 1 means enabled.

A side-effect of enabling automatic event recovery is that the behavior of SetOperatingMode is
changed. When using automatic event recovery, if an event condition prevents enabling the specified
operating mode then SetOperatingMode will not raise an error, but will set the commanded operating
mode only. This feature allows the desired operating mode to be set even while, for example, Juno is
disabled by the ~Disable signal.

The Watchdog Limit is used to disable output in case of an apparent failure of an external command
processor. The default value of zero disables the watchdog, nonzero values specify the number of 51.2
μs commutation periods to allow between commands before signaling a Drive Exception event. The
value is scaled by a factor of 8, for example a value of 2 means 16 * 51.2 = 819 μs.

The meaning of “command” depends on the Drive Command Mode:

1. For analog or pulse and direction command modes, the watchdog timer will never elapse.

2 For SPI command mode, the watchdog timer will be reset whenever an SPI velocity or step com-
mand is received.

3 For internal profile mode, the watchdog timer will be reset whenever any host command on any
non-NVRAM interface is received. In order to reset the watchdog a command must have the cor-
rect checksum, a valid opcode, and the correct number of arguments, but need not actually succeed
without error.

The action taken when the watchdog timer elapses is programmable, using SetEventAction. The
default is to disable motor output.
Juno Velocity & Torque Control IC Programming Reference 117

118

7

SetDriveFaultParameter (cont.) 62h
GetDriveFaultParameter 60h
Description
(cont’d)

Temperature Limit and Temperature Hysteresis are used either with an attached Atlas amplifier or
with a motion control IC with a temperature input. In the case of the motion control IC the
temperature scaling depends on external hardware. Because the input thermistor voltage may either
rise or fall with actual temperature the sign of the temperature limit is used to indicate the sign of
the gain: With a positive sign the internal temperature reading is just the input voltage. With a
negative sign, the internal temperature reading is the input voltage subtracted from 3.3V, and the
limit applied to that reading is the absolute value of the argument. In both cases 08000h
corresponds to 3.3V.

Shunt voltage limit and Shunt duty are used with motion control ICs that support a shunt PWM
output to control bus voltage rise due to regeneration. As long as the bus voltage remains below the
shunt voltage limit the shunt PWM will remain inactive, when bus voltage rises above the limit, the
shunt PWM will become active, with a duty cycle specified by Shunt duty. Shunt duty is scaled so
that 08000h corresponds to 100%. The shunt PWM will remain active until bus voltage falls below
the shunt voltage limit by a fixed hysteresis of 2.5%.

The bus current supply and bus current return limits are limits on the measured bus current supply
and the computed bus current return values. When either current exceeds the specified limit motor
output will be disabled, a DriveException event raised, and the Overcurrent Fault bit set in the
Drive Fault status register.

Errors Invalid Parameter: Unrecognized parameter code, or value out of bounds.

C-Motion API PMDresult PMDSetDriveFaultParameter(PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDuint16 value);

PMDresult PMDGetDriveFaultParameter(PMDAxisInterface axis_intf,
PMDuint16 parameter,
PMDuint16* value);

Script API GetDriveFaultParameter parameter
SetDriveFaultParameter parameter value

C# API UInt16 value = PMDAxis.GetDriveFaultParameter(PMDDriveFaultParameter
parameter);

PMDAxis.SetDriveFaultParameter(PMDDriveFaultParameter parameter,
UInt16 value);

Visual Basic
API

UInt16 value = PMDAxis.GetDriveFaultParameter(ByVal parameter
As PMDDriveFaultParameter)

PMDAxis.SetDriveFaultParameter(ByVal parameter
As PMDDriveFaultParameter,
ByVal value As UInt16)

see Set/GetFaultOutMask (p. 128), GetDriveFaultStatus (p. 46), ClearDriveFaultStatus (p. 32),
GetEventStatus (p. 52), ResetEventStatus (p. 82), SetEventAction (p. 125)
Juno Velocity & Torque Control IC Programming Reference

7

SetDrivePWM 23h
GetDrivePWM 24h
Motor Type

Arguments Name Instance Encoding
parameter Limit 0

Dead Time 1
Signal Sense 2
Frequency 3
Refresh Period 4
Refresh Time 5
Minimum Current Read Time 6

Type Range/Scaling
value 16-bit unsigned see below

Packet
Structure

Description SetDrivePWM sets parameters used for controlling amplifier PWM output. The PWM Limit register

limits the maximum PWM duty cycle, and hence the effective output voltage. The range is from 0 to 214,

214 corresponding to 100% PWM modulation.

The PWM Dead Time option controls the dead time added for High/Low PWM output between
turning off the high side switch and turning on the low side, or vice versa. It has units of ns.

The PWM Frequency option controls the frequency for all PWM signals, the value is approximately the
actual frequency, in Hz, scaled by 1/4. The available options are shown in the table below. Not all
products support all frequencies.

DC Brush Brushless DC Microstepping

SetDrivePWM
0 23h

15 8 7 0

write 0 parameter
15 8 7 0

write value
15 0

GetDrivePWM
0 24h

15 8 7 0

write 0 parameter
15 8 7 0

read value
15 0

Approximate
Frequency

PWM
Resolution

Actual
Frequency

SetPWMFrequency
Value

20 kHz 1:1536 19.531 kHz 5,000
40 kHz 1:708 39.062 kHz 10,000
80 kHz 1:384 78.124 kHz 20,000
120 kHz 1:256 117.187 kHz 30,000
Juno Velocity & Torque Control IC Programming Reference 119

120

7

SetDrivePWM (cont.) 23h
GetDrivePWM 24h
Description
(cont.)

The PWM Signal Sense register controls whether an individual PWM signal is active high, encoded
by a set bit, or active low, encoded by a clear bit. The PWM signal sense is not applied in the case
of the sign signal for sign/magnitude PWM. The register layout is shown below:

The PWM Refresh Period and PWM Refresh Time options are used to specify a minimum amount
of off time when in High/Low PWM output mode. This may be required in order to allow charge
pump capacitors to recharge. The Refresh Time is specified in ns, and the Refresh Period in
commutation cycles. The low side of each PWM channel will be guaranteed to be on for at least
the Refresh Time for every Refresh Period cycles.

The PWM Minimum Current Read Time option is used to specify a minimum amount of off time
for two out of the three PWM output channels for three phase output in PWM High/Low output
mode. For motion control ICs supporting leg current sensing this may be required in order to get
accurate current measurement. It has units of ns.

GetDrivePWM returns the parameters set by SetDrivePWM.

Errors Invalid Parameter: Unrecognized parameter code, parameter out of range.
Invalid operating mode for command: Attempt to change PWM parameter other than limit,
with motor output enabled.

C-Motion API PMDresult PMDSetDrivePWM(PMDAxisInterface axis_intf,
 PMDuint16 option,
 PMDuint16 value);

PMDresult PMDGetDrivePWM(PMDAxisInterface axis_intf,
 PMDuint16 option,
 PMDuint16* value);

Script API GetDrivePWM parameter
SetDrivePWM parameter value

C# API UInt16 value = PMDAxis.GetDrivePWM(PMDDrivePWM parameter);
PMDAxis.SetDrivePWM(PMDDrivePWM parameter, UInt16 value);

Visual Basic
API

UInt16 value = PMDAxis.GetDrivePWM(ByVal parameter As PMDDrivePWM)
PMDAxis.SetDrivePWM(ByVal
parameter As PMDDrivePWM,
ByVal value As UInt16)

Signal Bit
PWM A High/PWM A Mag 0
PWM A Low 1
PWM B High/PWM B Mag 2
PWM B Low 3
PWM C High/PWM C Mag 4
PWM C Low 5
PWM D High/PWM D Mag 6
PWM D Low 7
— (Reserved) 8-14
PWM shunt 15
Juno Velocity & Torque Control IC Programming Reference

7

SetEncoderSource DAh
GetEncoderSource DBh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

source Incremental 0
— (Reserved) 1
None 2
— (Reserved) 3,4
Hall Sensors 5

Packet
Structure

Description SetEncoderSource sets the type of encoder feedback for the specified axis. When incremental
quadrature is selected the motion control IC expects A and B quadrature signals to be input at the
QuadA and QuadB axis inputs.

GetEncoderSource returns the code for the current type of feedback.

When Hall Sensors is selected the three signals HallA, HallB, and HallC are used to determine the actual
position, with one count change per Hall state (six counts per electrical revolution). Three Hall sensors
are frequently used for brushless motor commutation, see the Juno Velocity and Torque Control IC User
Guide for more information.

An encoder source of none means that there is no way to measure actual position. This mode is used
for microstep motors without position error control, and also for servo motors used in torque mode.

Errors Invalid Parameter: Unsupported source code.

C-Motion API PMDresult PMDSetEncoderSource(PMDAxisInterface axis_intf, PMDuint16 source);
PMDresult PMDGetEncoderSource(PMDAxisInterface axis_intf, PMDuint16* source);

Script API GetEncoderSource
SetEncoderSource source

DC Brush Brushless DC Microstepping

SetEncoderSource
0 axis DAh

15 12 11 8 7 0

Data
write 0 source

15 3 2 0

GetEncoderSource
0 axis DBh

15 12 11 8 7 0

Data
read 0 source

15 3 2 0
Juno Velocity & Torque Control IC Programming Reference 121

122

7

SetEncoderSource (cont.) DAh
GetEncoderSource DBh
C# API PMDEncoderSource source = PMDAxis.EncoderSource;
PMDAxis.EncoderSource = source;

Visual Basic
API

PMDEncoderSource source = PMDAxis.EncoderSource
PMDAxis.EncoderSource = source

see
Juno Velocity & Torque Control IC Programming Reference

7

SetEncoderToStepRatio DEh
GetEncoderToStepRatio DFh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Type Range Scaling Units
counts unsigned 16 bits 1 to 215–1 unity counts
steps unsigned 16 bits 1 to 215–1 unity microsteps

Packet
Structure

Description SetEncoderToStepRatio sets the ratio of the number of encoder counts to the number of output
microsteps per motor rotation used by the motion control IC to convert encoder counts into steps.
Counts is the number of encoder counts per full rotation of the motor. Steps is the number of steps
output by the motion control IC per full rotation of the motor. Since this command sets a ratio, the
parameters do not have to be for a full rotation as long as they correctly represent the encoder count to
step ratio. GetEncoderToStepRatio returns the ratio of the number of encoder counts to the number
of output steps per motor rotation.

The encoder to step ratio is also used for servo motors commanded by pulse and direction input to
specify the ratio between input pulses and commanded position in encoder counts. The steps argument
specifies the number of pulses per revolution, and the counts argument the number of encoder counts
per revolution. The encoder to step ratio allows some extra flexibility in servo applications, but in many
cases the default ratio of 1:1 is as good as any.

Errors Invalid Parameter: One or both of the arguments is not positive

C-Motion API PMDresult PMDSetEncoderToStepRatio(PMDAxisInterface axis_intf,
PMDuint16 counts, PMDuint16 steps);

PMDresult PMDGetEncoderToStepRatio(PMDAxisInterface axis_intf,
PMDuint16* counts, PMDuint16* steps);

Microstepping

SetEncoderToStepRatio
0 axis DEh

15 12 11 8 7 0

write counts
15 0

write steps
15 0

GetEncoderToStepRatio
0 axis DFh

15 12 11 8 7 0

read counts
15 0

read steps
15 0
Juno Velocity & Torque Control IC Programming Reference 123

124

7

SetEncoderToStepRatio (cont.) DEh
GetEncoderToStepRatio DFh
Script API GetEncoderToStepRatio
SetEncoderToStepRatio ratio
where ratio = counts*65536 + steps

C# API PMDAxis.GetEncoderToStepRatio(ref UInt16 counts, ref UInt16 steps);
PMDAxis.SetEncoderToStepRatio(UInt16 counts, UInt16 steps);

Visual Basic
API

PMDAxis.GetEncoderToStepRatio(ByRef counts As UInt16,
ByRef steps As UInt16)

PMDAxis.SetEncoderToStepRatio(ByVal counts As UInt16,
ByVal steps As UInt16)

see Set/GetActualPositionUnits (p. 87)
Juno Velocity & Torque Control IC Programming Reference

7

SetEventAction 48h
GetEventAction 49h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

event Immediate 0
— (Reserved) 1,2
Motion Error 3
Current Foldback 4
Capture Received 5
Overtemperature 6
Disabled (Enable Signal) 7
Commutation Error 8
Overcurrent 9
Overvoltage 10
Undervoltage 11
Watchdog Timeout 12
Brake Signal 13
SPI Direct Mode Change 14

action None 0
— (Reserved) 1
Abrupt Stop 2
Smooth Stop 3
Disable Velocity Loop and Higher Modules 4
Disable Position Loop & Higher Modules 5
Disable Current Loop & Higher Modules 6
Disable Motor Output & Higher Modules 7
— (Reserved) 8, 9
Passive Braking 10

Packet
Structure

DC Brush Brushless DC Microstepping

SetEventAction
0 axis 48h

15 12 11 8 7 0

write event
15 0

write action
15 0

GetEventAction
0 axis 49h

15 12 11 8 7 0

write event
15 0

read action
15 0
Juno Velocity & Torque Control IC Programming Reference 125

126

7

SetEventAction (cont.) 48h
GetEventAction 49h
Description
(cont.)

SetEventAction configures what actions will be taken by the axis in response to a given event. The
action can be either to modify the operating mode by disabling some or all of the loops, or, in the
case of all loops remaining on, to perform an abrupt or smooth stop.

When, through SetEventAction, one of the events causes an action, the event bit in the Event Status
register must be cleared prior to returning to operation. For internal profile stops, this means that
the bit must be cleared prior to performing another trajectory move. For changes in operating
mode, this means that the bit must be cleared prior to restoring the operating mode, either by
RestoreOperatingMode or SetOperatingMode.

An exception is the Motion Error event, which only needs to be cleared in Event Status if its action
is Abrubt Stop or Smooth Stop. If it causes changes in operating mode, the operating mode can be
restored without clearing the bit in Event Status first.

A smooth or abrupt stop may be initiated even when the command source is not internal profile.
For abrupt stop this is done by disabling the command source bit in the active operating mode. For
smooth stop, in addition, bit 9, smooth stop, will be set in the active operating mode to indicate that
the commanded torque, velocity, or position is temporarily obtained from the internal profile. In
order to recover from either of these conditions it is necessary to set or restore the operating mode.

When using outer loop mode, that is, when the outer loop feedback source is not the encoder, then
bit 4 (position/outer loop) of the active operating mode will be cleared as part of an abrupt or
smooth stop. In order to recover from this condition it is necessary to set or restore the operating
mode.

The Passive Braking action is possible only when using high/low PWM output. It disables normal
PWM generation, and instead turns on all of the low side switches, causing the kinetic energy of the
moving motor to be dissipated by resistance in the motor coils. When passive braking all active
operating mode bits will be clear except for bit 0 (axis enabled), bit 1 (output enabled) and bit 8
(braking). In order to recover from this condition it is necessary to set or restore the operating
mode.

The Immediate event simply means that the action should be performed immediately, without any
special condition detected. This is the only way to command passive braking, or a smooth stop
when using some command source other than the internal profile.

GetEventAction gets the action that is currently programmed for the given event with the
exception of the Immediate event, which cannot be read back.

Restrictions • The Disabled event must either disable motor output or brake.

• The Commutation Error event must either have no action, disable motor output, or brake.

• The Overcurrent event must either disable motor output or brake.

• The Brake Signal event must either disable motor output or brake.

• When changing the Brake Signal or Overcurrent event actions motor output must be disabled.

Errors Invalid Parameter: Unrecognized event or action code, or invalid action for event, or action not
supported for current motor type.
Invalid Operating Mode for Command: Attempt to set Brake Signal or Overcurrent action with
motor output enabled.
Juno Velocity & Torque Control IC Programming Reference

7

SetEventAction (cont.) 48h
GetEventAction 49h
C-Motion API PMDresult PMDSetEventAction (PMDAxisInterface axis_intf,
PMDuint16 event,
PMDuint16 action);

PMDresult PMDGetEventAction (PMDAxisInterface axis_intf,
PMDuint16 event,
PMDuint16* action);

Script API GetEventAction event
SetEventAction event action

C# API PMDEventAction action = PMDAxis.GetEventAction(PMDEventActionEvent
ActionEvent);

PMDAxis.SetEventAction(PMDEventActionEvent ActionEvent, PMDEventAction Ac-
tion);

Visual Basic
API

PMDEventAction action = PMDAxis.GetEventAction(ByVal ActionEvent
As PMDEventActionEvent)

PMDAxis.SetEventAction(ByVal ActionEvent As PMDEventActionEvent,
ByVal Action As PMDEventAction)

see GetActiveOperatingMode (p. 38), RestoreOperatingMode (p. 83), Set/GetOperatingMode (p. 144)
Juno Velocity & Torque Control IC Programming Reference 127

128

7

SetFaultOutMask FBh
GetFaultOutMask FCh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0
mask see below bitmask

Packet
Structure

Description SetFaultOutMask configures the mask on Event Status register bits that will be ORed together on
the FaultOut pin. The FaultOut pin is active high, as are the bits in Event Status. Thus, FaultOut
will go high when any of the enabled bits in Event Status are set (1). The mask parameter is used
to determine what bits in the Event Status register can cause FaultOut high, as follows:

For example, a mask setting of hexadecimal 0610h will configure the FaultOut pin to go high upon
a motion error, Overtemperature Fault, or Drive Exception Fault. The FaultOut pin stays high until
all Fault enabled bits in Event Status are cleared. The default value for the FaultOut mask is 0600h
– Overtemperature Fault and Drive Exception enabled.

GetFaultOutMask gets the current mask for the indicated axis.

DC Brush Brushless DC Microstepping

SetFaultOutMask
0 axis FBh

15 12 11 8 7 0

write mask
15 0

GetFaultOutMask
0 axis FCh

15 12 11 8 7 0

read mask
15 0

Name Bit
Motion Complete 0
Wrap-around 1
— (Reserved) 2
Position Capture 3
Motion Error 4
— (Reserved) 5, 6
Instruction Error 7
Disable 8
Overtemperature Fault 9
Drive Exception 10
Commutation Error 11
Current Foldback 12
Runtime Error 13
— (Reserved) 14, 15
Juno Velocity & Torque Control IC Programming Reference

7

SetFaultOutMask (cont.) FBh
GetFaultOutMask FCh
C-Motion API PMDresult PMDSetFaultOutMask (PMDAxisInterface axis_intf,
PMDuint16 mask);

PMDresult PMDGetFaultOutMask (PMDAxisInterface axis_intf,
PMDuint16* mask);

Script API GetFaultOutMask
SetFaultOutMask mask

C# API UInt16 mask = PMDAxis.FaultOutMask;
PMDAxis.FaultOutMask = mask;

Visual Basic
API

UInt16 mask = PMDAxis.FaultOutMask
PMDAxis.FaultOutMask = mask

see Set/GetInterruptMask (p. 132)
Juno Velocity & Torque Control IC Programming Reference 129

130

7

SetFOC F6h
GetFOC F7h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

loop Direct(D) 0
Quadrature(Q) 1
Both(D and Q) 2

parameter Proportional Gain (KpDQ) 0
Integrator Gain (KiDQ) 1
Integrator Sum Limit (ILimitDQ) 2

Type Range/Scaling
value unsigned 16 bits see below

Packet
Structure

Description Set/GetFOC is used to configure the operating parameters of the FOC-Current control. See the
product user guide for more information on how each parameter is used in the current loop processing.
The value written/read is always an unsigned 16-bit value, with the parameter-specific scaling shown
below:

A setting of 64 for KpDQ corresponds to a gain of 1. That is, an error signal of 30% maximum current will
cause the proportional contribution of the current loop output to be 30% of maximum output.

Brushless DC Microstepping

SetFOC
0 axis F6h

15 12 11 8 7 0

write 0 loop parameter
15 12 11 8 7 0

write value
15 0

GetFOC
0 axis F7h

15 12 11 8 7 0

write 0 loop parameter
15 12 11 8 7 0

read value
15 0

Parameter Range Scaling Units
Proportional Gain (KpDQ) 0 to 215–1 1/64 %output/%current

Integrator Gain (KiDQ) 0 to 215–1 1/256 %output/%current/cycles

Integrator Sum Limit (ILimitDQ) 0 to 215–1 2/100 %output
Juno Velocity & Torque Control IC Programming Reference

7

SetFOC (cont.) F6h
GetFOC F7h
Description
(cont.)

Similarly, setting KiDQ to 256 gives it a gain of 1; the value of the integrator sum would become the integrator
contribution to the output.

ILimitDQ is used to limit the contribution of the integrator sum at the output. For example, setting
ILimitDQ to 8192 results in a maximum integral contribution to the output of 2*8192 = 16384 = 50%.

The loop argument allows individual configuration of the parameters for the D and Q current loops.
Alternately, a loop of 2 can be used with SetFOC to set the D and Q loops with a single API command.
A loop of 2 is not valid for GetFOC.

The q component gains apply to brush DC motor current control, and to current control in third leg
floating mode for three phase brushless DC motors.

The script interface combines the loop and parameter arguments into a single option argument as shown
below. For example, if the loop is q (1) and the parameter is integrator gain (1), option = 1*256 + 1 =
257.

Restrictions Loop code 2 (both) cannot be used with GetFOC.

Errors Invalid Parameter: Unrecognized loop or parameter.

C-Motion API PMDresult PMDSetFOC (PMDAxisInterface axis_intf,
PMDuint8 loop,
PMDuint8 parameter,
PMDuint16 value);

PMDresult PMDGetFOC (PMDAxisInterface axis_intf,
PMDuint8 loop,
PMDuint8 parameter,
PMDuint16* value);

Script API GetFOC option
SetFOC option value
where option = loop*256 + parameter

C# API UInt16 value = PMDAxis.GetFOC(PMDFOC ControlLoop,
PMDFOCParameter parameter);

PMDAxis.SetFOC(PMDFOC ControlLoop, PMDFOCParameter parameter,
UInt16 value);

Visual Basic
API

UInt16 value = PMDAxis.GetFOC(ByVal ControlLoop As PMDFOC,
ByVal parameter As PMDFOCParameter)

PMDAxis.SetFOC(ByVal ControlLoop As PMDFOC, ByVal parameter
As PMDFOCParameter, ByVal value As UInt16)

see GetFOCValue (p. 54), Set/GetCurrentControlMode (p. 108)
Juno Velocity & Torque Control IC Programming Reference 131

132

7

SetInterruptMask 2Fh
GetInterruptMask 56h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

mask Wrap-around 0002h
Capture Received 0008h
Motion Error 0010h
Instruction Error 0080h
Disabled 0100h
Overtemperature Fault 0200h
Drive Exception 0400h
Commutation Error 0800h
Current Foldback 1000h
Runtime Error 2000h

Packet
Structure

Description SetInterruptMask determines which bits in the Event Status register of the specified axis will cause
a host interrupt. For each interrupt mask bit that is set to 1, the corresponding Event Status register
bit will cause an interrupt when that status register bit goes active (is set to 1). Interrupt mask bits
set to 0 will not generate interrupts.

GetInterruptMask returns the mask for the specified axis.

SetInterruptMask also controls CAN event notification when using the motion control IC’s CAN
2.0B interface. Whenever a host interrupt is activated, a CAN message is generated using message
ID 180h + nodeID, notifying interested CAN nodes of the change in the Event Status register.

Example: The interrupt mask value 18h will generate an interrupt when either the Motion Error
bit or the Capture Received bit of the Event Status register goes active (set to 1).

Errors None

C-Motion API PMDresult PMDSetInterruptMask(PMDAxisInterface axis_intf,
PMDuint16 mask);

PMDresult PMDGetInterruptMask(PMDAxisInterface axis_intf,
PMDuint16* mask);

Script API GetInterruptMask
SetInterruptMask mask

DC Brush Brushless DC Microstepping

SetInterruptMask
0 axis 2Fh

15 12 11 8 7 0

Data
write mask

15 0

GetInterruptMask
0 axis 56h

15 12 11 8 7 0

Data
read mask

15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetInterruptMask (cont.) 2Fh
GetInterruptMask 56h
C# API UInt16 mask = PMDAxis.InterruptMask;
PMDAxis.InterruptMask = mask;

Visual Basic
API

UInt16 mask = PMDAxis.InterruptMask
PMDAxis.InterruptMask = mask

see ClearInterrupt (p. 33), GetEventStatus (p. 52), Set/GetFaultOutMask (p. 128)
Juno Velocity & Torque Control IC Programming Reference 133

134

7

SetLoop 78h
GetLoop 79h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

parameter
velocity Kp 0
velocity Ki 1
velocity ilimit 2
— (Reserved) 3,4
velocity Kout 5
— (Reserved) 6
velocity error limit 7
velocity biquad enable 8
velocity biquad b0 9
velocity biquad b1 10
velocity biquad b2 11
velocity biquad a1 12
velocity biquad a2 13
command biquad enable 16
command biquad b0 17
command biquad b1 18
command biquad b2 19
command biquad a1 20
command biquad a2 21
— (Reserved) 22-63
velocity feedback source 64
velocity scalar Kvel 65
outer loop feedback source 66
velocity lower limit 67
velocity upper limit 68
outer/position loop Kp 256
outer/position loop Ki 257
outer/position loop ilimit 258
outer/position loop Kd 259
outer/position loop dtime 260
outer/position loop Kout 261
outer/position loop period 262
position error limit 263
outer loop deadband low 264
outer loop deadband high 265

Returned Data Type Range/Scaling
value signed 32 bits see below

DC Brush Brushless DC
Juno Velocity & Torque Control IC Programming Reference

7

SetLoop (cont.) 78h
GetLoop 79h
Packet
Structure

Description The SetLoop command is used to set the operating parameters of the velocity and position/outer loops.
For more information on how these loops work and how the parameters are scaled see the Juno Velocity
& Torque Control IC User Guide. All values are supplied as 32 bits, but in many cases the range is restricted.

The velocity loop Kp and Ki, and the position/outer loop Kp, Ki, and Kd parameters are limited to

unsigned 16-bit values, that is, less than 216.

The velocity loop and position/outer loop ilimit parameters limit the maximum absolute value of the

control loop integrated error, they are limited to non-negative signed 32-bit values, that is, less than 231.
Setting an ilimit parameter to zero, the default value, disables integral action. Both the velocity and
position/outer loops use an anti-windup algorithm, so choosing ilimit small is not normally necessary.

The velocity loop Kout is an unsigned 16-bit number scaled by 256, that is, an 8.8 fixed point fraction.
The default value is 256, or 1.0 as a fraction.

The velocity scalar, Kvel, is an unsigned 32-bit number scaled by 65536, that is, a 16.16 fixed point
fraction. Kvel is a conversion factor between velocity in encoder counts per sample period and the
scaled velocity used by the velocity loop, see the Juno Velocity & Torque Control IC User Guide for more
information.

The position/outer loop Kout is a signed 16-bit number scaled by 32768, that is, an 1.15 fixed point
fraction. The default value is 32767, or approximately 1.0. A negative value for Kout may be used to
invert the output of the position/outer loop.

The velocity biquad enable parameter is an enumerated value, 0 means disabled, 1, the default, means
enabled. The velocity biquad filter is used to smooth feedback to the velocity loop.

SetLoop
0 axis 78h

15 12 11 8 7 0

write parameter
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

write value (high-order part)
31 16

write value (low-order part)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GetLoop
0 axis 79h

15 12 11 8 7 0

write parameter
15 0

read value (high-order part)
31 16

read value (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference 135

136

7

SetLoop (cont.) 78h
GetLoop 79h
Description
(cont.)

The command biquald enable parameter is an enumerated value, 0 means disabled, 1, the default,
means enabled. The command biquad filter is used to smooth the analog command signal.

Biquad parameters b0, b1, b2, a0, and a1 are signed 32-bit numbers scaled by 65536, that is, 16.16
fixed point fractions. For a description of the biquad operation see the Juno Velocity & Torque Control
IC User Guide.

The velocity and position/outer loop feedback sources are enumerated values, with the encoding
shown below:The default feedback source for both loops is the encoder, which may be either a
quadrature encoder or 3-phase Hall sensors, as set by SetEncoderSource. With encoder feedback
the outer loop functions as a position loop: the feedback is the 32-bit actual position, and the
reference is the integrated velocity command. With encoder feedback the reference of the velocity
loop is the commanded velocity, and the feedback is an estimate of actual velocity made by filtering
the difference in encoder position.

When the outer/position loop feedback is set to anything other than encoder, the loop is said to be
in outer loop mode. In outer loop mode the loop reference is the scaled velocity command, rather
than the commanded position obtained by integrating the unscaled commanded velocity.

Analog tachometer feedback may be used for either loop, but not for both simultaneously. The
analog tachometer signal is biased by 1.65V and scaled to a signed 16-bit number, 0V
corresponding to -32768 and 3.3V to 32767 3.3V. This value is then shifted left by 16 bits to
produce either the commanded velocity or the outer loop reference.

Analog tachometer feedback inverted is the same as analog tachometer feedback, except that the
sign is inverted, that is, 0V corresponds to 32767, and 3.3V to -32768.

SPI 2s complement feedback is supported only for the outer loop. In this mode Juno is an SPI
slave, and the SPI master periodically sends a signed 16-bit 2s complement feedback value, which
is shifted left by 16 bits and used as the outer loop feedback.

The position and velocity error limits define the minimum absolute position or velocity error that
will result in a MotionError event. Only one limit is used at any time: If the position/outer loop
is enabled then only the position error limit is used, otherwise, if the velocity loop is enabled then
the velocity error limit is used.

When a motion error occurs the MotionError bit in the event status register will be set, and an
action that may be programmed using SetEventAction will be performed.

The upper and lower velocity limits are limits on the outer/position loop output only, and may be
used to constrain the outer loop output. For example, setting the lower velocity limit to zero with
the outer and velocity loops enabled will prevent a negative velocity command. The upper velocity
limit must be greater than or equal to zero, and the lower velocity limit must be less than or equal
to zero.

The outer loop period is an integer between 1 and 32767, meaning the sample time of the outer
loop, as a multiple of the sample time set by SetSampleTime. If the internal profile is used as the
command source then the outer loop period will control it’s rate as well.
Juno Velocity & Torque Control IC Programming Reference

7

SetLoop (cont.) 78h
GetLoop 79h
Description
(cont.)

The outer loop deadband feature is controlled by a low limit and a high limit. Both parameters are zero
by default. This setting disables the deadband, and is normally used for position control. For outer loop
pressure, level, or flow control the deadband feature may be useful to reduce “hunting” around the zero
point. During outer loop operation the deadband has two states:

• If the output was previously nonzero then the absolute value of the output computed by the PID
filter is compared to the deadband lower limit. If computed output is absolutely smaller, then the
actual output is zero, otherwise it is the PID output.

• If the output was previously zero, then the absolute value of the output computed by the PID filter
is compared to the deadband upper limit. If the computed output is absolutely smaller, then the
actual output is zero, otherwise it is the PID output.

The upper limit must be set greater than or equal to the lower limit for correct operation, although this
is not checked. An upper limit strictly greater than the lower limit provides hysteresis.

Errors invalid parameter: argument is not a supported value, value is not within limits for the parameter.

invalid register state: Motor type is step – loops not supported.

C-Motion API PMDresult PMDGetLoop (PMDAxisInterface axis_intf,
PMDuint16 parameter, PMDint32* value);

PMDresult PMDSetLoop (PMDAxisInterface axis_intf,
PMDuint16 parameter, PMDint32 value);

Script API GetLoop parameter
SetLoop parameter value

C# API Int32 value = PMDAxis.GetLoop(PMDLoop parameter);
PMDAxis.SetLoop(PMDLoop parameter, Int32 value);

Visual Basic
API

Int32 value = PMDAxis.GetLoop(ByVal parameter As PMDLoop)
PMDAxis.SetLoop(ByVal parameter As PMDLoop, ByVal value As Int32)

see SetEncoderSource (p. 121), SetDriveCommandMode (p. 114), SetSampleTime (p. 151),
GetEventStatus (p. 52), SetEventAction (p. 125)
Juno Velocity & Torque Control IC Programming Reference 137

138

7

SetMotorCommand 77h
GetMotorCommand 69h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Type Range Scaling Units
command signed 16 bits –215 to 215–1 100/215 % output

Packet
Structure

Description SetMotorCommand loads the Motor Command register of the specified axis. For DC brush and
brushless DC motors, this command directly sets the Motor Output register when the Position Loop,
and Velocity Loop, and Command modules are disabled in the operating mode.

GetMotorCommand reads the contents of the motor command buffer register.

The SetCurrent command is used to control the output magnitude when driving a microstep
motor.

Scaling example: If it is desired that a Motor Command value of 13.7% of full scale be output to
the motor, then this register should be loaded with a value of 13.7 * 32,768/100 = 4,489 (decimal).
This corresponds to a hexadecimal value of 1189h.

Note that if current control is enabled the q-phase commanded current will be half of the motor
command, or 6.85% of the maximum representable current.

Restrictions SetMotorCommand is a buffered command. The value set using this command will not take effect
until the next Update or MultiUpdate command, with the Position Loop Update bit set in the
update mask.

Errors Invalid Opcode: Motor type is microstep.

C-Motion API PMDresult PMDSetMotorCommand(PMDAxisInterface axis_intf,
 PMDint16 command);

PMDresult PMDGetMotorCommand(PMDAxisInterface axis_intf,
PMDint16* command);

DC Brush Brushless DC Microstepping

SetMotorCommand
0 axis 77h

15 12 11 8 7 0

Data
write command

15 0

GetMotorCommand
0 axis 69h

15 12 11 8 7 0

Data
read command

15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetMotorCommand (cont.) 77h
GetMotorCommand 69h
Script API GetMotorCommand
SetMotorCommand command

C# API Int16 command = PMDAxis.MotorCommand;
PMDAxis.MotorCommand = command;

Visual Basic
API

Int16 command = PMDAxis.MotorCommand
PMDAxis.MotorCommand = command

see SetCurrent (p. 106), Set/GetCurrentLimit (p. 140), Set/GetOperatingMode (p. 144)
Juno Velocity & Torque Control IC Programming Reference 139

140

7

SetCurrentLimit 06h
GetCurrentLimit 07h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Type Range Scaling Units
limit unsigned 16 bits 0 to 214–1 100/215 % representable

current

Packet
Structure

Description SetCurrentLimit sets the maximum value for the commanded current allowed by the digital servo
filter of the specified axis. Current command values beyond this value will be clipped to the
specified current command limit. For example if the current limit was set to 1,000 and the servo
filter determined that the current command value should be 1,100, the actual command value would
be 1,000. Conversely, if the output value was –1,100, then it would be clipped to –1,000. This
command is useful for protecting amplifiers, motors, or system mechanisms when it is known that
a current exceeding a certain value will cause damage.

GetCurrentLimit reads the motor limit value.

Scaling example: If it is desired that a current limit of 25% of full scale be established, then this
register should be loaded with a value of 25.0 * 32,768/100 = 8,192 (decimal). This corresponds to
a hexadecimal value of 02000h.

Restrictions This command only affects the motor output when the current loop is enabled. When the motion
control IC is in open loop mode, this command has no effect.

Errors Invalid Parameter: Limit out of range.
Invalid Register State for Command: Microstep motor type.

C-Motion API PMDresult PMDSetMotorLimit(PMDAxisInterface axis_intf,
 PMDuint16 limit);

PMDresult PMDGetMotorLimit(PMDAxisInterface axis_intf,
 PMDuint16* limit);

Script API GetMotorLimit
SetMotorLimit limit

C# API Int16 limit = PMDAxis.MotorLimit;
PMDAxis.MotorLimit = limit;

DC Brush Brushless DC

SetMotorLimit
0 axis 06h

15 12 11 8 7 0

Data
write limit

15 0

GetMotorLimit
0 axis 07h

15 12 11 8 7 0

Data
read limit

15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetCurrentLimit (cont.) 06h
GetCurrentLimit 07h
Visual Basic
API

Int16 limit = PMDAxis.MotorLimit
PMDAxis.MotorLimit = limit

see Set/GetMotorCommand (p. 138), Set/GetOperatingMode (p. 144)
Juno Velocity & Torque Control IC Programming Reference 141

142

7

SetMotorType 02h
GetMotorType 03h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

type Brushless DC (3 phase) 0
— (Reserved) 1,2
Microstepping (2 phase) 3
— (Reserved) 4-6
DC Brush 7

Packet
Structure

Description SetMotorType sets type of motor being driven by the selected axis. This operation sets the number of
phases for commutation on the axis, as well as internally configuring the motion control IC for the motor
type.

The following table describes each motor type, and the number of phases to be commutated.

GetMotorType returns the configured motor type for the selected axis.

Restrictions The motor type should only be set once immediately after reset using SetMotorType. Once it has been
set, it should not be changed. Executing SetMotorType will reset many variables to their motor type
specific default values.

Not all motor types are available on all products. See the product user guide.

Errors Invalid Parameter: Unrecognized motor type code.
Invalid Operating Mode for Command: Motor output is enabled.

C-Motion API PMDresult PMDSetMotorType (PMDAxisInterface axis_intf, PMDuint8 type);
PMDresult PMDGetMotorType (PMDAxisInterface axis_intf, PMDuint8* type);

Script API GetMotorType
SetMotorType type

DC Brush Brushless DC Microstepping

SetMotorType
0 axis 02h

15 12 11 8 7 0

Data
write 0 type

15 3 2 0

GetMotorType
0 axis 03h

15 12 11 8 7 0

Data
read 0 type

15 3 2 0

Motor type Commutation
Brushless DC (3 phase) 3 phase
Microstepping (2 phase) 2 phase
DC Brush None
Juno Velocity & Torque Control IC Programming Reference

7

SetMotorType (cont.) 02h
GetMotorType 03h
C# API PMDMotorType type = PMDAxis.MotorType;
PMDAxis.MotorType = type;

Visual Basic
API

PMDMotorType type = PMDAxis.MotorType
PMDAxis.MotorType = type

see Reset (p. 78)
Juno Velocity & Torque Control IC Programming Reference 143

144

7

SetOperatingMode 65h
GetOperatingMode 66h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Type Range/Scaling
mode unsigned 16-bit see below

Packet
Structure

Description SetOperatingMode configures the operating mode of the axis. Each bit of the mode configures
whether a feature/loop of the axis is active or disabled, as follows:

When the axis motor output is disabled, the axis will function normally, but its motor outputs will be
in their disabled state. When a loop is disabled (position, velocity, or current loop), it operates by
passing its input directly to its output, and clearing all internal state variables (such as integrator sums,
etc.). When the command source is disabled, it operates by commanding 0 velocity.

DC Brush Brushless DC Microstepping

SetOperatingMode
0 axis 65h

15 12 11 8 7 0

write mode
15 0

GetOperatingMode
0 axis 66h

15 12 11 8 7 0

read mode
15 0

Name Bit Description
Axis Enabled 0 0: No axis processing, axis outputs in reset state. 1: axis active.

Motor Output Enabled 1 0: axis motor outputs disabled. 1: axis motor outputs enabled.

Current Control Enabled 2 0: axis current control bypassed. 1: axis current control active.

Velocity Loop Enabled 3 0:axis velocity loop bypassed 1:axis velocity loop active.
Position Loop Enabled 4 0: axis position loop bypassed. 1: axis position loop active.

Command Source 5 0: disabled. 1: enabled.
— 6–7 Reserved

8 0:not braking 1:currently passive braking.
9 0:normal operation 1:command source temporarily internal profile

for smooth stop.
— 10–15 Reserved
Juno Velocity & Torque Control IC Programming Reference

7

SetOperatingMode (cont.) 65h
GetOperatingMode 66h
Description
(cont.)

For example, to configure an axis for Torque mode, (trajectory, valocity, and position loop disabled) the
operating mode would be set to hexadecimal 0007h.

This command should be used to configure the static operating mode of the axis. The actual current operating
mode may be changed by the axis in response to safety events, or user-programmable events. In this case, the
present operating mode is available using GetActiveOperatingMode. GetOperatingMode will always
return the static operating mode set using SetOperatingMode. Executing the SetOperatingMode
command sets both the static operating mode and the active operating mode to the desired state.

The SetOperatingMode command attempts to determine whether an event has ocurred that will
immediately result in disabling the new operating mode. In this case, by default, error 16, Invalid Operating
Mode Restore, will be signaled. However, if automatic event recovery mode has been set using
SetDriveFaultParameter, then the static operating mode will be set without altering the active operating
mode, and the command will succeed.

The Braking and Smooth Stop operating mode bits indicate that the operating mode has been changed as a
result of event handling.

Braking means that normal PWM high/low output has been disabled, and PWM output configured for
passive braking. Smooth Stop means that the configured external command source (analog, pulse and
direction, SPI) has been temporarily changed in order to allow a controlled smooth stop.

Neither the Braking nor Smooth Stop bits may be set by command, only cleared.

GetOperatingMode gets the operating mode of the axis.

Restrictions The possible operating modes of an axis is product specific. See the product user guide for a description
of which operating modes are supported on each axis.

Errors Invalid Parameter: Unsupported bits set in argument.
Invalid Register State for Command: Operating mode not supported for current motor type or
output mode.
Invalid Operating Mode Restore: Operating mode not permitted with current event status.

C-Motion API PMDresult PMDSetOperatingMode(PMDAxisInterface axis_intf,
PMDuint16 mode);

PMDresult PMDGetOperatingMode(PMDAxisInterface axis_intf,
PMDuint16* mode);

Script API GetOperatingMode
SetOperatingMode mode

C# API UInt16 mode = PMDAxis.OperatingMode;
PMDAxis.OperatingMode = mode;

Visual Basic
API

UInt16 mode = PMDAxis.OperatingMode
PMDAxis.OperatingMode = mode

see GetActiveOperatingMode (p. 38), GetEventStatus (p. 52), ResetEventStatus (p. 82)
RestoreOperatingMode (p. 83), SetDriveFaultParameter (p. 116)
Juno Velocity & Torque Control IC Programming Reference 145

146

7

SetOutputMode E0h
GetOutputMode 6Eh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

mode PWM Sign Magnitude 1
— (Reserved) 2-6
PWM High/Low 7
— (Reserved) 8,9
None 10

Packet
Structure

Description SetOutputMode sets the form of the motor output signal of the specified axis. The default output
mode is none; in this mode all the PWM outputs are high impedance

GetOutputMode returns the value for the motor output mode.

Restrictions Not all output modes are available on all products. See the product user guide. The output mode
cannot be changed when motor output is enabled in the active operating mode.

Errors Invalid Parameter: Output mode unrecognized, or not supporte for the current motor type.
Invalid Operating Mode for Command: Motor output is enabled.

C-Motion API PMDresult PMDSetOutputMode(PMDAxisInterface axis_intf, PMDuint16 mode);
PMDresult PMDGetOutputMode(PMDAxisInterface axis_intf, PMDuint16*
mode);

Script API GetOutputMode
SetOutputMode mode

C# API PMDOutputMode mode = PMDAxis.OutputMode;
PMDAxis.OutputMode = mode;

Visual Basic
API

PMDOutputMode mode = PMDAxis.OutputMode
PMDAxis.OutputMode = mode

see SetOperatingMode (p. 144)

DC Brush Brushless DC Microstepping

SetOutputMode
0 axis E0h

15 12 11 8 7 0

Data
write 0 mode

15 4 3 0

GetOutputMode
0 axis 6Eh

15 12 11 8 7 0

Data
read 0 mode

15 4 3 0
Juno Velocity & Torque Control IC Programming Reference

7

SetPhaseCorrectionMode E8h
GetPhaseCorrectionMode E9h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

mode Disabled 0
Index 1
Hall 2

Packet
Structure

Description SetPhaseCorrectionMode controls the method used for phase correction on the specified axis. Phase
correction is optional, and may be disabled by using mode 0. In mode 1 (Index) the encoder Index signal
is used to update the commutation phase angle once per mechanical revolution. In mode 2 (Hall) a
particular Hall sensor transition is used to update the commutation phase angle once every twelve
electrical revolutions.

Phase correction ensures that the commutation angle will remain correct even if some encoder counts
are lost due to electrical noise, or due to the number of encoder counts per electrical revolution not being
an integer. Because Hall sensors normally have significant hysteresis index based correction is preferred
if an index signal is available.

GetPhaseCorrectionMode returns the phase correction mode.

Errors Invalid Parameter: Unrecognized mode.

C-Motion API PMDresult PMDSetPhaseCorrectionMode(PMDAxisInterface axis_intf,
 PMDuint16 mode);

PMDresult PMDGetPhaseCorrectionMode(PMDAxisInterface axis_intf,
 PMDuint16* mode);

Script API GetPhaseCorrectionMode
SetPhaseCorrectionMode mode

C# API PMDPhaseCorrectionMode mode = PMDAxis.PhaseCorrectionMode;
PMDAxis.PhaseCorrectionMode = mode;

Visual Basic
API

PMDPhaseCorrectionMode mode = PMDAxis.PhaseCorrectionMode
PMDAxis.PhaseCorrectionMode = mode

see InitializePhase (p. 71)

Brushless DC

SetPhaseCorrectionMode
0 axis E8h

15 12 11 8 7 0

Data
write 0 mode

15 2 0

GetPhaseCorrectionMode
0 axis E9h

15 12 11 8 7 0

Data
read 0 mode

15 2 0
Juno Velocity & Torque Control IC Programming Reference 147

148

7

SetPhaseInitializeMode E4h
GetPhaseInitializeMode E5h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

mode — (Reserved) 0
Hall-based 1
Pulse 2

Packet
Structure

Description SetPhaseInitializeMode establishes the mode in which the specified axis is to be initialized for
commutation. The options are Pulse and Hall-based. In pulse mode the motion control IC briefly
stimulates the motor windings and sets the initial phasing based on the observed motor response.
In Hall-based initialization mode, the three Hall sensor signals are used to determine the motor
phasing.

GetPhaseInitializeMode returns the value of the initialization mode.

Restrictions Pulse mode should only be selected if it is known that the axis is free to move in both directions,
and that a brief uncontrolled move can be tolerated by the motor, mechanism, and load.

Errors Invalid Parameter: Unrecognized mode.

C-Motion API PMDresult PMDSetPhaseInitializeMode(PMDAxisInterface axis_intf,
 PMDuint16 mode);

PMDresult PMDGetPhaseInitializeMode(PMDAxisInterface axis_intf,
 PMDuint16* mode);

Script API GetPhaseInitializeMode
SetPhaseInitializeMode mode

C# API PhaseInitializeMode mode = PMDAxis.PhaseInitializeMode;
PMDAxis.PhaseInitializeMode = mode;

Visual Basic
API

PhaseInitializeMode mode = PMDAxis.PhaseInitializeMode
PMDAxis.PhaseInitializeMode = mode

see InitializePhase (p. 71), SetPhaseParameter (p. 149)

Brushless DC

SetPhaseInitializeMode
0 axis E4h

15 12 11 8 7 0

Data
write 0 mode

15 2 0

GetPhaseInitializeMode
0 axis E5h

15 12 11 8 7 0

Data
read 0 mode

15 2 0
Juno Velocity & Torque Control IC Programming Reference

7

SetPhaseParameter 85h
GetPhaseParameter 86h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

parameter ramp time 0
positive pulse time 1
negative pulse time 2
pulse command 3
— (Reserved) 4
ramp command 5

Type Range Scaling/Units

value unsigned 16bits 0 to 215–1 counts

Packet
Structure

Description SetPhaseParameter is used to set parameters required for brushless DC motor pulse phase
initialization. Phase initialization is required for commutation using an incremental encoder; the method
used is set by SetPhaseInitializeMode.

The positive pulse time is a non-negative count of sample periods giving the duration of the first,
positive pulse. The default sample period is 102 µs, but it can be changed by SetSampleTime.

The negative pulse time is a non-negative count of sample periods giving the duration of the second,
negative pulse. Each negative pulse follows immediately after a positive pulse. The time between
successive pulse pairs is given by three times the positive pulse time.

The pulse command is a non-negative value that is used as the motor command during both the positive
and negative pulses.

The ramp time is a non-negative count of sample periods giving the duration of the pull-in ramp part
of pulse phase initialization. It is possible, though not recommended, to set this to zero.

Brushless DC

SetPhaseParameter
0 axis 85h

15 12 11 8 7 0

write parameter
15 0

write value
15 0

GetPhaseParameter
0 axis 85h

15 12 11 8 7 0

write parameter
15 0

read value
15 0
Juno Velocity & Torque Control IC Programming Reference 149

150

7

SetPhaseParameter (cont.) 85h
GetPhaseParameter 86h
Description
(cont.)

The ramp command is a non-negative value that is used as the motor command during the pull-in
ramp.

By default all phase parameters are zero, however phase initialization cannot possibly work in that
state.

The process of pulse phase initialization and how to set the various parameters is discussed in the
Juno Velocity and Torque IC User Guide.

GetPhaseParameter is used to read the values set by SetPhaseParameter.

Errors Unrecognized parameter code, or value out of range.

C-Motion API PMDresult PMDGetPhaseParameter (PMDAxisInterface axis_intf,
PMDuint16 parameter, PMDint16* value);

PMDresult PMDSetPhaseParameter (PMDAxisInterface axis_intf,
PMDuint16 parameter, PMDint16 value);

Script API GetPhaseParameter parameter
SetPhaseParameter parameter value

C# API Int32 value = PMDAxis.GetPhaseParameter(PMDPhaseParameter parameter);
PMDAxis.SetPhaseParameter(PMDPhaseParameter parameter, Int32 value);

Visual Basic
API

Int32 value = PMDAxis.GetPhaseParameter(ByVal parameter
As PMDPhaseParameter)

PMDAxis.SetPhaseParameter(ByVal parameter As PMDPhaseParameter,
ByVal value As Int32)

see InitializePhase (p. 71), SetPhaseInitializeMode (p. 148)
Juno Velocity & Torque Control IC Programming Reference

7

SetSampleTime 3Bh
GetSampleTime 3Ch
Motor Types

Arguments Name Type Range Units
time unsigned 32 bits 51 to 220 microseconds

Packet
Structure

Description SetSampleTime sets the time basis for the motion control IC. This time basis determines the trajectory
update rate for all motor types as well as the servo loop calculation rate for DC brush and brushless DC
motors. It does not, however, determine the commutation rate of the brushless DC motor types, nor
the PWM or current loop rates for any motor type.

The time value is expressed in microseconds. The motion control IC hardware can adjust the cycle time
only in increments of 51.2 microseconds; the time value passed to this command will be rounded to the
nearest increment of this base value.

Minimum cycle time depends on the product and number of enabled axes as follows:

GetSampleTime returns the value of the sample time.

DC Brush Brushless DC Microstepping

SetSampleTime
0 3Bh

15 8 7 0

write time (high-order part)
31 16

write time (low-order part)
15 0

GetSampleTime
0 3Ch

15 8 7 0

read time (high-order part)
31 16

read time (low-order part)
15 0

Enabled
Axes

Minimum
Cycle
Time

Cycle Time
w/ Trace
Capture

Time
per Axis

Maximum Cycle
Frequency

1 (Juno) 102.4 µs 102.4 µs 102.4 µs 9.76 kHz
Juno Velocity & Torque Control IC Programming Reference 151

152

7

SetSampleTime (cont.) 3Bh
GetSampleTime 3Ch
Restrictions This command cannot be used to set a sample time lower than the required minimum cycle time
for the current configuration. Attempting to do so will set the sample time to the required minimum
cycle time as specified in the previous table.

Errors Invalid Parameter: Argument out of range.

C-Motion API PMDresult PMDSetSampleTime(PMDAxisInterface axis_intf,
PMDuint32 time);

PMDresult PMDGetSampleTime(PMDAxisInterface axis_intf,
PMDuint32* time);

Script API GetSampleTime
SetSampleTime time

C# API UINT32 time = PMDAxis.SampleTime;
PMDAxis.SampleTime = time;

Visual Basic
API

UINT32 time = PMDAxis.SampleTime
PMDAxis.SampleTime = time

see
Juno Velocity & Torque Control IC Programming Reference

7

SetSerialPortMode 8Bh
GetSerialPortMode 8Ch
Motor Types

Arguments Name Type Encoding
mode unsigned 16 bits see below

Packet
Structure

Description SetSerialPortMode sets the configuration for the asynchronous serial port. It configures the timing and
framing of the serial port on the unit, regardless of whether RS-232 or RS-485 voltage levels are being used. The
response to this command will use the serial port settings in effect before the command is executed, for example,
transmission rate and parity. The new serial port settings must be used for the next command.

GetSerialPortMode returns the configuration for the asynchronous serial port, regardless of whether
RS-232 or RS-485 voltage levels are being used.

The following table shows the encoding of the data used by this command.

The script interface combines all argments into a single mode argument, as shown below. For example, for
point-to-point (0) operation at 57600 baud (4) with no parity (0) and 2 stop bits (1), option = 0*2048 +
0*128 + 1*64 + 0*16 + 4 = 68.

DC Brush Brushless DC Microstepping

SetSerialPortMode
0 axis 8Bh

15 8 7 0

Data
write multi-drop address 0 protocol stop bits parity transmission rate

15 11 10 9 8 7 6 5 4 3 0

GetSerialPortMode
0 axis 8Ch

15 8 7 0

Data
read multi-drop address 0 protocol stop bits parity transmission rate

15 11 10 9 8 7 6 5 4 3 0

Bit Number Name Instance Encoding
0–3 Transmission Rate 1200 baud

2400 baud
9600 baud
19200 baud
57600 baud
115200 baud
230400 baud
460800 baud

0
1
2
3
4
5
6
7

4–5 Parity none
odd
even

0
1
2

6 Stop Bits 1
2

0
1

7–8 Protocol Point-to-point
Multi-drop using idle-line detection
— (Reserved)
— (Reserved)

0
1
2
3

11–15 Multi-Drop Address Address 0
Address 1

Address 31

0
1
...
31
Juno Velocity & Torque Control IC Programming Reference 153

154

7

SetSerialPortMode (cont.) 8Bh
GetSerialPortMode 8Ch
Restrictions Multi-drop serial communication is not supported by all products, see the product user guide.

Errors Invalid Parameter: Requested multi-drop protocol not supported.

C-Motion API PMDresult PMDSetSerialPortMode(PMDAxisInterface axis_intf,
PMDuint8 baud,
PMDuint8 parity,
PMDuint8 stopBits,
PMDuint8 protocol,
PMDuint8 multiDropID);

PMDresult PMDGetSerialPortMode(PMDAxisInterface axis_intf,
PMDuint8* baud,
PMDuint8* parity,
PMDuint8* stopBits,
PMDuint8* protocol,
PMDuint8* multiDropID);

Script API GetSerialPortMode
SetSerialPortMode mode
where mode = MultiDropId*2048 + protocol*128 + StopBits*64 + parity*16 +

baud

C# API PMDAxis.GetSerialPortMode(ref PMDSerialBaud baud,
ref PMDSerialParity parity,
ref PMDSerialStopBits StopBits,
ref PMDSerialProtocol protocol,
ref Byte MultiDropId);

PMDAxis.SetSerialPortMode(PMDSerialBaud baud,
PMDSerialParity parity,
PMDSerialStopBits StopBits,
PMDSerialProtocol protocol,
Byte MultiDropId);

Visual Basic
API

PMDAxis.GetSerialPortMode(ByRef baud As PMDSerialBaud,
ByRef parity As PMDSerialParity,
ByRef StopBits As PMDSerialStopBits,
ByRef protocol As PMDSerialProtocol,
ByRef MultiDropId As Byte)

PMDAxis.SetSerialPortMode(ByVal baud As PMDSerialBaud,
ByVal parity As PMDSerialParity,
ByVal StopBits As PMDSerialStopBits,
ByVal protocol As PMDSerialProtocol,
ByVal MultiDropId As Byte)

see
Juno Velocity & Torque Control IC Programming Reference

7

SetSignalSense A2h
GetSignalSense A3h
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Indicator Encoding Bit Number
sense EncoderA 0001h 0

EncoderB 0002h 1
Encoder Index 0004h 2
— (Reserved) 3-6
HallA 0080h 7
HallB 0100h 8
HallC 0200h 9
— (Reserved) 10
Pulse Input 0800h 11
Motor Direction 1000h 12
— (Reserved) 13,14

Direction Input 8000h 15

Packet
Structure

Description SetSignalSense establishes the sense of the corresponding bits of the Signal Status register, with the
addition of Step Output and Motor Direction, for the specified axis.

For Encoder Index, if the sense bit is 1, an index will be recognized for use in index-based phase
correction or position capture if the index has a low to high transition.

For the Capture Input, if the sense bit is 1, a capture will occur on a low-to-high signal transition.
Otherwise, a capture will occur on a high-to-low transition.

DC Brush Brushless DC Microstepping

SetSignalSense
0 axis A2h

15 12 11 8 7 0

Data
write sense

15 0

GetSignalSense
0 axis A3h

15 12 11 8 7 0

Data
read sense

15 0
Juno Velocity & Torque Control IC Programming Reference 155

156

7

SetSignalSense (cont.) A2h
GetSignalSense A3h
Description
(cont.)

The Pulse Input and Direction Input bits are used when the command source is pulse and direction.
If the Pulse Input bit is 0 then a pulse will be recorded when the signal transitions from a high state
to a low state. If the Direction Input bit is 0 then a high level is interpreted as a move in the positive
direction, and a low level as a move in the negative direction.

The Motor Direction bit may be used to invert the direction of positive torque. For brushless DC
motors using encoder commutation the encoder direction (using one of EncoderA or EncoderB
sense bits) must be inverted at the same time as Motor Direction. Phase initialization must be
repeated whenever motor direction is changed.

GetSignalSense returns the value of the Signal Sense mask.

Restrictions FaultOut and /Enable exist in the Signal Status register, but their sense is not controllable.

Not all bits are implemented for all products. See the product user guide.

Errors None

C-Motion API PMDresult PMDSetSignalSense(PMDAxisInterface axis_intf,
 PMDuint16 sense);

PMDresult PMDGetSignalSense(PMDAxisInterface axis_intf,
 PMDuint16* sense);

Script API GetSignalSense
SetSignalSense sense

C# API UInt16 sense = PMDAxis.SignalSense;
PMDAxis.SignalSense = sense;

Visual Basic
API

UInt16 sense = PMDAxis.SignalSense
PMDAxis.SignalSense = sense

see GetSignalStatus (p. 64)
Juno Velocity & Torque Control IC Programming Reference

7

SetTraceMode B0h
GetTraceMode B1h
Motor Types

Arguments Name Instance Encoding
mode 16-bit unsigned see below

Packet
Structure

Description SetTraceMode sets the behavior for the next trace. Mode is a bitmask, as shown below:

Wrap mode may be either One Time (zero), or Rolling Buffer (one). In One Time mode, the trace
continues until the trace buffer is filled, then stops. In Rolling Buffer mode, the trace continues from
the beginning of the trace buffer after the end is reached. When in rolling mode, values stored at the
beginning of the trace buffer are lost if they are not read before being overwritten by the wrapped data.

GetTraceMode returns the value for the trace mode.

Errors Invalid Parameter: Reserved bit nonzero.

C-Motion API PMDresult PMDSetTraceMode(PMDAxisInterface axis_intf, PMDuint16 mode);
PMDresult PMDGetTraceMode(PMDAxisInterface axis_intf, PMDuint16* mode);

Script API GetTraceMode
SetTraceMode mode

C# API PMDTraceMode mode = PMDAxis.TraceMode;
PMDAxis.TraceMode = mode;

Visual Basic
API

PMDTraceMode mode = PMDAxis.TraceMode
PMDAxis.TraceMode = mode

see GetTraceStatus (p. 68)

DC Brush Brushless DC Microstepping

SetTraceMode
0 B0h

15 8 7 0

Data
write mode

15 0

GetTraceMode
0 B1h

15 8 7 0

Data
read mode

15 0

Name Bit
Wrap Mode 0

 — (Reserved) 1-15
Juno Velocity & Torque Control IC Programming Reference 157

158

7

SetTracePeriod B8h
GetTracePeriod B9h
Motor Types

Arguments Name Type Range Scaling Units
period unsigned 16 bits 1 to 216–1 unity cycles

Packet
Structure

Description SetTracePeriod sets the interval between contiguous trace captures. For example, if the trace
period is set to one, trace data will be captured at the end of every chip cycle. If the trace period is
set to two, trace data will be captured at the end of every second chip cycle, and so on.

GetTracePeriod returns the value for the trace period.

Errors Invalid Parameter: Zero Period

C-Motion API PMDresult PMDSetTracePeriod(PMDAxisInterface axis_intf,
PMDuint16 period);

PMDresult PMDGetTracePeriod(PMDAxisInterface axis_intf,
PMDuint16* period);

Script API GetTracePeriod
SetTracePeriod period

C# API UInt16 period = PMDAxis.TracePeriod;
PMDAxis.TracePeriod = period;

Visual Basic
API

UInt16 period = PMDAxis.TracePeriod
PMDAxis.TracePeriod = period

see Set/GetSampleTime (p. 151), Set/GetTraceStart (p. 159), Set/GetTraceStop (p. 162)

DC Brush Brushless DC Microstepping

SetTracePeriod
0 B8h

15 8 7 0

Data
write period

15 0

GetTracePeriod
0 B9h

15 8 7 0

Data
read period

15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetTraceStart B2h
GetTraceStart B3h
Motor Types

Arguments Name Instance Encoding
triggerAxis Axis1 0

condition Immediate 0
— (Reserved) 1
Event Status 2
Activity Status 3
Signal Status 4
Drive Status 5
— (Reserved) 6
Signed trace value greater than 7
Signed trace value less than 8
Unsigned trace value higher than 9
Unsigned trace value lower than 10
Trace value bitmask 11

triggerBit Status Register Bit 0 to 15

triggerState (tS) Triggering State of the Bit 0 (value = 0)
1 (value = 1)

Packet
Structure

Description SetTraceStart sets the condition for starting the trace. The Immediate condition requires no axis to be
specified and the trace will begin upon execution of this instruction. The next four conditions require
an axis to be specified, and when the condition for that axis is attained, the trace will begin.

When a status register bit is the trigger, the bit number and state must be included in the argument. The
trace is started when the indicated bit reaches the specified state (0 or 1).

The last five conditions compare the value of the first trace variable configured with the value set using
the SetTraceTriggerValue command. This value is always computed, whether trace is active or not.
Unsigned comparisons should be used for a first trace variable with an unsigned result, conversely signed
comparisons used for a first trace variable with signed results.

Once a trace has started, the trace-start trigger is reset to zero (0).

DC Brush Brushless DC Microstepping

SetTraceStart
0 B2h

15 8 7 0

Data
write 0 tS triggerBit condition triggerAxis

15 13 12 11 8 7 4 3 0

GetTraceStart
0 B3h

15 8 7 0

Data
read 0 tS triggerBit condition triggerAxis

15 13 12 11 8 7 4 3 0
Juno Velocity & Torque Control IC Programming Reference 159

160

7

SetTraceStart (cont.) B2h
GetTraceStart B3h
Description
(cont.)

The trace value bitmask condition is suitable for testing multiple bits from the 16-bit status registers.
In this case the high order word of the comparison value is a selection mask; In order to trigger the
bitwise logical AND of this mask with the first trace value must equal the low order word of the
comparison value (the sense mask).

For all conditions the triggerState bit negates the sense of the condition, for example, if the
triggerState bit is 1 then condition 7 is a signed less than or equal test, instead of greater than.

In the case of the immediate condition the triggerState bit must be 0 for the command to have any
effect, otherwise the effective condition is Never.

GetTraceStart returns the value of the trace-start trigger.

The following table shows the corresponding value for combinations of triggerBit and register0.

The script interface combines all arguments into a single start argument, as shown below.

Examples:

If it is desired that the trace begin immediately, then the condition is zero, and all other arguments
are not used, and can be set to zero. The start argument, and the actual word sent to the Juno
processor is zero.

If it is desired that the trace begin when bit 7 of the Activity Status register for axis 1 goes to 0, then
the trace start is loaded as follows: A 0 is loaded for axis number, a 3 is loaded for condition, a 7 is
loaded for bit number, and a 0 is loaded for state. The start argument and the actual data word sent
to the motor processor is 0730h.If it is desired that the trace begin when the raw bus voltage is less
than 20,000.

First set the comparison value of 20,000 using SetTraceTriggerValue 0x100 20000

Next set the first trace variable to bus voltage (54, 036h) using SetTraceVariable 0 0x3600
Finally set the start condition to less than (8) using SetTraceStart 0x0080

TriggerBit
Event Status
Register

Activity
Status
Register

Signal Status
Register

Drive Status
Register

0 Phasing Initialized Encoder A Calibrated
1 Wrap-around At Maximum

Velocity
Encoder B In Foldback

2 Encoder Index Overtemperature
3 Position Capture Shunt Active
4 Motion Error In Holding
5 Overvoltage
6 Undervoltage
7 Instruction Error Hall Sensor A
8 Disable Hall Sensor B
9 Overtemperature

Fault
Position Capture Hall Sensor C

0Ah Drive Exception In Motion
0Bh Commutation Error
0Ch Current Foldback Clipping
0Dh Runtime Error /Enable Input
0Eh FaultOut Initializing
0Fh
Juno Velocity & Torque Control IC Programming Reference

7

SetTraceStart (cont.) B2h
GetTraceStart B3h
Errors Invalid Parameter: Parameter out of range.
Trace Buffer Zero: Immediate start with trace buffer length of zero.

Restrictions Not all trace start conditions are available in all products. See the product user guide.

C-Motion API PMDresult PMDSetTraceStart(PMDAxisInterface axis_intf,
PMDAxis traceAxis,
PMDuint8 condition,
PMDuint8 triggerBit,
PMDuint8 triggerState);

PMDresult PMDGetTraceStart(PMDAxisInterface axis_intf,
PMDAxis* traceAxis,
PMDuint8* condition,
PMDuint8* triggerBit,
PMDuint8* triggerState);

Script API GetTraceStart
SetTraceStart start
where start = triggerState*2048 + triggerBit*256 + condition*16 +

triggerAxis

C# API PMDAxis.GetTraceStart(ref PMDAxisNumber triggerAxis,
ref PMDTraceCondition condition,
ref Byte bit,
ref PMDTraceTriggerState state);

PMDAxis.SetTraceStart(PMDAxisNumber triggerAxis,
PMDTraceCondition condition,
Byte bit,
PMDTraceTriggerState state);

Visual Basic
API

PMDAxis.GetTraceStart(ByRef triggerAxis As PMDAxisNumber,
ByRef condition As PMDTraceCondition,
ByRef bit As Byte,
ByRef state As PMDTraceTriggerState)

PMDAxis.SetTraceStart(ByVal triggerAxis As PMDAxisNumber,
ByVal condition As PMDTraceCondition,
ByVal bit As Byte,
ByVal state As PMDTraceTriggerState)

see Set/GetBufferLength (p. 92), GetTraceCount (p. 67), Set/GetTraceMode (p. 157),
Set/GetTracePeriod (p. 158), Set/GetTraceStop (p. 162),Set/GetTraceTriggerValue (p. 90)
Juno Velocity & Torque Control IC Programming Reference 161

162

7

SetTraceStop B4h
GetTraceStop B5h
Motor Types

Arguments Name Instance Encoding
triggerAxis Axis1 0

condition Immediate 0
Next Update 1
Event Status 2
Activity Status 3
Signal Status 4
Drive Status 5
— (Reserved) 6
Signed trace value greater than 7
Signed trace value less than 8
Unsigned trace value higher than 9
Unsigned trace value lower than 10
Trace value bitmask 11

triggerBit Status Register Bit 0 to 15

triggerState (tS) Triggering State of the Bit 0 (value = 0)
1 (value = 1)

Packet
Structure

Description SetTraceStop sets the condition for stopping the trace. The Immediate condition requires no axis
to be specified and the trace will stop upon execution of this instruction. All of the other conditions
are identical to those for SetTraceStart, see the description for that command.

GetTraceStop returns the value of the trace-stop trigger.

Once a trace has stopped, the trace-stop trigger is reset to zero (0).

The script interface combines all arguments into a single stop argument, as shown below.

For examples of use, see “SetTraceStart B2h GetTraceStart B3h” on page 159, which uses the same
argument encoding.

Restrictions Not all trace stop conditions are available in all products. See the product user guide.

Errors Invalid Parameter: Parameter out of range.

DC Brush Brushless DC Microstepping

SetTraceStop
0 B4h

15 8 7 0

Data
write 0 tS triggerBit condition triggerAxis

15 13 12 11 8 7 4 3 0

GetTraceStop
0 B5h

15 8 7 0

Data
read 0 tS triggerBit condition triggerAxis

15 13 12 11 8 7 4 3 0
Juno Velocity & Torque Control IC Programming Reference

7

SetTraceStop (cont.) B4h
GetTraceStop B5h
C-Motion API PMDresult PMDSetTraceStop(PMDAxisInterface axis_intf,
PMDAxis traceAxis,
PMDuint8 condition,
PMDuint8 triggerBit,
PMDuint8 triggerState);

PMDresult PMDGetTraceStop(PMDAxisInterface axis_intf,
PMDAxis* traceAxis,
PMDuint8* condition,
PMDuint8* triggerBit,
PMDuint8* triggerState);

Script API GetTraceStop
SetTraceStop stop
where stop = triggerState*2048 + triggerBit*256 + condition*16 + trigger-
Axis

C# API PMDAxis.GetTraceStop(ref PMDAxisNumber triggerAxis,
ref PMDTraceCondition condition,
ref Byte bit,
ref PMDTraceTriggerState state);

PMDAxis.SetTraceStop(PMDAxisNumber triggerAxis,
PMDTraceCondition condition,
Byte bit,
PMDTraceTriggerState state);

Visual Basic
API

PMDAxis.GetTraceStop(ByRef triggerAxis As PMDAxisNumber,
ByRef condition As PMDTraceCondition,
ByRef bit As Byte,
ByRef state As PMDTraceTriggerState)

PMDAxis.SetTraceStop(ByVal triggerAxis As PMDAxisNumber,
ByVal condition As PMDTraceCondition,
ByVal bit As Byte,
ByVal state As PMDTraceTriggerState)

see GetTraceCount (p. 67), Set/GetTraceStart (p. 159), GetTraceStatus (p. 68)
Juno Velocity & Torque Control IC Programming Reference 163

164

7

SetTraceVariable B6h
GetTraceVariable B7h
Motor Types

Arguments Name Instance Encoding
variableNumber Variable1 0

Variable2 1
Variable3 2
Variable4 3

traceAxis Axis1 0

variableID

None 0
Position Error 1
Commanded Position 2
Commanded Velocity 3
Commanded Acceleration 4
Actual Position 5
Actual Velocity 6
Active Motor Command 7
Motion Processor Time 8
Capture Value 9
Position Loop Integrator Sum 10
Position/Outer Loop Derivative Term 11
Event Status 12
Activity Status 13
Signal Status 14
Phase Angle 15
Phase Offset 16
— (Reserved) 17-19
Analog Raw Channel 0 20
Analog Raw Channel 1 21
Analog Raw Channel 2 22
Analog Raw Channel 3 23
Analog Raw Channel 4 24
Analog Raw Channel 5 25
Analog Raw Channel 6 26
Analog Raw Channel 7 27
— (Reserved) 28
Phase Angle Scaled 29
— (Reserved) 30
Phase A Actual Current 31
— (Reserved) 32-35
Phase B Actual Current 36
— (Reserved) 37-39
d Component Reference 40
d Component Error 41
d Component Actual Current 42
— (Reserved) 43
d Component Integral Term 44
d Component Output 45

DC Brush Brushless DC Microstepping
Juno Velocity & Torque Control IC Programming Reference

7

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Arguments
(cont.)

variableID (cont.)
q Component Reference 46
q Component Error 47
q Component Actual Current 48
— (Reserved) 49
q Component Integral Term 50
q Component Output 51
Alpha Component Output 52
Beta Component Output 53
Bus Voltage 54
Temperature 55
Drive Status 56
Position/Outer Loop Integral Term 57
— (Reserved) 58-67
Foldback Energy 68
Leg A Current 69
Leg B Current 70
Leg C Current 71
Leg DCurrent 72
Alpha Component Current 73
Beta Component Current 74
PWM A Output 75
PWM B Output 76
PWM C Output 77
— (Reserved) 78
Drive Fault Status 79
— (Reserved) 80-82
Actual Velocity 83
Raw Encoder Reading 84
— (Reserved) 85
Bus Current Supply 86
Bus Current Return 87
— (Reserved) 88
Commutation Error 89
— (Reserved) 90-94
Estimated Velocity 95
Commanded Velocity 96
Velocity Error 97
Velocity Loop Integral Term 98
Velocity Loop Output 99
Velocity Biquad Input 100
Analog Command Biquad Input 101
Tachometer 102
Analog Command 103
Position/Outer loop Output 104
SPI Direct Input 105
— (Reserved) 106,107
Internal Profile Position 108
Internal Profile Velocity 109
Active Operating Mode 110
Analog Raw Channel 8 111
Analog Raw Channel 9 112
— (Reserved) 113-116
Juno Velocity & Torque Control IC Programming Reference 165

166

7

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Arguments
(cont.)

variableID (cont.)
Outer Loop Reference 117
Outer Loop Feedback 118
Commutation Error Cause 119

Trajectory Generator Commanded Position 2
Commanded Velocity 3
Commanded Acceleration 4

Encoder Actual Position 5
Actual Velocity 6
Position Capture Register 9
Phase Angle 15
Phase Offset 16

Position Loop Position Error 1
Position Loop Integrator Sum 10
Position Loop Integrator Contribution 57
Position Loop Derivative 11
Biquad1 Input 64
Biquad2 Input 65

Status Registers Event Status Register 12
Activity Status Register 13
Signal Status Register 14
Drive Status Register 56
Drive Fault Status Register 79

Commutation/Phasing Active Motor Command 7
Phase A Command 17
Phase B Command 18
Phase C Command 19
Phase Angle Scaled 29

Current Loops Phase A Reference 66
Phase A Error 30
Phase A Actual Current 31
Phase A Integrator Sum 32
Phase A Integrator Contribution 33
Current Loop A Output 34
Phase B Reference 67
Phase B Error 35
Phase B Actual Current 36
Phase B Integrator Sum 37
Phase B Integrator Contribution 38
Current Loop B Output 39
D Feedback 40
Q Feedback 48
Leg A Current 69
Leg B Current 70
Leg C Current 71
Leg D Current 72

Field Oriented Control D Reference 40
D Error 41
D Feedback 42
D Integrator Sum 43
D Integrator Contribution 44
D Output 45
Juno Velocity & Torque Control IC Programming Reference

7

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Arguments
(cont.)

Field Oriented Control (cont.)
Q Reference 46
Q Error 47
Q Feedback 48
Q Integrator Sum 49
Q Integrator Contribution 50
Q Output 51
FOC Alpha Output 52
FOC Beta Output 53
Phase Alpha Actual Current 73
Phase Beta Actual Current 74

Motor Output Bus Voltage 54
Temperature 55
Foldback Energy 68
Bus Current Supply 86
Bus Current Return 87
PWM Output A 75
PWM Output B 76
PWM Output C 77

Analog Inputs Analog Input0 20
Analog Input1 21
Analog Input2 22
Analog Input3 23
Analog Input4 24
Analog Input5 25
Analog Input6 26
Analog Input7 27

Miscellaneous None (disable variable) 0
Motion Control IC Time 8

Packet
Structure

SetTraceVariable
0 B6h

15 8 7 0

write 0 variableNumber
15 2 1 0

write variableID 0 traceAxis
15 8 7 4 3 0

GetTraceVariable
0 B7h

15 8 7 0

write 0 variableNumber
15 2 1 0

read variableID 0 traceAxis
15 8 7 4 3 0
Juno Velocity & Torque Control IC Programming Reference 167

168

7

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Description SetTraceVariable assigns the given variable to the specified variableNumber location in the trace
buffer. Up to four variables may be traced at one time.

All variable assignments must be contiguous starting with variableNumber = 0.

GetTraceVariable returns the variable and axis of the specified variableNumber.

Example: To set up a three variable trace capturing the commanded acceleration for axis 1, the
actual position for axis 1, and the event status word for axis 2, the following sequence of commands
would be used. First, a SetTraceVariable command with variableNumber of 0, axis of 0, and
variableID of 4 would be sent. Then, a SetTraceVariable command with variableNumber of 1, axis
of 0, and variableID of 5 would be sent. Finally, a SetTraceVariable command with a
variableNumber of 3, axis of 0 and variableID of 0h would be sent.

The table below summarizes the data type and scaling factor for the trace variables supported by
Juno. Note that all values are actually stored in the trace buffer or returned by GetTraceValue as
32 bit quantities. If the data type is “16 bit signed” then the data will be sign-extended to 32 bits. If
the data type is “16 bit unsigned” then the high word will be zero.

Variable Encoding Type Scaling Units/Notes
Command Source
Commanded Position 2 signed 32

bit
unity counts or microsteps

Commanded Velocity 3 signed 32
bit

1/216 counts/cycle or
microsteps/cycle

Commanded Acceleration 4 signed 32
bit

1/224 counts/cycle2 or
microsteps/cycle2

Analog Command Biquad Input 101 signed 32
bit

100/230 % max analog
command input

Analog Command 103 signed 16
bit

100/214 % max analog
command input

SPI Direct Input 105 signed 16
bit

100/215 % max SPI input

Internal Profile Position 108 signed 32
bit

unity counts or microsteps

Internal Profile Velocity 109 signed 32
bit

1/216 counts/cycle or
microsteps/cycle

Encoder
Actual Position 5 signed 32

bit
unity counts or microsteps

Capture Value 9 signed 32
bit

unity counts or microsteps

Actual Velocity (not smoothed) 83 signed 32
bit

unity counts/cycle or
microsteps/cycle

Raw Encoder Reading 84 signed 32
bit

unity counts
Juno Velocity & Torque Control IC Programming Reference

7

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Description
(cont.)

Variable Encoding Type Scaling Units/Notes
Position/Outer Loop
Position Error 1 signed 32

bit
unity counts or microsteps

Position/Outer Loop Integrator Sum 10 signed 32
bit

100Kout/2
38 % output

Position/Outer Loop Derivative Term 11 signed 32
bit

100Kout/2
36 % output

Position/Outer Loop Integral Term 57 signed 32
bit

100Kout/2
30 % output (eg scaled

velocity)
Position/Outer Loop Output 104 signed 32

bit
100/231 % output

Outer Loop Reference 117 signed 32
bit

100/231 % max input

Outer Loop Feedback 118 signed 32
bit

100/231 % max input

Velocity Loop
Estimated Velocity 95 signed 32

bit
1/Kvel counts/cycle

Commanded Velocity 96 signed 32
bit

1/Kvel counts/cycle

Velocity Error 97 signed 32
bit

1/Kvel counts/cycle

Velocity Loop Integral Term 98 signed 32
bit

100/(213Kout) % output

Velocity Loop Output 99 signed 16
bit

100/215 % output

Velocity Biquad Input 100 signed 32
bit

1/Kvel counts/cycle

Tachometer 102 signed 16
bit

100/214 % max tachometer
analog input

Status Registers
Event Status 12 unsigned

16 bit
- see GetEventStatus

Activity Status 13 unsigned
16 bit

- see GetActivityStatus

Signal Status 14 unsigned
16 bit

- see GetSignalStatus

Drive Status 56 unsigned
16 bit

- see GetDriveStatus

Drive Fault Status 79 unsigned
16 bit

- see
GetDriveFaultStatus

Active Operating Mode 110 unsigned
16 bit

- see
GetActiveOperating
Mode
Juno Velocity & Torque Control IC Programming Reference 169

170

7

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Description
(cont.)

Variable Encoding Type Scaling Units/Notes
Commutation/Phasing
Active Motor Command 7 signed 16

bit
100/215 % output

Phase Angle 15 unsigned
32 bit

unity counts or microsteps

Phase Offset 16 signed 32
bit

unity counts

Phase Angle Scaled 29 unsigned
16 bit

360/215 degrees

Commutation Error 89 signed 32
bit

unity counts (set during phase
initialization or correction)

Commutation Error Cause 119 unsigned
16 bit

enumerated value,
explanation below

Current Control
Phase A Actual Current 31 signed 16

bit
160/215 % max leg current analog

input
Phase B Actual Current 36 signed 16

bit
160/215 % max leg current analog

input
d Component Reference 40 signed 16

bit
160/215 % max leg current analog

input
d Component Error 41 signed 16

bit
160/215 % max leg current analog

input
d Component Actual Current 42 signed 16

bit
160/215 % max leg current analog

input
d Component Integral Term 44 signed 32

bit
 200/215 % output

d Component Output 45 signed 16
bit

100/215 % output

q Component Reference 46 signed 16
bit

160/215 % max leg current analog
input

q Component Error 47 signed 16
bit

160/215 % max leg current analog
input

q Component Actual Current 48 signed 16
bit

 160/215 % max leg current analog
input

q Component Integral Term 50 signed 32
bit

200/215 % output

q Component Output 51 signed 16
bit

100/215 % output

Alpha Component Output 52 signed 16
bit

100/215 % output

Beta Component Output 53 signed 16
bit

100/215 % output

Leg A Current 69 signed 16
bit

100/215 % max leg current analog
input

Leg B Current 70 signed 16
bit

100/215 % max leg current analog
input

Leg C Current 71 signed 16
bit

100/215 % max leg current analog
input

Leg D Current 72 signed 16
bit

100/215 % max leg current analog
input
Juno Velocity & Torque Control IC Programming Reference

7

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Description
(cont.)

Variable Encoding Type Scaling Units/Notes
Current Control (cont.)
Alpha Component Current 73 signed 16

bit
100/215 % max leg current

analog input
Beta Component Current 74 signed 16

bit
100/215 % max leg current

analog input
Motor Output
Bus Voltage 54 unsigned

16 bit
100/216 % bus voltage analog

input
Temperature 55 unsigned

16 bit
100/215 % temperature analog

input
Foldback Energy 68 unsigned

32 bit
see note
below

A2s

PWM A Output 75 signed 16
bit

100/215 % max output

PWM B Output 76 signed 16
bit

100/215 % max output

PWM C Output 77 signed 16
bit

100/215 % max output

Bus Current Supply 86 signed 16
bit

100/215 % max bus current
analog input

Bus Current Return 87 signed 16
bit

100/215 % max leg current
analog input

Analog Inputs
Analog Raw Channel 0 20 unsigned

16 bit
100/216 % input

Analog Raw Channel 1 21 unsigned
16 bit

100/216 % input

Analog Raw Channel 2 22 unsigned
16 bit

100/216 % input

Analog Raw Channel 3 23 unsigned
16 bit

100/216 % input

Analog Raw Channel 4 24 unsigned
16 bit

100/216 % input

Analog Raw Channel 5 25 unsigned
16 bit

100/216 % input

Analog Raw Channel 6 26 unsigned
16 bit

100/216 % input

Analog Raw Channel 7 27 unsigned
16 bit

100/216 % input

Analog Raw Channel 8 111 unsigned
16 bit

100/216 % input

Analog Raw Channel 9 112 unsigned
16 bit

100/216 % input

Miscellaneous
None 0 - - Terminates variable list
Motion Processor Time 8 unsigned

32 bit
unity cycles
Juno Velocity & Torque Control IC Programming Reference 171

172

7

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Description
(cont.)

Kvel and Kout above mean the raw values. Kout means either the velocity or position/outer loop

parameter, as appropriate.

The foldback energy scaling factor is tc(if s/20480)2215, where tc is the current loop period of

51.2 x 10-6s and if s is the actual current when a leg current sensor is at full scale.

The Commutation Error Cause trace value indicates the reason for the first commutation error
since the value was cleared. Reading the value, either with trace or by using GetTraceValue, clears
it to zero. The error codes are:

The script inteface combines the traceAxis with the variableID in a single code argument as shown
below. For example, to set the second trace variable to Active Motor Command (7) for axis 1 (0),
code = 7*256 + 0 = 1792, so the command should be:

SetTraceVariable 1 1792

Errors Invalid Parameter: Unrecognized variableID, trace axis or variableNumber out of range.

C-Motion API PMDresult PMDSetTraceVariable(PMDAxisInterface axis_intf,
PMDuint16 variableNumber,
PMDAxis traceAxis,
PMDuint8 variableID);

PMDresult PMDGetTraceVariable(PMDAxisInterface axis_intf,
PMDuint16 variableNumber,
PMDAxis* traceAxis,
PMDuint8* variableID);

Script API GetTraceVariable variableNumber
SetTraceVariable variableNumber code
where code = variableID*256 + traceAxis

C# API PMDAxis.GetTraceVariable(PMDTraceVariableNumber VariableNumber,
ref PMDAxisNumber TraceAxis,
ref PMDTraceVariable variable);

PMDAxis.SetTraceVariable(PMDTraceVariableNumber VariableNumber,
PMDAxisNumber TraceAxis,
PMDTraceVariable variable);

Error Code Encoding
No error 0
Phase correction too large 1
Invalid Hall state 2
— (Reserved) 3
Pulse phase initialization, signal/noise too low, or
no movement

4

Pulse phase initialization, too much movement
during ramp

5

Juno Velocity & Torque Control IC Programming Reference

7

SetTraceVariable (cont.) B6h
GetTraceVariable B7h
Visual Basic
API

PMDAxis.GetTraceVariable(ByVal VariableNumber As PMDTraceVariableNumber,
ByRef TraceAxis As PMDAxisNumber,
ByRef variable As PMDTraceVariable)

PMDAxis.SetTraceVariable(ByVal VariableNumber As PMDTraceVariableNumber,
ByVal TraceAxis As PMDAxisNumber,
ByVal variable As PMDTraceVariable)

see SetTracePeriod (p. 158), SetTraceStart (p. 159), SetTraceStop (p. 162), GetTraceVariable (p. 164)
Juno Velocity & Torque Control IC Programming Reference 173

174

7

SetVelocity 11h
GetVelocity 4Bh
Motor Types

Arguments Name Instance Encoding
axis Axis1 0

Type Range Scaling Units
velocity signed 32 bits –231 to 231–1 1/216 counts/cycle

microsteps/cycle

Packet
Structure

Description SetVelocity loads the maximum velocity register for the specified axis.

GetVelocity returns the contents of the maximum velocity register.

Scaling example: To load a velocity value of 1.750 counts/cycle, multiply by 65,536 (giving
114,688) and load the resultant number as a 32-bit number; giving 0001 in the high word and C000h
in the low word. Numbers returned by GetVelocity must correspondingly be divided by 65,536 to
convert to units of counts/cycle.

Restrictions The velocity cannot be negative, except in the Velocity Contouring profile mode.

Errors Invalid Parameter: Velocity too large for velocity scalar (would cause commanded scaled velocity
overflow).
Move In Error: Attempt to change velocity from zero to nonzero without clearing an event that
caused a stop.

C-Motion API PMDresult PMDSetVelocity(PMDAxisInterface axis_intf,
 PMDint32 velocity);

PMDresult PMDGetVelocity(PMDAxisInterface axis_intf,
 PMDint32* velocity);

DC Brush Brushless DC Microstepping

SetVelocity
0 axis 11h

15 12 11 8 7 0

write velocity (high-order part)
31 16

write velocity (low-order part)
15 0

GetVelocity
0 axis 4Bh

15 12 11 8 7 0

read velocity (high-order part)
31 16

read velocity (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7

SetVelocity (cont.) 11h
GetVelocity 4Bh
Script API GetVelocity
SetVelocity velocity

C# API Int32 velocity = PMDAxis.Velocity;
PMDAxis.Velocity = velocity;

Visual Basic
API

Int32 velocity = PMDAxis.Velocity
PMDAxis.Velocity = velocity

see Set/GetAcceleration (p. 84), Set/GetDeceleration (p. 113)
Juno Velocity & Torque Control IC Programming Reference 175

176

7
 WriteBuffer C8h
Motor Types

Arguments Name Type Range
bufferID unsigned 16 bits 0 to 7

value signed 32 bits –231 to 231–1

Packet
Structure

Description WriteBuffer writes the 32-bit value into the location pointed to by the write buffer index in the
specified buffer. After the contents have been written, the write index is incremented by 1. If the
result is equal to the buffer length (set by SetBufferLength), the index is reset to zero (0).

Restrictions WriteBuffer may only be used to write to RAM, it cannot write to buffers pointing to NVRAM.

Errors Invalid Parameter: bufferID out of range
Trace Running: Attempt to write to trace buffer while trace is active.
Read-only Buffer: Attempt to write to NVRAM.
Block out of Bounds: Attempt to write to a zero-length buffer.

C-Motion API PMDresult PMDWriteBuffer(PMDAxisInterface axis_intf,
 PMDuint16 bufferID,
 PMDint32 data);

Script API WriteBuffer bufferID data

C# API PMDAxis.WriteBuffer(Int16 bufferID, Int32 data);

Visual Basic
API

PMDAxis.WriteBuffer(ByVal bufferID As Int16, ByVal data As Int32);

see ReadBuffer (p. 76), Set/GetBufferWriteIndex (p. 98)

DC Brush Brushless DC Microstepping

WriteBuffer
0 C8h

15 8 7 0

write 0 bufferID
15 5 4 0

write value (high-order part)
31 16

write value (low-order part)
15 0
Juno Velocity & Torque Control IC Programming Reference

7

Juno Velocity & Torque Control IC Programming Reference 177

178

7

Juno Velocity & Torque Control IC Programming Reference

8

8. Instruction Summary Tables

8.1 Descriptions by Functional Category
Interrupts Page
ClearInterrupt Reset interrupt. 33

Set/GetInterruptMask Set/Get interrupt event mask. 132

Motor Phase and Commutation
Set/GetCommutationMode Set/Get the commutation phasing mode. 102

Set/GetPhaseCorrectionMode Set/Get phase correction method. 147

Set/GetCommutationParameter Set/Get phase counts and other commutation parameters. 103

Set/GetPhaseParameter Set/Get phase initialization parameters. 149

Set/GetPhaseInitializeMode Set/Get phase initialization method. 148

InitializePhase Perform phase initialization procedure. 71

Current Loops
CalibrateAnalog Determine offsets to zero analog inputs. 31

Set/GetAnalogCalibration Set/Get analog offsets. 88

Set/GetCurrentControlMode Set/Get current control mode (FOC or third leg floating). 108

Set/GetFOC Set/Get parameters for current control. 130

GetFOCValue Get value of current control state. 54

Digital Servo Filter
ClearPositionError Adjust commanded position to make error zero. 34

GetPositionError Get actual position error. 60

Set/GetDriveCommandMode Set/Get mode for commanding position, velocity, or torque 114

Set/GetLoop Set/Get parameter for position/outer or velocity loop 134

GetLoopValue Get value of position/outer or velocity loop state 58

Encoder
AdjustActualPosition Change the current encoder position by a specified offset. 30

Set/GetActualPosition Set/Get the current encoder position. 86

Set/GetActualPositionUnits Set/Get units of encoder position for step motors, counts or
microsteps.

87

GetActualVelocity Get the actual encoder velocity, without smoothing. 41

GetCaptureValue Get the most recent index capture encoder position. 42

Set/GetEncoderSource Set/Get the type of position feedback. 121

Set/GetEncoderToStepRatio Set/Get the ratio of encoder counts to microsteps. 123

Motor Output
GetActiveMotorCommand Get the active commanded motor output 37

GetDriveValue Read drive bus voltage, bus current, or temperature. 50

Set/GetMotorCommand Set/Get the motor command if position/outer and velocity loops are
disabled.

138

Set/GetMotorType Set/Get the motor type. 142
Juno Velocity & Torque Control IC Programming Reference 177

Instruction Summary Tables8
Set/GetOutputMode Set/Get the method of driving the motor amplifier. 146

Set/GetDrivePWM Set/Get various PWM parameters, eg signal sense, frequency, and dead
time.

119

Set/GetCurrentFoldback Set/Get current foldback limits. 109

Set/GetCurrent Set/Get current commands for driving step motors. 106

Set/GetCurrentLimit Set/Get the maximum current that the velocity or position/outer loop
may command.

111

Operating Mode and Event Control
Set/GetOperatingMode Set/Get the static operating mode of an axis. 144

RestoreOperatingMode Restore the active operating mode from the static operating mode of
an axis.

83

GetActiveOperatingMode Get the active operating mode of an axis. 38

Set/GetEventAction Set/Get the response to events or other exceptional conditions. 125

Postion Servo Loop Control
Set/GetSampleTime Set/Get the profile and servo loop sample time . 151

GetTime Get the current IC time, in commutation periods. 66

Profile Generation
Set/GetAcceleration Set/Get the maximum acceleration for the internal profile. 84

GetCommandedAcceleration Get the current commanded profile acceleration. 43

GetCommandedPosition Get the current commanded position. 44

GetCommandedVelocity Get the current commanded (not scaled) velocity. 45

Set/GetDeceleration Set/Get the maximum deceleration, if different from the maximum
acceleration.

113

Set/GetVelocity Set/Get the maximum velocity for the internal profile. 174

RAM Buffers
Set/GetBufferLength Set/Get the length of a memory buffer. 92

Set/GetBufferReadIndex Set/Get the index of the next read from a memory buffer. 94

Set/GetBufferStart Set/Get the starting address of a memory buffer. 96

Set/GetBufferWriteIndex Set/Get the index of the next write to a memory buffer. 98

ReadBuffer Read a 32 bit double word from a RAM buffer. 76

ReadBuffer16 Read a 16 bit word from an NVRAM buffer. 77

WriteBuffer Write a 32 bit double word to a RAM buffer. 176

Drive
Set/GetDriveFaultParameter Set/Get some drive safety parameters. 116

Set/GetFaultOutMask Set/Get the event mask for driving the FaultOut signal. 128

GetDriveFaultStatus Get a latched register showing some drive faults status. 46

GetDriveValue Get some current drive state. 50

ClearDriveFaultStatus Clear (zero) all drive fault bits. 32

Status Registers
GetActivityStatus Get a register showing some current activity state. 40

GetDriveStatus Get a register showing some current drive state. 48

GetEventStatus Get a latched register showing some significant events. 52

GetSignalStatus Get the current status of some input/output signals. 64

Set/GetSignalSense Set/Get the logical sense of some input/output signals. 155

Motor Output
178 Juno Velocity & Torque Control IC Programming Reference

Instruction Summary Tables 8
8.2 Alphabetical Listing

ResetEventStatus Clear (zero) some event bits. 82

Traces
GetTraceCount Get the number of trace values that have been stored. 67

Set/GetTraceMode Set/Get the trace mode (one-time or rolling). 157

Set/GetTracePeriod Set/Get the frequency of trace captures. 158

Set/GetTraceStart Set/Get the condition that will start a trace. 159

Set/GetTraceStop Set/Get the condition that will stop a trace. 162

GetTraceStatus Get the trace status word. 68

Set/GetTraceVariable Set/Get the set of quantities to save in a trace. 164

GetTraceValue Get the current value of a traceable quantity. 69

Set/GetTraceTriggerValue Set/Get a value to be used to determine trace start or stop. 90

Communications
Set/GetCANMode Set/Get the CANBus baud rate and node identifier. 100

GetInstructionError Get and clear command error codes. 56

Set/GetSerialPortMode Set/Get the serial port configuration. 153

GetSPIMode Get the current SPI mode: host command or direct. 65

GetRuntimeError Get and clear error codes not associated with a command. 63

Miscellaneous
GetProductInfo Get fixed configuration and version information. 61

ExecutionControl Control some aspects of NVRAM IC initialization. 35

GetVersion Legacy version command, returns zero. 70

NoOperation Perform no operation, used to verify communications. 74

Reset Reset IC. 78

NVRAM Program non-volatile memory. 72

ReadAnalog Read a raw analog input. 75

 Get/Set instructions pairs are shown together on the same line of the table.

Instruction Code Instruction Code Page
AdjustActualPosition F5h 30

CalibrateAnalog 6Fh 31

ClearDriveFaultStatus 6Ch 32

ClearInterrupt ACh 33

ClearPositionError 47h 34

ExecutionControl 35h 35

GetActiveMotorCommand 3Ah 37

GetActiveOperatingMode 57h 38

GetActivityStatus A6h 40

GetActualVelocity ADh 41

GetCaptureValue 36h 42

GetCommandedAcceleration A7h 43

GetCommandedPosition 1Dh 44

Status Registers
Juno Velocity & Torque Control IC Programming Reference 179

Instruction Summary Tables8
GetCommandedVelocity 1Eh 45

GetDriveFaultStatus 6Dh 46

GetDriveStatus 0Eh 48

GetDriveValue 70h 50

GetEventStatus 31h 52

GetFOCValue 5Ah 54

GetInstructionError A5h 56

GetLoopValue 38h 58

GetPositionError 99h 60

GetProductInfo 01h 61

GetRuntimeError 3Dh 63

GetSPIMode 0Bh 65

GetSignalStatus A4h 64

GetTime 3Eh 66

GetTraceCount BBh 67

GetTraceStatus BAh 68

GetTraceValue 28h 69

GetVersion 8Fh 70

InitializePhase 7Ah 71

NVRAM 30h 72

NoOperation 00h 74

ReadAnalog EFh 75

ReadBuffer C9h 76

ReadBuffer16 CDh 77

Reset 39h 78

ResetEventStatus 34h 82

RestoreOperatingMode 2Eh 83

SetAcceleration 90h GetAcceleration 4Ch 84

SetActualPosition 4Dh GetActualPosition 37h 86

SetActualPositionUnits BEh GetActualPositionUnits BFh 87

SetAnalogCalibration 29h GetAnalogCalibration 2Ah 88

SetBufferLength C2h GetBufferLength C3h 92

SetBufferReadIndex C6h GetBufferReadIndex C7h 94

SetBufferStart C0h GetBufferStart C1h 96

SetBufferWriteIndex C4h GetBufferWriteIndex C5h 98

SetCANMode 12h GetCANMode 15h 100

SetCommutationMode E2h GetCommutationMode E3h 102

SetCommutationParameter 63h GetCommutationParameter 64h 103

SetCurrent 5Eh GetCurrent 5Fh 106

SetCurrentControlMode 43h GetCurrentControlMode 44h 108

SetCurrentFoldback 41h GetCurrentFoldback 42h 109

SetCurrentLimit 06h GetCurrentLimit 07h 111

SetDeceleration 91h GetDeceleration 92h 113

SetDriveCommandMode 7Eh GetDriveCommandMode 7Fh 114

SetDriveFaultParameter 62h GetDriveFaultParameter 60h 116

SetDrivePWM 23h GetDrivePWM 24h 119

SetEncoderSource DAh GetEncoderSource DBh 121

SetEncoderToStepRatio DEh GetEncoderToStepRatio DFh 123

SetEventAction 48h GetEventAction 49h 125

SetFOC F6h GetFOC F7h 130

SetFaultOutMask FBh GetFaultOutMask FCh 128

Instruction Code Instruction Code Page
180 Juno Velocity & Torque Control IC Programming Reference

Instruction Summary Tables 8
SetInterruptMask 2Fh GetInterruptMask 56h 132

SetLoop 78h GetLoop 79h 134

SetMotorCommand 77h GetMotorCommand 69h 138

SetMotorType 02h GetMotorType 03h 142

SetOperatingMode 65h GetOperatingMode 66h 144

SetOutputMode E0h GetOutputMode 6Eh 146

SetPhaseCorrectionMode E8h GetPhaseCorrectionMode E9h 147

SetPhaseInitializeMode E4h GetPhaseInitializeMode E5h 148

SetPhaseParameter 85h GetPhaseParameter 86h 149

SetSampleTime 3Bh GetSampleTime 3Ch 151

SetSerialPortMode 8Bh GetSerialPortMode 8Ch 153

SetSignalSense A2h GetSignalSense A3h 155

SetTraceMode B0h GetTraceMode B1h 157

SetTracePeriod B8h GetTracePeriod B9h 158

SetTraceStart B2h GetTraceStart B3h 159

SetTraceStop B4h GetTraceStop B5h 162

SetTraceTriggerValue D6h GetTraceTriggerValue D7h 90

SetTraceVariable B6h GetTraceVariable B7h 164

SetVelocity 11h GetVelocity 4Bh 174

WriteBuffer C8h 176

Instruction Code Instruction Code Page
Juno Velocity & Torque Control IC Programming Reference 181

Instruction Summary Tables8
8.3 Numerical Listing
Code Instruction Page Code Instruction Page
00h NoOperation 74 60h GetDriveFaultParameter 116

01h GetProductInfo 61 62h SetDriveFaultParameter 116

02h SetMotorType 142 63h SetCommutationParameter 103

03h GetMotorType 142 64h GetCommutationParameter 103

06h SetCurrentLimit 140 65h SetOperatingMode 144

07h GetCurrentLimit 140 66h GetOperatingMode 144

0Bh GetSPIMode 65 69h GetMotorCommand 138

0Eh GetDriveStatus 48 6Ch ClearDriveFaultStatus 32

11h SetVelocity 174 6Dh GetDriveFaultStatus 46

12h SetCANMode 100 6Eh GetOutputMode 146

15h GetCANMode 100 6Fh CalibrateAnalog 31

1Dh GetCommandedPosition 44 70h GetDriveValue 50

1Eh GetCommandedVelocity 45 77h SetMotorCommand 138

23h SetDrivePWM 119 78h SetLoop 134

24h GetDrivePWM 119 79h GetLoop 134

28h GetTraceValue 69 7Ah InitializePhase 71

29h SetAnalogCalibration 88 7Eh SetDriveCommandMode 114

2Ah GetAnalogCalibration 88 7Fh GetDriveCommandMode 114

2Eh RestoreOperatingMode 83 85h SetPhaseParameter 149

2Fh SetInterruptMask 132 86h GetPhaseParameter 149

30h NVRAM 72 8Bh SetSerialPortMode 153

31h GetEventStatus 52 8Ch GetSerialPortMode 153

34h ResetEventStatus 82 8Fh GetVersion 70

35h ExecutionControl 35 90h SetAcceleration 84

36h GetCaptureValue 42 91h SetDeceleration 113

37h GetActualPosition 86 92h GetDeceleration 113

38h GetLoopValue 58 99h GetPositionError 60

39h Reset 78 A2h SetSignalSense 155

3Ah GetActiveMotorCommand 37 A3h GetSignalSense 155

3Bh SetSampleTime 151 A4h GetSignalStatus 64

3Ch GetSampleTime 151 A5h GetInstructionError 56

3Dh GetRuntimeError 63 A6h GetActivityStatus 40

3Eh GetTime 66 A7h GetCommandedAcceleration 43

41h SetCurrentFoldback 109 ACh ClearInterrupt 33

42h GetCurrentFoldback 109 ADh GetActualVelocity 41

43h SetCurrentControlMode 108 B0h SetTraceMode 157

44h GetCurrentControlMode 108 B1h GetTraceMode 157

47h ClearPositionError 34 B2h SetTraceStart 159

48h SetEventAction 125 B3h GetTraceStart 159

49h GetEventAction 125 B4h SetTraceStop 162

4Bh GetVelocity 174 B5h GetTraceStop 162

4Ch GetAcceleration 84 B6h SetTraceVariable 164

4Dh SetActualPosition 86 B7h GetTraceVariable 164

56h GetInterruptMask 132 B8h SetTracePeriod 158

57h GetActiveOperatingMode 38 B9h GetTracePeriod 158

5Ah GetFOCValue 54 BAh GetTraceStatus 68

5Eh SetCurrent 106 BBh GetTraceCount 67

5Fh GetCurrent 106 BEh SetActualPositionUnits 87
182 Juno Velocity & Torque Control IC Programming Reference

Instruction Summary Tables 8
BFh GetActualPositionUnits 87

C0h SetBufferStart 96

C1h GetBufferStart 96

C2h SetBufferLength 92

C3h GetBufferLength 92

C4h SetBufferWriteIndex 98

C5h GetBufferWriteIndex 98

C6h SetBufferReadIndex 94

C7h GetBufferReadIndex 94

C8h WriteBuffer 176

C9h ReadBuffer 76

CDh ReadBuffer16 77

D6h SetTraceTriggerValue 90

D7h GetTraceTriggerValue 90

DAh SetEncoderSource 121

DBh GetEncoderSource 121

DEh SetEncoderToStepRatio 123

DFh GetEncoderToStepRatio 123

E0h SetOutputMode 146

E2h SetCommutationMode 102

E3h GetCommutationMode 102

E4h SetPhaseInitializeMode 148

E5h GetPhaseInitializeMode 148

E8h SetPhaseCorrectionMode 147

E9h GetPhaseCorrectionMode 147

EFh ReadAnalog 75

F5h AdjustActualPosition 30

F6h SetFOC 130

F7h GetFOC 130

FBh SetFaultOutMask 128

FCh GetFaultOutMask 128

Code Instruction Page Code Instruction Page
Juno Velocity & Torque Control IC Programming Reference 183

Instruction Summary Tables8
This page intentionally left blank.
184 Juno Velocity & Torque Control IC Programming Reference

Juno Velocity & Torque Control IC Programming Reference 185

For additional information, or for technical assistance,
please contact PMD at (978) 266-1210.

You may also e-mail your request to support@pmdcorp.com

Visit our website at http://www.pmdcorp.com

Performance Motion Devices, Inc.
1 Technology Park Drive

Westford, MA 01886

	Table of Contents
	1. The Juno MC78113 IC Family
	1.1 Introduction
	1.2 Family Overview

	2. C-Motion
	2.1 Introduction
	2.2 C-Motion Versions
	2.3 Files
	2.4 Using C-Motion (PMD SDK)
	2.4.1 C-Motion Functions (PMD SDK)

	3. Visual Basic Interface
	3.1 Introduction
	3.2 Visual Basic Classes

	4. C# Interface
	4.1 Introduction
	4.2 Visual C# Classes

	5. Script Interface
	5.1 Introduction

	6. Non-Volatile (NVRAM) Storage
	6.1 Introduction
	6.1.1 PMD Structured Data Format
	6.1.2 PSF Data Segments
	6.1.3 Pre-Defined Segment Types
	6.1.4 Initialization Commands Segment Type
	6.1.5 Parameter List Segment Type
	6.1.5.1 Parameter Assignment Entry
	6.1.5.2 Using the ID Segment Mechanism

	6.1.6 User Defined Segment Types
	6.1.7 Complete Example PSF Memory Space

	7. Instruction Reference
	7.1 How to Use This Reference
	AdjustActualPosition F5h
	CalibrateAnalog 6Fh
	ClearDriveFaultStatus 6Ch
	ClearInterrupt ACh
	ClearPositionError 47h
	ExecutionControl 35h
	GetActiveMotorCommand 3Ah
	GetActiveOperatingMode 57h
	GetActivityStatus A6h
	GetActualVelocity ADh
	GetCaptureValue 36h
	GetCommandedAcceleration A7h
	GetCommandedPosition 1Dh
	GetCommandedVelocity 1Eh
	GetDriveFaultStatus 6Dh
	GetDriveStatus 0Eh
	GetDriveValue 70h
	GetEventStatus 31h
	GetFOCValue 5Ah
	GetInstructionError A5h
	GetLoopValue 38h
	GetLoopValue (cont.) 38h
	GetPositionError 99h
	GetProductInfo 1h
	GetRuntimeError 3Dh
	GetSignalStatus A4h
	GetSPIMode 0Bh
	GetTime 3Eh
	GetTraceCount BBh
	GetTraceStatus BAh
	GetTraceValue 28h
	GetVersion 8Fh
	InitializePhase 7Ah
	NVRAM 30h
	NoOperation 00h
	ReadAnalog EFh
	ReadBuffer C9h
	ReadBuffer16 CDh
	Reset 39h
	ResetEventStatus 34h
	RestoreOperatingMode 2Eh
	SetAcceleration 90h GetAcceleration 4Ch
	SetActualPosition 4Dh GetActualPosition 37h
	SetAnalogCalibration 29h GetAnalogCalibration 2Ah
	SetTraceTriggerValue D6h GetTraceTriggerValue D7h
	SetBufferLength C2h GetBufferLength C3h
	SetBufferReadIndex C6h GetBufferReadIndex C7h
	SetBufferStart C0h GetBufferStart C1h
	SetBufferWriteIndex C4h GetBufferWriteIndex C5h
	SetCANMode 12h GetCANMode 15h
	SetCommutationMode E2h GetCommutationMode E3h
	SetCommutationParameter 63h GetCommutationParameter 64h
	SetCurrent 5Eh GetCurrent 5Fh
	SetCurrent (cont.) 5Eh GetCurrent 5Fh
	SetCurrentControlMode 43h GetCurrentControlMode 44h
	SetCurrentFoldback 41h GetCurrentFoldback 42h
	SetCurrentLimit 06h GetCurrentLimit 07h
	SetDeceleration 91h GetDeceleration 92h
	SetDriveCommandMode 7Eh GetDriveCommandMode 7Fh
	SetDriveFaultParameter 62h GetDriveFaultParameter 60h
	SetDrivePWM 23h GetDrivePWM 24h
	SetDrivePWM (cont.) 23h GetDrivePWM 24h
	SetEncoderSource DAh GetEncoderSource DBh
	SetEncoderSource (cont.) DAh GetEncoderSource DBh
	SetEncoderToStepRatio DEh GetEncoderToStepRatio DFh
	SetEncoderToStepRatio (cont.) DEh GetEncoderToStepRatio DFh
	SetEventAction 48h GetEventAction 49h
	SetFaultOutMask FBh GetFaultOutMask FCh
	SetFOC F6h GetFOC F7h
	SetInterruptMask 2Fh GetInterruptMask 56h
	SetInterruptMask (cont.) 2Fh GetInterruptMask 56h
	SetLoop 78h GetLoop 79h
	SetMotorCommand 77h GetMotorCommand 69h
	SetCurrentLimit 06h GetCurrentLimit 07h
	SetMotorType 02h GetMotorType 03h
	SetOperatingMode 65h GetOperatingMode 66h
	SetOutputMode E0h GetOutputMode 6Eh
	SetPhaseCorrectionMode E8h GetPhaseCorrectionMode E9h
	SetPhaseInitializeMode E4h GetPhaseInitializeMode E5h
	SetPhaseParameter 85h GetPhaseParameter 86h
	SetPhaseParameter (cont.) 85h GetPhaseParameter 86h
	SetSampleTime 3Bh GetSampleTime 3Ch
	SetSerialPortMode 8Bh GetSerialPortMode 8Ch
	SetSignalSense A2h GetSignalSense A3h
	SetTraceMode B0h GetTraceMode B1h
	SetTracePeriod B8h GetTracePeriod B9h
	SetTraceStart B2h GetTraceStart B3h
	SetTraceStart (cont.) B2h GetTraceStart B3h
	SetTraceStop B4h GetTraceStop B5h
	SetTraceVariable B6h GetTraceVariable B7h
	SetVelocity 11h GetVelocity 4Bh
	WriteBuffer C8h

	8. Instruction Summary Tables
	8.1 Descriptions by Functional Category
	8.2 Alphabetical Listing
	8.3 Numerical Listing

