## ION Digital Drive User Manual



## PERFORMANCE MOTION DEVICES

## NOTICE

This document contains proprietary and confidential information of Performance Motion Devices, Inc., and is protected by federal copyright law. The contents of this document may not be disclosed to third parties, translated, copied, or duplicated in any form, in whole or in part, without the express written permission of PMD.

The information contained in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form, by any means, electronic or mechanical, for any purpose, without the express written permission of PMD.

Copyright 1998-2020 by Performance Motion Devices, Inc.
Juno, Atlas, Magellan, ION, Prodigy, Pro-Motion, C-Motion and VB-Motion are trademarks of Performance Motion Devices, Inc.

## Warranty

Performance Motion Devices, Inc. warrants that its products shall substantially comply with the specifications applicable at the time of sale, provided that this warranty does not extend to any use of any Performance Motion Devices, Inc. product in an Unauthorized Application (as defined below). Except as specifically provided in this paragraph, each Performance Motion Devices, Inc. product is provided "as is" and without warranty of any type, including without limitation implied warranties of merchantability and fitness for any particular purpose.

Performance Motion Devices, Inc. reserves the right to modify its products, and to discontinue any product or service, without notice and advises customers to obtain the latest version of relevant information (including without limitation product specifications) before placing orders to verify the performance capabilities of the products being purchased. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement and limitation of liability.

Unauthorized Applications
Performance Motion Devices, Inc. products are not designed, approved or warranted for use in any application where failure of the Performance Motion Devices, Inc. product could result in death, personal injury or significant property or environmental damage (each, an "Unauthorized Application"). By way of example and not limitation, a life support system, an aircraft control system and a motor vehicle control system would all be considered "Unauthorized Applications" and use of a Performance Motion Devices, Inc. product in such a system would not be warranted or approved by Performance Motion Devices, Inc..

By using any Performance Motion Devices, Inc. product in connection with an Unauthorized Application, the customer agrees to defend, indemnify and hold harmless Performance Motion Devices, Inc., its officers, directors, employees and agents, from and against any and all claims, losses, liabilities, damages, costs and expenses, including without limitation reasonable attorneys' fees, (collectively, "Damages") arising out of or relating to such use, including without limitation any Damages arising out of the failure of the Performance Motion Devices, Inc. product to conform to specifications.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent procedural hazards.

## Disclaimer

Performance Motion Devices, Inc. assumes no liability for applications assistance or customer product design. Performance Motion Devices, Inc. does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of Performance Motion Devices, Inc. covering or relating to any combination, machine, or process in which such products or services might be or are used. Performance Motion Devices, Inc.'s publication of information regarding any third party's products or services does not constitute Performance Motion Devices, Inc.'s approval, warranty or endorsement thereof.

## Patents

Performance Motion Devices, Inc. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Patents and/or pending patent applications of Performance Motion Devices, Inc. are listed at https://www.pmdcorp.com/company/patents.

## Related Documents

## Magellan Motion Control IC User Guide

Complete description of the Magellan Motion Control IC features and functions with detailed theory of its operation.

## Magellan Motion Control IC Programming Reference

Descriptions of all Magellan Motion Control IC commands, with coding syntax and examples, listed alphabetically for quick reference.

## Table of Contents

1. Introduction ..... 9
1.1 Overview of ION Digital Drives ..... 9
1.2 Features and Functions ..... 9
2. Installation ..... 11
2.1 ION 500 Part Numbers and Configurations ..... 11
2.2 ION 3000 Part Numbers ..... 12
2.3 ION Developer Kits ..... 12
2.4 Recommended Hardware ..... 13
2.5 ION Hardware Configuration and Mounting ..... 14
2.6 Connector Pinouts and Wiring ..... 15
2.7 Software Installation ..... 28
2.8 Communications Configuration ..... 30
2.9 Applying Power ..... 32
2.10 Status LEDs ..... 32
2.11 First-Time System Verification ..... 32
3. Operation ..... 41
3.1 ION Block Diagram ..... 41
3.2 Communication Ports ..... 42
3.3 PWM Power Stage ..... 45
3.4 DC Bus ..... 50
3.5 Trace Buffer ..... 52
3.6 Operational and Fault Modes ..... 52
3.7 Magellan Motion Control IC Functions ..... 54
3.8 Communications ..... 54
3.9 Communicating with Serial or CANbus IONs ..... 55
3.10 Communicating with Ethernet/Serial IONs ..... 55
4. Options and Accessories ..... 59
4.1 Stub Cable Set ..... 59
4.2 Developer Kit Cable and Plug Specifications. ..... 61
5. Electrical Signal Interfacing ..... 65
5.1 Motor Feedback. ..... 65
5.2 Auxiliary Position Input ..... 67
5.3 Limit and Home Inputs ..... 68
5.4 Position Capture Sources ..... 68
5.5 AxisIn and AxisOut Signals ..... 69
5.6 /Enable and FaultOut Signals ..... 71
6. ION $\mathbf{5 0 0}$ Specifications ..... 75
6.1 ION 500 Drive Ratings ..... 75
6.2 ION 500 Controller Performance ..... 75
6.3 ION 500 Electrical ..... 76
6.4 ION 500 Protection Circuits ..... 77
6.5 ION 500 Connectors and Pinouts ..... 77
6.6 ION 500 Mechanical ..... 80
6.7 ION 500 Environmental ..... 81
6.8 ION 500 Safety and Compliance ..... 81
6.9 ION 500 Thermal Operating Curves. ..... 81
7. ION 3000 Specifications ..... 83
7.1 ION 3000 Drive Ratings ..... 83
7.2 ION 3000 Controller Performance ..... 83
7.3 ION 3000 Electrical. ..... 85
7.4 ION 3000 Protection Circuits ..... 86
7.5 ION 3000 Connectors and Pinouts ..... 86
7.6 ION 3000 Mechanical ..... 88
7.7 ION 3000 Environmental ..... 88
7.8 ION 3000 Safetly and Compliance ..... 88
7.9 ION 3000 Thermal Operating Curves ..... 90

## List of Figures

2-1 Connector Locator ..... 15
2-2 Left Connector Views ..... 16
2-3 Left Connector Views ..... 17
2-4 Typical Power Wiring ..... 17
2-5 Typical Motor Wiring ..... 18
2-6 Recommended Feedback Wiring ..... 19
2-7 Recommended Auxiliary Encoder Wiring ..... 20
2-8 Single Encoder Mode Connections ..... 21
2-9 Dual Encoder Mode Connections ..... 22
2-10 Pulse \& Direction Mode Connections ..... 23
2-11 Typical I/O Wiring ..... 24
2-12 RS232/485 Wiring ..... 25
2-13 RS232/485 Wiring for RJ45 ..... 27
2-14 Ethernet/Serial ION Serial Port Connection ..... 31
3-1 ION Block Diagram ..... 42
3-2 Simplified Ethernet Circuit Diagram ..... 43
3-3 Simplified Serial Port on Ethernet Unit Circuit Diagram ..... 43
3-4 Simplified Serial Transceiver Diagram ..... 44
3-5 Simplified CAN Circuit Diagram ..... 45
5-1 Main Encoder Input Circuits ..... 65
5-2 Encoder Phasing Diagram ..... 66
5-3 Ethernet/Serial ION Hall Input Circuits ..... 66
5-4 Ethernet/Serial ION Limit and Home Circuit ..... 67
5-5 Auxiliary Encoder Input Circuits ..... 67
5-6 Limit and Home Input Circuits ..... 68
5-7 Ethernet/Serial ION High Speed Capture Circuit ..... 68
5-8 High Speed Capture ..... 69
5-9 Ethernet/Serial ION AxisIn Circuit ..... 69
5-10 Axisln Circuit ..... 70
5-11 Ethernet/Serial ION AxisOut Circuit ..... 70
5-12 AxisOut Circuit ..... 71
5-13 Ethernet Serial ION AxisOut Circuit ..... 71
5-14 Enable Input Circuit ..... 72
5-15 Ethernet/Serial ION/Enable Input Circuit ..... 72
5-16 FaultOut Circuit ..... 73
5-17 Ethernet/Serial ION FaultOut Circuit ..... 73
6-1 ION 500 Dimensions ..... 80
6-2 ION 500 Derating Curve for DC Brush Module ..... 81
6-3 ION 500 Derating Curves for Brushless DC Module ..... 82
6-4 ION 500 Derating Curves for Step Motor Module ..... 82
7-1 ION 3000 Dimensions ..... 89
7-2 BLDC Output Current vs Bus Voltage at 40oC Ambient ..... 90
7-3 BLDC Output Current vs Temperature with 48V Input ..... 90
7-4 BLDC Output Current vs Temperature with 180V Input ..... 91
7-5 DC Brush Output Current vs Bus Voltage at 40oC Ambient ..... 91
7-6 DC Brush Output Current vs Temperature with 48V Input ..... 92
7-7 DC Brush Output Current vs Temperature with 180V Input ..... 92
7-8 Microstepping Output Current vs Bus Voltage at 40oC Ambient ..... 93
7-9 Microstepping Output Current vs Temperature with 48V Input ..... 93
7-10 Microstepping Output Current vs Temperature with 180V Input ..... 94

This page intentionally left blank.

## 1. Introduction

## In This Chapter

\author{

- ION Digital Drive Overview <br> - Features and Functions
}


### 1.1 Overview of ION Digital Drives

The ION Digital Drives are a family of single-axis motion controllers with integrated power electronics and network communications. Various models are available to drive DC brush, brushless DC, and step motors. In addition, two overall power levels are available: The ION 500 , providing up to 500 watts of power output, and the ION 3000, providing up to 3,000 watts of power output.

ION digital drives are based on PMD's Magellan Motion Control IC technology and perform profile generation, encoder position feedback, position servo compensation, step motor stall detection, brushless DC motor commutation, microstep generation, digital current/torque control, and more. Network communication options include Ethernet, CANbus, RS485, and RS232.

All members of the ION family have integrated, high-power drive stages which fully protect from overcurrent, undervoltage, overvoltage, overtemperature, and short-circuit faults. In addition to extensive motion I/O capability, ION also features Auxiliary Encoder inputs and dedicated Enable input and Fault output safety interlocks.

In addition to various configurations of motor type and power level, the ION family is split into two functional versions. The standard IONs provide network connectivity, profile generation, and torque control. The CME IONs provide the additional capability of an internal C-Motion Engine, allowing user code to reside inside the ION. In addition, this version provides an indexer connector for enhanced I/O functionality.

This manual describes the features and functions of the standard ION Digital Drives. For information on the CME versions of the ION, refer to the ION/CME Digital Drive User Manual. For more information on the Magellan Motion Control IC and its software command set, refer to the Magellan Motion Control IC User Guide and the Magellan Motion Control IC Programming Reference.

### 1.2 Features and Functions

At the heart of ION is the Magellan Motion Control IC. This enhanced member of the Magellan family provides an extensive list of motion control functions, including:

- Host communications over Ethernet, RS232, RS485, or CANbus
- Trajectory generation, including trapezoidal and S-curve point-to-point profiling, velocity contouring, and electronic gearing modes
- Advanced PID position loop with integration limit, derivative sample time, velocity and acceleration feedforward, output bias, dual biquad filters, and support for dual encoder feedback
- Two encoder input channels capable of up to 10 Mcounts per second
- Sinusoidal and six-step (Hall) brushless DC commutation modes
- Microstepping outputs with up to 256 microsteps per step
- Digital current loop with choice of standard A/B or Field Oriented Control (FOC) for both brushless DC and step motors
- Single phase current loop for DC brush motors
- Pulse and direction input (ION 3000 only)

The ION module adds power electronics and signal conditioning circuitry to create a complete digital drive with these key features:

- High-efficiency MOSFET power stages with versions for single-phase brush DC motors, two-phase step motors, and three-phase brushless DC motors
- $I^{2} t$ current foldback limiting
- Selectable 20 kHz and 40 kHz PWM frequencies to support a broad range of motor inductance
- Overcurrent, short circuit, overvoltage, undervoltage, and overtemperature protection
- Single supply operation. An onboard DC/DC converter supplies all internal circuitry and also provides 5 V for encoders and other external $\mathrm{I} / \mathrm{O}$.
- Enable input and Fault output safety interlock
- Differential or single-ended encoder input buffers for all encoder channels
- Signal conditioning buffers and analog filters on all I/O signals

ION comes packaged in a rugged enclosure with flexible mounting options and reliable signal and power connectors. ION is fully RoHS compliant and CE marked.

ION 3000 is certified by Underwriters Laboratories (UL).

## 2. Installation

## In This Chapter

- ION 500 Part Numbers and Configurations
- ION 3000 Part Numbers
- ION Developer Kits
- Recommended Hardware
- ION Hardware Configuration and Mounting
- Connector Pinouts and Wiring
- Software Installation

Communications Configuration
Applying Power
Status LEDs
First-Time System Verification

### 2.1 ION 500 Part Numbers and Configurations

The following table shows the available part numbers and associated configurations for the ION 500 .

| Model Number | Motor Type | Communications <br> Port | Comments |
| :--- | :--- | :--- | :--- |
| DDI3IS0056/I5 | Brushless DC | Serial |  |
| DDI3IC0056/I5 | Brushless DC | CANbus |  |
| DDI3ID0056/I5 | Brushless DC | Ethernet/Serial |  |
| DD33ID0056/I5 | Brushless DC | Ethernet/Serial | CME Version |
| DDIIIS0056/I5 | DC Brush | Serial |  |
| DDIIIC0056/I5 | DC Brush | CANbus |  |
| DDIIID0056/I5 | DC Brush | Ethernet/Serial |  |
| DD3IID0056/I5 | DC Brush | Ethernet/Serial | CME Version |
| DDI4IS0056/I5 | Step Motor | Serial |  |
| DDI4IC0056/I5 | Step Motor | CANbus |  |
| DDI4ID0056/I5 | Step Motor | Ethernet/Serial |  |
| DD34ID0056/I5 | Step Motor | Ethernet/Serial | CME Version |

### 2.2 ION 3000 Part Numbers

The following table shows the part numbers and associated configurations for the ION 3000.

| Model Number | Motor Type | Communications <br> Port | Comments |
| :--- | :--- | :--- | :--- |
| DDI3IS0195/30 | Brushless DC | Serial |  |
| DDI3IC0195/30 | Brushless DC | CANbus |  |
| DDIIIS0195/30 | DC Brush | Serial |  |
| DDIIIC0195/30 | DC Brush | CANbus |  |
| DDI4IS0195/30 | Step Motor | Serial |  |
| DDI4IC0195/30 | Step Motor | CANbus |  |

### 2.3 ION Developer Kits

To facilitate initial system development and integration, PMD offers a developer kit for IONs.
The following software and accessory products are included in the ION Developer Kit:

- Pro-Motion Windows-based exercisor software
- C-Motion SDK
- PDFs of all ION documentation
- Communications cable (Ethernet, CANbus, or Serial, depending on DK ordered)
- Stub cable set - a complete set of cables with matching ION connectors on one end and flying leads on the other

For more information on these accessory products, refer to Chapter 4, Options and Accessories.

### 2.3.1 Developer Kit Part Numbers

There are six different ION Developer Kit P/Ns. The difference between these six DKs stem from differences in host connection cabling or other connectors for the various types of ION Digital Drive units offered.

Note that the contents of the ION DKs do not include the ION Digital Drive unit itself. The DKs include cables and other items that are useful to prototype with ION Digital Drives. But the ION Digital Drive itself is ordered separately.

The following table shows which DKs should be used with each ION 500 Digital Drive part number.

| ION P/N | Corresponding <br> Developer Kit P/N | ION type | Host Comm |
| :--- | :--- | :--- | :--- |
| DDI3IS0056/I5 | DKIXIS0056/I5 | ION 500 | Serial |
| DDIIIS0056/I5 | DKIXIS0056/I5 | ION 500 | Serial |
| DDI4IS0056/I5 | DKIXIS0056/I5 | ION 500 | Serial |
| DDI3IC0056/I5 | DKIXIC0056/I5 | ION 500 | CANbus |
| DDIIIC0056/I5 | DKIXIC0056/I5 | ION 500 | CANbus |
| DDI4IC0056/I5 | DKIXIC0056/I5 | ION 500 | CANbus |
| DDI3ID0056/I5 | DKIXID0056/I5 | ION 500 | Ethernet/Serial |
| DDIIID0056/I5 | DKIXID0056/I5 | ION 500 | Ethernet/Serial |
| DDI4ID0056/I5 | DKIXID0056/I5 | ION 500 | Ethernet/Serial |
| DD33IC0056/I5 | DK3XID0056/I5 | ION/CME 500 | Ethernet/Serial |
| DD3IIC0056/I5 | DK3XID0056/I5 | ION/CME 500 | Ethernet/Serial |
| DD34IC0056/I5 | DK3XID0056/I5 | ION/CME 500 | Ethernet/Serial |

### 2.3.2 ION 3000

The following table shows which DKs should be used with each ION 3000 Digital Drive part number:

| ION P/N | Corresponding <br> Developer Kit P/N | ION type | Host Comm |
| :--- | :--- | :--- | :--- |
| DDI3ISOI95/30 | DKIXISOI95/30 | ION 3000 | Serial |
| DDIISOI95/30 | DKIXISOI95/30 | ION 3000 | Serial |
| DDI4IS0I95/30 | DKIXISOI95/30 | ION 3000 | Serial |
| DDI3IC0I95/30 | DKIXIC0I95/30 | ION 3000 | CANbus |
| DDIIIC0I95/30 | DKIXIC0I95/30 | ION 3000 | CANbus |
| DDI4IC0I95/30 | DKIXIC0I95/30 | ION 3000 | CANbus |

### 2.4 Recommended Hardware

To install an ION Digital Drive, the following hardware is required:

- Intel (or compatible) processor, 1 Gbyte of available disk space, 256 MB of available RAM, and a CD ROM drive. The supported PC operating systems are Windows XP, Vista, Windows 7, and Windows 8.
- A serial port for RS232 serial communication
- An Ethernet port for Ethernet communications
- For RS485 or CANbus communications, a PCI card, PCMCIA card, or USB adapter supporting the desired standard connected to the PC
- Properly sized DC bus power supply
- Step, DC brush, or brushless DC motor, with encoder corresponding to the ION type you are using.
- Cables. Either the stub cable set that comes with ION Developer Kits or custom cables designed for the system.


### 2.5 ION Hardware Configuration and Mounting

There are no user-settable switches, jumpers, or potentiometers within the ION module. All hardware features are configurable from the host computer via the communications port.

### 2.5.1 ION 500 Mounting Options

| Cooling Method | Recommended <br> Orientation | Recommended <br> Mounting Surface | Mounting Method |
| :--- | :--- | :--- | :--- | | Coldplate | Any | Either | Horizontal -4 screws <br> Vertical -2 screws |
| :--- | :--- | :--- | :--- |
| Convection | Vertical | Back (small side) | 2 screws |
| Forced Air | Any | Either | 2 or 4 screws, or DIN rail adapter |

Refer to Section 6.6, "ION 500 Mechanical" for information on mounting dimensions and mounting hole sizes for the ION 500.

### 2.5.2 ION 3000 Mounting Options

| Cooling Method | Recommended Orientation | Recommended Mounting Surface | Mounting Method |
| :---: | :---: | :---: | :---: |
| Coldplate | Any | Either | Horizontal - 4 screws Vertical-2 screws |
| Convection | Vertical | Back (small side) | 2 screws |
| Forced Air | Any | Either | 2 or 4 screws |

Refer to Section 7.6, "ION 3000 Mechanical" for information on mounting dimensions and mounting hole sizes for the ION 3000.

To minimize electrical noise problems, the metal base of the ION enclosure should be grounded. This is usually accomplished automatically when the module is mounted to a metal part of a grounded system. When mounted to a non-conductive or non-grounded surface, one of the free mounting holes can be used to attach a ground strap.

### 2.6 Connector Pinouts and Wiring

### 2.6.1 Connector Locator



Figure 2-1:

ION 500 with Ethernet Communications


ION 500 with Serial Communications


Figure 2-2: Left Connector Views


### 2.6.2 Motor/Module Type Quick Reference

The following table summarizes the recommended connections for the various motor types and the corresponding ION modules:

| Module Type | Connector | Required Signals | Optional Signals |
| :---: | :---: | :---: | :---: |
| All | Power | +HV, Pwr_Gnd | AuxV |
| DC brush | Motor | Motor+, Motor-, Case/Shield |  |
|  | Feedback | Main encoder (Quad A+, Quad A-, Quad B+, Quad B-, Index+, Index-), IO_Gnd, Shield | $1 \mathrm{O}_{-5}$ |
| Brushless DC | Motor | Motor A, Motor B, Motor C, Case/Shield |  |
|  | Feedback | Main encoder (Quad A+, Quad A-, Quad B+, Quad B-, Index+, Index-), IO_Gnd, Shield | Commutation (Hall A, Hall B, Hall C), IO_5V |
| Microstepping | Motor | Motor A+, Motor A-, Motor B+, Motor B-, Case/Shield |  |
|  | Feedback |  | Main encoder (Quad A+, Quad A-, Quad B+, Quad B-, Index+, Index-), <br> $1 O_{-}$Gnd, $1 O_{-} 5 \mathrm{~V}$, Shield |
| All | Auxiliary |  | Auxiliary encoder (Quad A+, Quad A-, Quad B+, Quad B-), IO_Gnd, IO_5V, Shield, Pulse and Direction input (ION 3000 only; Pulse+, Pulse-, Direction+, Direction-) |
| All | I/O | /Enable, IO_Gnd | +Limit, -Limit, Home, High Speed Capture, AxisIn, AxisOut, FaultOut, IO_5V, Shield |
| Serial | Comm | RS232: Tx, Rx, IO_Gnd, Select |  |
|  |  | $\begin{aligned} & \text { RS485: Select, Tx+, Tx-, Rx+, Rx-, } \\ & \text { IO_Gnd } \end{aligned}$ |  |


| CAN | Comm | CAN_H, CAN_L, CAN_Gnd | CAN_Shield, CAN_V |
| :--- | :--- | :--- | :--- |
| Ethernet | Comm | Tx+, Tx-, Rx+, Rx- |  |

### 2.6.3 Power Connector



| Pin | Signal |
| :--- | :--- |
| 1 | +HV |
| 2 | AuxV |
| 3 | Pwr_Gnd |

This connector supplies the main DC power to the ION module. To minimize the voltage drop between the DC power supply and the ION power connector, ION 3000 s should be wired with 14 AWG wire. ION 500s should be wired with 16 AWG wire. ION has a built-in DC/DC converter that derives all required internal voltages from the main DC bus. A separate logic supply is not required. This DC/DC converter also provides $\mathrm{IO} \_5 \mathrm{~V}$ for powering encoders, limit switches, and other system I/O.

As an additional safety feature, ION provides a separate Auxiliary Voltage ( $A u x V$ ) input that can be used to power just this $\mathrm{DC} / \mathrm{DC}$ converter without powering the main DC bus and the output stage. When the AuxV is not connected, power for the DC/DC converter comes from the main $+H V$ input. See Figure 2-4.

A (transformer) isolated power supply should be used for powering ION. The return of this power supply should be grounded. The size of the power supply has to meet the load requirement. If a regulated power supply is used, care should be taken to make sure the power supply can sustain the regenerated power. If a diode is used, the input capacitor should be able to hold the regenerated power without triggering ION into overvoltage protection.


Pin 3 of the power connector (Pwr_Gnd) should be connected to earth ground as shown in_Figure 2-4.

Figure 2-4: Typical Power Wiring

## $\triangle$

### 2.6.4 Motor Connector



ION 500
Pin 1

| Pin | DC Brush | Brushless DC | Step |
| :--- | :--- | :--- | :--- |
| 1 | Motor+ | Motor A (U) | Motor A+ |
| 2 | Motor- (ION 3000) | Motor B (V) | Motor A- |
| 3 | Motor- (ION 500) | Motor C (W) | Motor B+ |
| 4 | No connect | No connect | Motor B- |
| 5 | Case/Shield | Case/Shield | Case/Shield |

This connector is used to connect the ION module to the motor. Depending on the type of motor being driven, up to five connections are required. It should be wired with 16 AWG wire (ION 500) or 14 AWG wire (ION 3000) to minimize voltage drops between the ION drive and the motor. The use of shielded cable is recommended to minimize noise (Figure 2-5).

ION 3000

Figure 2-5:
Typical Motor Wiring


For best performance, the dedicated case connection should run within the cable shield. If the motor does not come with a case wire or other dedicated case connection, a lug under a motor mounting screw can be used. Pin 5, Case/Shield, is connected to Pwr_Gnd (Pin 3 on the Power Connector).

The shield drain wire should be connected at the ION module connector end only.

### 2.6.5 Feedback Connector



| Pin | DC Brush | Brushless DC | Step |
| :--- | :--- | :--- | :--- |
| 1 | Shield | Shield | Shield |
| 2 | IO_Gnd | IO_Gnd | IO_Gnd |
| 3 | IO_5V | IO_5V | IO_5V |
| 4 | Not used | Hall A | Not used |
| 5 | Not used | Hall B | Not used |
| 6 | Not used | Hall C | Not used |
| 7 | Quad A+ | Quad A+ | Quad A+ |
| 8 | Quad A- | Quad A- | Quad A- |
| 9 | Quad B+ | Quad B+ | Quad B+ |
| 10 | Quad B- | Quad B- | Quad B- |
| 11 | Index+ | Index+ | Index+ |
| 12 | Index- | Index- | Index- |

This connector is used to wire the signals from the main feedback encoder to the ION module. For brushless DC motors, it also connects the Hall Effect signals typically used to commutate the motor. The Halls are not used with DC brush or step motors.

ION directly supports quadrature encoders with either single-ended or differential outputs. 10 _ 5 V and 10 _Gnd are provided to power the encoder and Hall Effect transducers. This connector supports wire gauges from 20 to 30 AWG, depending on the crimp terminal used. Wiring with 22 AWG shielded cable is recommended. For differential encoders, twisted-pair cable should be used. Figure 2-6 shows recommended feedback wiring.


Figure 2-6: Recommended Feedback Wiring

The shield drain wire should be connected at the ION module connector end only.

### 2.6.6 Auxiliary Connector



| Pin | Signal |
| :--- | :--- |
| 1 | Shield |
| 2 | IO_Gnd |
| 3 | IO_5V |
| 4 | No connect |
| 5 | Quad A+ or Pulse+ (pulse input available on ION 3000 and <br> Ethernet/Serial ION 500) |
| 6 | Quad A- or Pulse- (pulse input available on ION 3000 and Ether- <br> net/Serial ION 500) |
| 7 | Quad B+ or Direction+ (direction input available on ION 3000 <br> and Ethernet/Serial ION 500) |
| 8 | Quad B- or Direction- (direction input available on ION 3000 <br> and Ethernet/Serial ION 500) |

ION provides a second quadrature encoder port for use as a master in master-slave and electronic gearing applications or, for the ION 3000 and Ethernet/Serial ION 500, a pulse and direction input for use in electronic gear applications. As on the main encoder port, ION supports both single-ended and differential signal input. This connector supports wire gauges from 20 to 30 AWG, depending on the crimp terminal used. Wiring with 22 AWG twisted-pair shielded cable is recommended (Figure 2-7).


The shield drain wire should be connected at the ION module connector end only.

### 2.6.6.1 Single Encoder Connections Summary

ION can be connected to feedback encoders in both a single and a dual encoder configuration. Dual encoder input may be useful for general purpose auxiliary encoder position feedback, master/slave electronic gear operation, or dual loop servo filter operation. See the Magellan Motion Control IC User Guide for more information on these control modes.

Figure 2-8 and the table that follows it summarize the connections for a single encoder


Single Encoder Mode

| Connection from <br> Encoder | ION Connector | Pin | ION Pin |
| :--- | :--- | :--- | :--- |
| Quadrature A+ | Feedback | 7 | Quad A+ |
| Quadrature A- | Feedback | 8 | Quad A- |
| Quadrature B+ | Feedback | 9 | Quad B+ |
| Quadrature B- | Feedback | 10 | Quad B- |
| Index+ | Feedback | II | Index+ |
| Index- | Feedback | 12 | Index- |
| Hall A* | Feedback | 4 | Hall A |
| Hall B* | Feedback | 5 | Hall B |
| Hall C* | Feedback | 6 | Hall C |

*Brushless DC motors only

### 2.6.6.2 Dual Encoder Connections Summary

In a two-encoder connection, one encoder measures the load position and is the primary encoder. The second (auxiliary) encoder is located on the motor shaft, measures the motor position, and is used for stabilization. Figure 2-9 and the table that follows show how to connect two encoders to the ION.

Figure 2-9: Dual Encoder Mode Connections


| Connection from <br> Encoder | ION Connector | Pin \# | ION Pin |
| :--- | :--- | :--- | :--- |
| From primary encoder |  | 7 |  |
| Quadrature A+ | Feedback | Feedback | 8 |
| Quadrature A- | Feedback | 9 | Quad A+ |
| Quadrature B+ | Feedback | 10 | Quad A- |
| Quadrature B- | Feedback | II | Quad B- |
| Index+ | Feedback | 12 | Index+ |
| Index- |  |  | Index- |
| From auxiliary encoder | Auxiliary | 5 |  |
| Quadrature A+ | Auxiliary | 6 | Quad A+ |
| Quadrature A- | Auxiliary | 7 | Quad A- |
| Quadrature B+ | Auxiliary | 8 | Quad B+ |
| Quadrature B- | I/O | Feedback | 11 |
| Index+* | Feedback | 5 | Quad B- |
| Hall A** | Feedback | 6 | High Speed Capture |
| Hall B** | 6 | Hall A |  |
| Hall C** | Hall B |  |  |

* For brushless DC motors, an Index signal from the auxiliary encoder is recommended when Hall sensors are not available. For all other configurations, use of the ION's High Speed Capture signal input is optional.
** Brushless DC motors only


### 2.6.6.3 Pulse \& Direction Input Connection Summary (ION 3000 and Ethernet/Serial ION 500)

With ION 3000 and Ethernet/Serial ION 500, it is possible to command the position of the drive using pulse \& direction input signals. This mode can be used with all motor types, DC Brush, Brushless DC, and step motor, and allows the ION to interface to any general purpose motion controller that outputs pulse \& direction position information. See Figure 2-10.

Operation of the ION in pulse \& direction input mode is software selectable. To enter this mode the encoder source for axis \#2 should be set to pulse \& direction, and the profile mode should be set to electronic gear. See the Magellan Motion Control IC User Guide for more information. Alternatively these control settings can be applied via PMD's Pro-Motion exercisor software.


To connect to the ION in this configuration, use the following connections:

| Connection from <br> Encoder | ION Connector | Pin \# | ION Pin |
| :--- | :--- | :--- | :--- |
| Pulse \& Direction input |  |  |  |
| Pulse+ | Auxiliary | 5 | Pulse+ |
| Pulse- | Auxiliary | 6 | Pulse- |
| Direction+ | Auxiliary | 7 | Direction+ |
| Direction- | Auxiliary | 8 | Direction- |
| Encoder input (optional if controlling step motor) |  |  |  |
| Quadrature A+ | Feedback | 7 | Quad A+ |
| Quadrature A- | Feedback | 8 | Quad A- |
| Quadrature B+ | Feedback | 9 | Quad B+ |
| Quadrature B- | Feedback | 10 | Quad B- |
| Index+ | Feedback | 11 | Index+ |
| Index- | Feedback | 12 | Index- |
| Hall A* | Feedback | 4 | Hall A |
| Hall B* | Feedback | 5 | Hall B |
| Hall C* | Feedback | 6 | Hall C |

* Brushless DC motors only


### 2.6.7 I/O Connector



Figure 2-11: Typical I/O Wiring

This connector is used to wire motion-specific I/O signals such as overtravel limits, home reference, and high speed capture input as well as the general-purpose AxisIn and AxisOut signals. It also has pins for the master /Enable input and FaultOut signals. Numerous $10 \_5 \mathrm{~V}$ and $I O_{-} G n d$ connections are provided to simplify wiring.

This connector supports wire gauges from 20 to 30 AWG, depending on the crimp terminal used. Wiring with 22 AWG shielded cable is recommended. Figure 2-11 shows typical I/O wiring.


### 2.6.8 Ethernet Connector



| Pin | Signal |
| :--- | :--- |
| 1 | Txt + |
| 2 | Txt- |
| 3 | Rx + |
| 4 | Unused |
| 5 | Unused |
| 6 | Rx- |
| 7 | Unused |
| 8 | Unused |

ION has a standard, 8-pin, 8P8C-type (RJ45) connector for Ethernet connection. Standard UTP (unshielded twisted pair) CAT5 Ethernet cabling can be used in most applications. For added noise immunity, use shielded cable.

### 2.6.9 Serial RS232/485 Connector

### 2.6.9.1 Serial ION RS232/485

On a serial ION, communication interface is a DB9M connector.


This DB9M connector has a combination pinout that supports both RS232 and RS485 serial communications. Pin 1 is used to select between the two serial types. For RS232, pin 1 must be left floating. For RS485, pin 1 must be strapped to IO_Gnd.

For RS485, ION supports both 4 -wire and 2 -wire configurations. To use 2 -wire network cabling, connect $R x+$ to $T x+$ and $R x$ - to $T x$ - at the ION serial connector.
ion does not have built-in termination for RS485. If a network application requires termination at the ION serial connector, the resistors must be added in the network wiring.

Figure 2-12 shows RS232 and 485 wiring.


Figure 2-12: RS232/485
Wiring

### 2.6.9.2 Ethernet/Serial ION RS232/485

An RJ45 type connector provides serial connectivity on the Ethernet/Serial IONs (P/Ns DDIXID0056/15). Similar to the DB9 version, the RJ45 version of the serial connector can support RS232, RS485 full duplex, and RS485 half duplex. Pinouts for these serial protocols are given in the table below.


| Pin | RS232 | RS485 (full duplex) | RS485 (half duplex) |
| :---: | :---: | :---: | :---: |
| 1 | Unused | Unused | Unused |
| 2 | Unused | Unused | Unused |
| 3 | SrIRcv | RS485Rcv ${ }^{+}$ |  |
| 4 | Unused | RS485Xmt ${ }^{+}$ | Unused |
| 5 | SrlXmt | RS485 $\mathrm{Xmt}^{-}$ |  |
| 6 | Unused | RS485Rcv ${ }^{-}$ | Unused |
| 7 | IO_Gnd | IO_Gnd | IO.Gnd |
| 8 | Select $=$ Float/High | Select = low | Select = low |

Figure 2-13: RS232/485 Wiring for RJ45

For RS232, pin 1 must be left floating. For RS485, pin 1 must be connected to IO_Gnd. To select half duplex RS485 vs full duplex Pro-Motion can be used, or the PRP SetDefault command can be used. Note that a change of either of these comm settings will not properly take effect until after a power on or reset of the ION unit.

### 2.6.10 CANbus Ports



| Pin | Signal |
| :--- | :--- |
| 1 | CAN_H |
| 2 | CAN_L |
| 3 | CAN_Gnd |
| 4 | Reserved |
| 5 | Reserved |
| 6 | CAN_Shield |
| 7 | CAN_Gnd |
| 8 | CAN_V |

The CANbus version of ION has a dual RJ45 connector to allow daisy-chaining of IONs in a CANbus network. All pins in each port are connected to the corresponding pin the in the other port. CAN_Shield, CAN_V and the two Reserved pins are not used by ION but are passed through from one port to the other. When the ION module is the last node of a CANbus network, the network can be terminated by plugging a RJ45 terminator into the unused port.

Standard UTP (unshielded twisted pair) CAT5 Ethernet cabling can be used in most CANbus applications. For added noise immunity, shielded cable can be used with the shield routed through the CAN_Shield pins.

### 2.7 Software Installation

The software distribution for the ION Digital Drive developer kit is downloaded from the PMD website at the URL: https://www.pmdcorp.com/resources/software.

All software applications are designed to work with Microsoft Windows.
To install the software:
1 Go to the Software Downloads section of PMD's website located at https://www.pmdcorp.com/ resources/software and select download for "Developer Kit Software."

2 After selecting download you will be prompted to register your DK and provide information about you and your motion application.

3 After selecting submit the next screen will provide a link to the software download. Select this link and downloading will begin.

4 Once the download is complete extract the zip file and execute the desired install programs from the list below. Every first-time installation should install Pro-Motion, and at least one of the two SDK options. However you may install both SDKs if desired. When installing the SDKs you will be given the option to download the documentation and/or the complete SDK content.

- Pro-Motion - an application for communicating to, and exercising PMD ICs, modules, or cards.
- PMD SDK - a software development kit for creating motion applications using the $\mathrm{C} / \mathrm{C}++$ programming languages. Also contains PDF versions* of all PMD product documentation.
- CME SDK - a software development kit for creating motion applications using the .NET (C\#, VB) programming languages. Also containsPDF versions* of all PMD product documentation.
*Adobe Acrobat Reader is required for viewing these files. If the Adobe Acrobat Reader is not installed on your computer, it may be freely downloaded from http://www.adobe.com.

Here is more information on each of these software packages:

### 2.7.1 Pro-Motion

Pro-Motion is a sophisticated, easy-to-use exerciser program which allows all ION parameters to be set and/or viewed, and allows all features to be exercised. Pro-Motion features include:

- Motion oscilloscope graphically displays processor parameters in real-time
- AxisWizard to automate axis setup and configuration
- Position loop and current loop auto-tuning
- Project window for accessing motion resources and connections
- Ability to save and load settings
- Distance, time, and electrical units conversion
- Frequency sweep and bode plot analysis tools
- Motor-specific parameter setup
- Axis shuttle performs continuous back and forth motion between two positions


### 2.7.2 C-Motion

C-Motion provides a convenient set of callable routines comprising the C language code required for controlling IONs. C-Motion includes the following features:

- Magellan axis virtualization
- Ability to communicate to multiple PMD motion cards or modules
- Ability to communicate via PC/104 bus, serial, CANbus, Ethernet, SPI (Serial Peripheral Interface), or 8/16 bit parallel bus
- Provided as source code, allowing easy compilation \& porting onto various run-time environments including a PC, microprocessor, embedded card, or C-Motion Engine
- Can be easily linked to any $\mathrm{C} / \mathrm{C}++$ application

C-Motion is described in the Magellan Motion Control IC Programming Reference.

### 2.7.3 .NET Language Support

A complete set of methods and properties is provided for developing applications in Visual Basic and C\# using a dynamically loaded library (DLL) containing PMD library software. The DLL may also be used from any language capable of calling C language DLL procedures, such as Labview, but no special software support is provided.

Includes the following features:

- Magellan axis virtualization
- Ability to communicate to multiple PMD motion cards or modules
- Ability to communicate via PCI bus, serial, CANbus, or Ethernet
- Provided as a single DLL and Visual Basic .NET source code for easy porting onto various PC environments

VB Motion is documented in the PMD Resource Access Protocol Progamming Reference.

### 2.8 Communications Configuration

Depending on the communications port you plan to use with your ION, there may be some configuration steps required to communicate correctly between the host computer and the ION module.

### 2.8.1 Serial ION

The Serial ION (DD1x1S0-xxx/yy) supports both RS232 and RS485 communications.
To communicate by RS232, connect ION to the PC using the straight-through serial cable provided with the Developer Kit. If the PC does not have a serial port, use a USB-to-serial converter and note the COM port number that the converter installed as, using the Device Manager in Windows. Select this COM port in Pro-Motion's Connect dialog.

The following RS232/485 values are pre-programmed into non-volatile memory at the factory. You can change the operational values using Pro-Motion after communications at this default rate has been established. Note that the new parameters will take effect at the next ION powerup.

RS232/485 default values: 57.6 kbaud, no parity, 1 stop bit and multi-drop (networking) mode disabled.
To communicate by RS485 full duplex, a USB-to-485 converter is used, otherwise connection is automatically recognized by Pro-Motion and is the same as for RS232.

See the Magellan Motion Control IC Programming Reference for more information on node ID, Transmission Rate, and other serial communications parameters.

First time communication with an ION cannot be accomplished using RS485 half-duplex. To configure an ION for RS485 half-duplex (multi-drop), use either RS232 or RS485 (point-to-point).

Changing the state of the Select pin on the fly is not recommended. Doing so will change the hardware configuration without changing the active set of communication parameters and will most likely result in loss of communications.

### 2.8.2 CANbus ION

The CANbus ION (DD1x1C0-xxx/yy) supports 2.0B standard CANbus communications.
To communicate by CANbus, no additional steps are required; however it is important to use the proper CANbus connector indicated in Section 2.4, "Recommended Hardware". Simply connect ION to the PC using a USB to CANbus cable, and the Pro-Motion software will automatically recognize ION.

The following CANbus values are pre-programmed into non-volatile memory at the factory. You can change the operational values using Pro-Motion after communications at this default rate has been established. Note that the new parameters will take effect at the next ION powerup.

CANbus default values: Node ID $=0$ and Transmission Rate $=20 \mathrm{k}$ baud.
See the Magellan Motion Control IC Programming Reference for more information on node ID, Transmission Rate, and other serial communications parameters.

### 2.8.3 Ethernet/Serial ION

The Ethernet ION (DD1x1D0-xxx/yy) supports 10/100BASE-T/TX standard Ethernet communications, as well as RS232 and RS485 communications.

To communicate by Ethernet, a setup procedure must be executed which first uses the serial port to communicate with the ION and configure the Ethernet port for subsequent communications.

To accomplish this, use the DK-provided DB9 to RJ45 adapter cable and connect the ION to your PC as shown in Figure 2-14. If your computer does not have a dedicated serial port, use a standard USB-to-serial converter.


During this setup the Ethernet connection will not be made until serial communications are established. See Section 2.11.2, "Changing the Ethernet Parameters of the ION" for detailed instructions on when to physically make the Ethernet connection. When Ethernet is ready to connect, use PMD's Cable-RJ45-02-R, or any standard Ethernet cable, and plug one end of the connector into J24, and the other end into a free Ethernet port on your network.

It is also possible to communicate directly via Ethernet without first connecting using the serial port. To do this use the default parameters shown in Section 3.2.1, "Ethernet" and take care that no other Ethernet devices are on the network that use the same IP address. Note however that in the first-time system verification instructions, beginning in Section 2.11, "First-Time System Verification" inital connection via serial port is assumed.

Figure 2-14:
Ethernet/Serial
ION Serial Port Connection

### 2.9 Applying Power


#### Abstract

Dangerous voltages, temperatures, and currents exist in all motor drive systems. Do not apply power to the ION module until the motor and system wiring is complete and the ION module and motor are securely mounted. It is best to leave the motor disconnected from its load until after power is applied for the first time and correct operation is verified. The customer must not attempt to service or rewire an ION drive without first shutting down the drive and disconnecting it from its power source. Failure to follow this warning may result in fire, bodily harm, or damage to the product.


Upon power up, ION is in a reset condition. In this condition, no motor output will be applied and the motor will remain stationary. If the motor does move or jump, remove power from the module and re-check the wiring. If anomalous behavior is still observed, call PMD for application assistance. Complete PMD contact information is listed on the final page of this manual.

### 2.10 Status LEDs

ION has two bi-color LEDs to indicate the basic operational status of the module and the communications link. The location of these LEDs is shown in Figure 2-1.

### 2.10.1 Module Status LED

Upon powerup or reset, the module Status LED should either be solid green or blinking green, depending on the state of the /Enable input. If enabled, the LED will be solid green.

The Enable input is active low.

A Status LED of any other color indicates a fault or unusual condition that must be rectified before going further. See Section 3.6, "Operational and Fault Modes" for complete information on ION Operational and Fault modes and the resulting color and blink rate of the Status LED.

### 2.10.2 Communications Status LED

The Comm Status LED indicates successful packets by blinking green and invalid packets or commands returning an error status by blinking red. A serious fault in the communications port is indicated with solid red. If the LED is solid red, check the cabling and then try cycling power and reconfiguring the communications configuration.

Note that this LED will not blink until communications occur. Therefore, the LED may not blink until further steps in the setup procedure occur.

### 2.11 First-Time System Verification

The first time system verification procedure summarized below has two overall goals. The first is to connect the ION with the PC so that they are communicating properly, and the second is to initialize the axis and bring it under stable
control capable of making trajectory moves. While there are many additional capabilities that Pro-Motion and ION can provide, these steps will create a foundation for further, successful exploration and development.

Here is a summary of the steps used during first time system verification. Each of these steps is described below in a separate manual section.

1 Initiate Pro-Motion and establish communication between the PC and the ION. For Serial and CANbus IONs, this is as simple as connecting the ION and running Pro-Motion. For the Ethernet/Serial ION, this involves a few additional steps as detailed below.

2 Run Pro-Motion's Axis wizard for each axis of your system to initialize parameters such as encoder direction and safe servo parameters (if you are using a servo motor).

3 Execute a simple trajectory profile on each axis demonstrating that it is operating correctly and under stable control.

During this first-time system setup you may find it useful to refer to other PMD manuals including the Magellan Motion Control IC User Guide to familiarize yourself with operation of the Magellan Motion Control IC, which lies at the heart of all ION Digital Drives.

### 2.11.1 Establishing Communications

To establish communications:
1 Make sure the ION is powered and connected to the PC.
2 On the Start menu, click the Pro-Motion application. When Pro-Motion is launched you will be prompted with an Interface selection window. A typical screen view when first launching Pro-Motion appears below.


3 Click the Connect icon on the toolbar. Alternatively, on the File menu, select Connect.
4 The purpose of the Interface dialog box is to indicate to Pro-Motion how your ION is connected to the PC. It provides various selectable communication options such as serial, CANbus, Ethernet. Unless you are using CANbus, click Serial, and then click OK. If you are using CANbus, click CANbus, then click OK.

5 The Serial Port dialog box or CANbus port dialog box will display the active default communication values. Click OK without changing any of these settings.

If communication is correctly established, a set of object graphics loads into the Project window to the left, as shown in the following figure.


For example, for an ION, you see the ION name next to an icon of an ION, and below that you see two axes icons. Highlighting (single clicking) either the ION icon or the axis icon with the mouse is used to select specific cards or axes, and is useful later on in the first time system verification.

If communications are not correctly established, after approximately 10 seconds a dialog box appears indicating that a Communications Timeout Error has occurred. If this is the case, recheck your connections and repeat from step 1 above. If after repeated attempts a connection can still not be established, call PMD for assistance.

If you are using the Serial ION or the CANbus ION, congratulations! Communication has been established and you are ready to proceed to the next step, described in Section 2.11.5, "Initializing Motion Axes."

### 2.11.2 Changing the Ethernet Parameters of the ION

If you are using an Ethernet ION, the next step is to change the Ethernet parameters as follows:
1 With serial communications functioning properly, click the Device toolbar button. The Device window appears.

2 Click Network I/O. The Network I/O Defaults dialog box appears.

3 Click the Ethernet tab. The Ethernet tab appears with data entry fields for the IP Address, the Net Mask, and the Gateway. This is shown below with the default value visible.


4 Enter the IP Address in the corresponding data field as well as the net mask and gateway, if this is required for your network.

For a typical installation, you will not change the Net mask and Gateway default values, but you must specify a valid, unique, IP Address for the ION to be located on your Ethernet network. If you are not sure what IP addresses are free and available for your Ethernet network, contact your system administrator.

5 Click OK to store as the power on default.
6 Click the Reset toolbar button. After the ION is reset, it uses the default parameters that you specified.
7 Connect the Ethernet cable. See Section 2.8, "Communications Configuration" for details.
The ION is now ready for Ethernet communications.

### 2.11.3 Establishing Ethernet Communications

The ION's IP Address has now been set, but Pro-Motion does not know what IP address it should use for Ethernet communications to the ION.

To establish Ethernet communications:
1 Click the Connect toolbar button.
2 Select Ethernet, and then click OK.
3 Enter the same IP Address as was specified for Ethernet ION.
4 When complete, click OK.
If Ethernet communication is successful, an additional set of graphical icons representing your ION and axis will be loaded into the Project window to the left below the first set created while establishing communications by serial link.

If communication is not successful, a Communications Timeout Error dialog box appears after about 30 seconds. If this happens, recheck your connections, and retry to establish Ethernet communications. See step 1 in Section 2.11.2, "Changing the Ethernet Parameters of the ION" for details.

When Ethernet communications are functioning properly, the final step is to disable serial communications.

### 2.11.4 Disconnecting Serial Communications

To disconnect serial communications:
1 Select the serial link version of the ION in the Project window to the left.
2 Click the Disconnect toolbar button. A dialog box appears asking if you are sure you want to disconnect.
3 Click OK.
You will notice that the serial ION icon and axes graphical icons in the Project box disappear, leaving only the Ethernet link icons for the ION and axis.

Congratulations! Ethernet communication is now up and running. You are ready to execute all Pro-Motion functions via Ethernet.

Multiple Pro-Motion users can connect to the same Ethernet ION. Up to four simultaneous connections can be made. There are various situations where this may be useful. For example, one PC can function as a 'monitoring station' for a particular ION while another PC provides commands to that same unit. Be aware, however, that two or more users sending motion commands to the same motion controller can cause unexpected motion, and should be avoided.

When connecting your ION for use on an Ethernet network, be sure that the IP address provided for the ION does not conflict with the addresses of other users on the network. See Section 2.11.2, "Changing the Ethernet Parameters of the ION" for a description of changing the IP address.

### 2.11.5 Initializing Motion Axes

The next step to verify the correct operation of the system is to initialize the axis, thereby verifying correct encoder feedback connections (if an encoder is used), and other motion functions. All of this can be conveniently accomplished using Pro-Motion's Axis Wizard function. This versatile and easy to use tool initializes all supported motor types including step, DC Brush, and Brushless DC.

To operate the axis wizard:
1 Click to select the \#axis icon in the Project window to the left of the screen.
2 With this icon highlighted, click the Axis Wizard toolbar button. The Axis Wizard initialization window appears.

3 Click Next and follow the Axis Wizard instructions for each page of the axis initialization process.


A typical axis wizard sequence takes 3-5 minutes. If you have specific questions about the Axis Wizard, refer to Pro-Motion User Guide for detailed information on the axis wizard.

Upon a normal completion of the Axis Wizard, the axis will be ready to make a controlled move. For step motors this means the pulse \& direction connections are working properly, and for servo motors this means the encoder and amplifiers connections have been validated, and stable (but not necessarily optimal, see caution below for more information) servo tuning parameters have been loaded into the ION's Magellan Motion Control IC. Depending on the signals connected, this may also mean that limit switches, and other hardware connections are functioning properly.

The most common reasons for the Axis Wizard to not complete normally are an inability to auto-tune the servo motor, or problems determining the correct commutation sequence for Brushless DC motors when commutated by the Magellan Motion Control IC. Should this happen, it is possible to perform a manual tuning or commutation setup if desired. Refer to the Pro-Motion User Guide for more information, or call PMD for technical assistance.

The Axis Wizard auto tuning routine is designed to provide stable, but not optimal, parameters for motion. ProMotion provides a wealth of functions including Bode plot generation and a high speed hardware trace oscilloscope that can assist you in determining optimal servo parameters. Values provided by the axis wizard during auto tuning may or may not be safe for your system, and it is up to the user to determine if and when they should be used.

### 2.11.6 Performing a Simple Trajectory Move

The last step in first time system verification is to perform a simple move for each axis.
To perform a simple move:
1 In the Project Window, select the motion axis that you would like to move by clicking the corresponding icon.

2 Click the Axis view button on the far right of the toolbar. Alternatively, click Axis View on the Axis menu. Your screen organization changes to give easy access to windows that are used while exercising the motion axes.

3 Click the Trajectory button in the Axis Control window. The Trajectory dialog box appears.
4 In the Profile mode list, select Trapezoidal.
5 Enter motion profiles for deceleration, acceleration, velocity, and destination position (Position 1) that are safe for your system and will demonstrate proper motion.

6 Click Go and confirm that the motion occurred in a stable and controlled fashion.


Pro-Motion provides various selectable units for distance and time, but defaults to units of encoder counts (or pulses for step motors) for distance and seconds for time. This means the default units for velocity are counts $/ \mathrm{sec}$, and the default units for acceleration and deceleration are counts $/ \mathrm{sec}^{2}$. So for a motor that has 2,000 counts per rotation, to perform a symmetric trapezoidal move of 25 rotations with a top speed of 5 rotations per second and with an acceleration time of two seconds, the parameters in the Trajectory dialog box would be set as follows:

Deceleration: 5,000 counts/sec ${ }^{2}$
Acceleration: 5,000 counts/sec ${ }^{2}$
Velocity: 10,000 counts/sec
Position I: 0 counts
Position 2: 50,000 counts

Congratulations! First-time system verification for this axis is now complete. You should now initialize all of the axes in your system. Go to Section 2.11.5, "Initializing Motion Axes" and repeat the steps for each of the remaining axes.

## 3. Operation

## In This Chapter

\author{

- ION Block Diagram
}
- Communication Ports
- PWM Power Stage
- DC Bus
- Trace Buffer
- Operational and Fault Modes
- Magellan Motion Control IC Functions

Communications

- Communicating with Serial or CANbus IONs

Communicating with Ethernet/Serial IONs

### 3.1 ION Block Diagram

ION combines the function of a motion controller and amplifier. It directly interfaces to a host computer using a serial or CANbus interlace, and connects to all power and feedback signals required to drive a positioning DC Brush, Brushless DC, or step motor.

In addition to the Magellan Motion Control IC, ION incorporates several major subsystems including a communications system, a high performance MOSFET-based power stage, a DC Bus conditioning system, and a trace buffer.

Figure 3-1: ION Block Diagram

Figure 3-1 shows a block diagram of the ION.
The following sections describe these major sections of the ION Digital Drive. For a complete description of the Magellan Motion Control IC, see the Magellan Motion Control IC User Guide and the Magellan Programming Reference.


### 3.2 Communication Ports

### 3.2.1 Ethernet

The Ethernet/Serial IONs support TCP (Transmission Control Protocol). The physical node on the Ethernet network controller is assigned a 32-bit IP (Internet Protocol) address, along with a 32-bit net mask and a 32-bit gateway value. The Netmask is used to indicate which IP addresses are local. To correctly receive communications from the host controller, a 16-bit identifier known as a port must also be specified. To determine what the unused IP addresses are for your Ethernet network, and what values for net mask to use, contact your network administrator.

By convention, the 32-bit values for IP Address, Net mask, and Gateway are shown in Dotted Quad Notation. In this notation each of the four numbers are separated by dots, and denote a decimal value for each byte of the four byte word

After a reset or at power-up, the ION retrieves default information for the ION Stand-Alone Ethernet port. To change these default values, the PRP Set command is sent to the Device resource.

The table below shows the range and default settings for the Ethernet controller of the ION:

| Parameter | Range | Default |
| :--- | :--- | :--- |
| IP address | $0.0 .0 .0-255.255 .255 .255$ | 192.168 .2 .2 |
| Net mask | $0.0 .0 .0-255.255 .255 .255$ | 255.255 .255 .0 |
| PRP Listen TCP Port | $0-65,535$ | 40100 |

For detailed information on PRP action formats and function, refer to the PMD Remote Access Protocol Programming Reference.

The Ethernet/Serial ION features a standard 10/100Mpbs Ethernet interface. A standard RJ45 connector with link lights is provided for the connection. Figure 3-2 shows the simplified Internal Ethernet circuit diagram.


### 3.2.2 Serial RS232/485 on Ethernet/Serial ION

For serial communication with the Ethernet/Serial version of the ION, an RJ45 style connector socket is used.
Pin 8 is used to select between RS232 and RS485 operation. For RS232, pin 8 can be tied high to 3.3 V or left floating. For RS485 operation, pin 8 should be connected to IO_GND.

The SRL_RS485_Select Line shown in Figure 3-3 is connected to the Magellan Motion Control IC for selecting the mode of serial communication. ION supports both point-to-point and multi-drop networking in RS485 and point-topoint only in RS232.


Figure 3-2:
Simplified
Ethernet Circuit
Diagram

Figure 3-3:
Simplified
Serial Port on Ethernet Unit
Circuit Diagram

### 3.2.3 RS232/485 on Serial ION

The serial version of ION supports both the RS232 and RS485 protocols. A simplified transceiver circuit diagram is shown in Figure 3-4. Pin 1 is used to select between RS232 and RS485 operation. For RS232, pin 1 can be tied high to 3.3 V or simply left floating. For RS485 operation, pin 1 must be strapped to IO_Gnd.

Figure 3-4: Simplified Serial Transceiver Diagram


The Select line shown in Figure 3-4 is routed to the Magellan Motion Control IC to inform the processor of the selected serial mode. ION supports point-to-point and multi-drop networking in RS485 and point-to-point only in RS232.

The Select line is read only once when the ION comes out of powerup reset. The communications cable must be connected before power is supplied to the ION module.

### 3.2.4 CAN

The CAN version of ION features a dual RJ45 connector and can use standard UTP Ethernet cabling for implementing a daisy-chain CANbus network. The two jacks are functionally identical. A simplified circuit diagram is shown in Figure 3-5. Note that only the signals used internally are shown. CAN_V, CAN_Shield and the two Reserved pins simply pass through to the other RJ45 jack.

To minimize ground loops and noise, the CANbus port is isolated from the rest of the ION module and is powered from an isolated winding of the onboard $\mathrm{DC} / \mathrm{DC}$ converter. The small capacitor between the isolated and nonisolated grounds is required for EMC. The transceiver and signal isolator used support the high speed CANbus communications rates of up to 1 M baud.


### 3.3 PWM Power Stage

The ION module contains a high-efficiency MOSFET power stage with PWM control and phase current feedback. A slightly different configuration is used for each motor type:

- DC brush motors are driven with an H-Bridge consisting of 4 MOSFETs
- Brushless DC motors are driven with a 3-phase bridge consisting of 6 MOSFETs
- Step motors are driven with two H-Bridges, one for each phase, for a total of 8 MOSFETs.

The use of 3-phase and H-Bridge topologies provides full 4-quadrant operation from a single non-isolated DC supply.
ION uses an advanced PWM switching scheme that minimizes the ripple current on the motor windings while maximizing the current loop performance. The PWM frequency is selectable between 20 kHz and 40 kHz to cover a broad range of motor inductance. The fundamental frequency of the ripple current is at twice the PWM frequency and well out of the audible range in all cases.

Two channels of phase current feedback are used for brushless DC and step motor current loops. In the brushless DC version, the third phase is simply calculated as the negated sum of the other two phase currents. For DC brush motors, only one phase current feedback is used.

By monitoring the DC bus voltage, the DC bus current, and the output phase currents, the ION Digital Drive's output stage is fully protected from overcurrent, overvoltage, and undervoltage faults and line-to-line, line-to-power supply, and line-to-earth/case ground short circuits. The Magellan Motion Control IC also implements $\mathrm{I}^{2} \mathrm{t}$ current foldback and automatic holding current reduction for step motors.

Figure 3-5:
Simplified CAN Circuit Diagram

### 3.3.1 $I^{2} t$ Current Foldback Protection

ION uses the current feedback to implement $\mathrm{I}^{2} \mathrm{t}$ current limiting. This feature protects the drive by controlling its ability to operate above continuous current ratings. This protection feature is active in all operating modes.

When the current loop is enabled and the $I^{2} t$ energy limit is exceeded, ION will automatically fold back the phase currents to a user programmable continuous current limit value. Alternatively, ION can be configured to fault and disable the output stage when the $I^{2} t$ energy limit is exceeded.

When the current loop is disabled (ION is operating in voltage control mode only) and the $\mathrm{I}^{2}$ t energy limit is exceeded, ION will always fault and disable the output stage.

### 3.3.2 Overtemperature Protection

ION uses digital temperature sensors to monitor the operating temperature of the output stage power MOSFETs. The motion control IC communicates with the sensors over the built-in SPI bus. If an overtemperature condition is detected, ION shuts down the output stage, indicates the fault with the Module Status LED and optionally activates FaultOut.

The overtemperature threshold is user-settable to any value below the maximum-rated operating temperature of the output stage. See Section 6.4, "ION 500 Protection Circuits" for the programmable overtemperature range and the Magellan Motion Control IC Programming Reference for more information on setting the temperature threshold.

Refer to the Magellan Motion Control IC User Guide and the Magellan Motion Control IC Programming Reference for more information on Operating Modes and on setting up these current foldback parameters.

### 3.3.3 Power Stage Scaling Parameters

To correctly control various ION features via the Magellan Motion Control IC it is necessary to know certain drivespecific scale factors. The following tables summarize these values.

### 3.3.3.1 ION 500 Power Stage Scaling Parameters

| Parameter | Commands | Scaling | Example |
| :---: | :---: | :---: | :---: |
| Current | GetCurrentLoopValue GetFOCValue | $1.296 \mathrm{~mA} /$ count | A value of 12,345 from the command GetCurrentLoopValue for the ActualCurrent parameter corresponds to a current of I2,345 counts * $1.296 \mathrm{~mA} /$ count $=15.999 \mathrm{~A}$. |
|  <br> Brushless DC*: <br> Continuous RMS <br> Current Limit | SetCurrentFoldback GetCurrentFoldback | . 4587 mA RMS $/$ count | To set a continuous current limit of $5.00 \mathrm{~A}_{\text {RMS }}$ using the SetCurrentFoldback command a value of $5,000 \mathrm{~mA}_{\text {RMS }} / .4587 \mathrm{~mA}_{\text {RMS }} /$ count $=$ 10,900 should be used. |
| DC Brush*: Continuous DC Current Limit | SetCurrentFoldback GetCurrentFoldback | . $5619 \mathrm{~mA}_{\mathrm{DC}} /$ count | To set a continuous current limit of $5.00 \mathrm{~A}_{\mathrm{DC}}$ using the SetCurrentFoldback command a value of $5,000 \mathrm{~mA}_{D C} / 5619 \mathrm{~mA}_{\mathrm{DC}} /$ count $=8,898$ should be used. |
|  <br> Brushless DC* $I^{2} t$ <br> Energy | SetCurrentFoldback GetCurrentFoldback | .0923A RMs $^{2}$ Sec/count | To set a foldback total energy value of 100.0 $\mathrm{A}_{\text {RMS }}{ }^{2} \mathrm{Sec}$ using the SetCurrentFoldback command, a value of $100.0 \mathrm{~A}_{\text {RMS }}{ }^{2} \mathrm{Sec} / .0923 \mathrm{~A}_{\text {RMS }}{ }^{2} \mathrm{Sec} /$ count $=1,083$ should be used. |
| $\begin{aligned} & \text { DC Brush } \\ & \text { I }^{2} \mathrm{t} \text { Energy } \end{aligned}$ | SetCurrentFoldback GetCurrentFoldback | $.1385 \mathrm{~A}_{\text {DC }}{ }^{2}$ Sec/count | To set a foldback total energy value of 100.0 $\mathrm{A}_{\mathrm{DC}}{ }^{2} \mathrm{Sec}$ using the SetCurrentFoldback command, a value of $100.0 \mathrm{~A}_{\mathrm{DC}}{ }^{2} \mathrm{Sec} / .1385 \mathrm{Arms}^{2} \mathrm{Sec} /$ count $=722$ should be used. |

*Brushless DC motors used in Hall-based commutation should use the $\mathrm{A}_{\mathrm{DC}}$ scale factors. All other Brushless DC motor modes should use the $\mathrm{A}_{\text {RMS }}$ scale factors.

For detailed information on the commands used to set or query these parameters, along with the specific subparameters to use, refer to the Magellan Motion Control IC Programming Reference.

### 3.3.3.2 ION 3000 Power Stage Scaling Parameters

| Parameter | Commands | Scaling | Example |
| :--- | :--- | :--- | :--- |
| Current | GetCurrentLoopValue <br> GetFOCValue | $2.588 \mathrm{~mA} / \mathrm{count}$ | A value of 12,345 from the command GetCur- <br> rentLoopValue for the Actual Current param- <br> eter corresponds to a current of $I 2,345$ counts |
|  |  |  |  |
| Step motor \& $2.588 \mathrm{~mA} /$ count $=31.949 \mathrm{~A}$. |  |  |  |

*Brushless DC motors used in Hall-based commutation should use the $A_{D C}$ scale factors. All other Brushless DC motor modes should use the $\mathrm{A}_{\text {RMS }}$ scale factors.

For detailed information on the commands used to set or query these parameters, along with the specific subparameters to use, refer to the Magellan Motion Control IC Programming Reference.

### 3.3.4 Power Stage Defaults and Limits

To correctly control various ION power stage features via the Magellan Motion Control IC, it is necessary to know certain drive-specific defaults and limits. The following tables summarize these values.

### 3.3.4.1 ION 500 Power Stage Defaults and Limits

| Parameter | Default value | Limit |
| :---: | :---: | :---: |
| Brushless DC model: Foldback Continuous RMS Current | $8.073 \mathrm{~A}_{\text {RMS }}$ | Must be $<=8.073 \mathrm{~A}_{\text {RMS }}$ |
| Brushless DC model: Foldback Total Energy | 443. $1 \mathrm{~A}_{\text {RMS }}{ }^{2} \mathrm{sec}$ | Must be $<=443.1 \mathrm{~A}_{\text {RMs }}{ }^{2} \mathrm{sec}$ |
| DC Brush model: Foldback Continuous DC Current | ${ }^{9.889} \mathrm{~A}_{\text {DC }}$ | Must be <= 9.889A ${ }_{\text {DC }}$ |
| DC Brush model: Foldback Total Energy | $664.7 \mathrm{~A}_{\text {DC }}{ }^{2} \mathrm{sec}$ | Must be $<=664.7 \mathrm{~A}_{\text {DC }}{ }^{2} \mathrm{sec}$ |
| Step motor model: Foldback Continuous RMS Current | $5.052 A_{\text {RMS }}$ | Must be $<=5.052 \mathrm{~A}_{\text {RMS }}$ |
| Step motor model: Foldback maximum energy | 443.IA $\mathrm{ARMS}^{2} \mathrm{sec}$ | Must be $<=443.1 \mathrm{~A}_{\text {RMs }}{ }^{2} \mathrm{sec}$ |

For the ION 500, default values and limits for the Foldback Continuous Current Limit and Foldback Energy Limit are designed to be safe for operation in the drive's highest output mounting option, namely, horizontal to cold plate. See Section 2.5, "ION Hardware Configuration and Mounting" for information on ION mounting options.

If the ION 500 drive is being operated at a lower voltage, it may be possible to specify values for Foldback Continuous Current Limit and Foldback Energy Limit that are higher than the default, but lower than or equal to the limit, since the continuous output current rating of the ION 500 drive is higher for lower input voltages. See Section 6.1, "ION 500 Drive Ratings" for drive output specifications.

For other mounting configurations, or for use with motors that have lower current and energy limits, it may be useful to set these parameters to values lower than the default values.

It is the responsibility of the user to set the Foldback Continuous Current and Foldback Energy Limit parameters to values that are safe for the specific ION 500 mounting configuration and motor setup being used.

### 3.3.4.2 ION 3000 Power Stage Defaults and Limits

| Parameter | Default value | Limit |
| :---: | :---: | :---: |
| Brushless DC model: Foldback Continuous RMS Current | $10.60 \mathrm{~A}_{\text {RMS }}$ | Must be <= $15.00 \mathrm{~A}_{\text {RMS }}$ |
| Brushless DC model: Foldback Total Energy | $68 \mathrm{~A}_{\text {RMS }}{ }^{2} \mathrm{sec}$ | Must be <= $101 \mathrm{~A}_{\text {RMS }}{ }^{2} \mathrm{sec}$ |
| DC Brush model: Foldback Continuous DC Current | $15.00 \mathrm{~A}_{\text {DC }}$ | Must be $<=20.00 \mathrm{~A}_{\text {DC }}$ |
| DC Brush model: Foldback Total Energy | $150 \mathrm{~A}_{\text {DC }}{ }^{2} \mathrm{sec}$ | Must be $<=203 \mathrm{~A}_{\text {DC }}{ }^{2} \mathrm{sec}$ |
| Step motor model: Foldback Continuous RMS Current | 5.7A RMS | Must be $<=10.6 \mathrm{~A}_{\text {RMS }}$ |
| Step motor model: Foldback maximum energy | $101 \mathrm{~A}_{\text {RMS }}{ }^{2} \mathrm{sec}$ | Must be <= $125 \mathrm{~A}_{\text {RMS }}{ }^{2} \mathrm{sec}$ |

For the ION 3000, default values for the Foldback Continuous Current Limit and Foldback Energy Limit are designed to be safe for operation of the drive in its highest output mounting option and at its highest nominal operating voltage. See Section 2.5, "ION Hardware Configuration and Mounting" for information on ION mounting options.

If the ION 3000 drive is being operated at a lower voltage, it may be possible to specify values for Foldback Continuous Current Limit and Foldback Energy Limit that are higher than the default, but lower than or equal to the limit, since the continuous output current rating of the ION 3000 drive is higher for lower input voltages. See Section 3.6.1, "Hard Fault State" for drive output specifications.

For other mounting configurations, or for use with motors that have lower current and energy limits, it may be useful to set these parameters to values lower than the default values.

It is the responsibility of the user to set the Foldback Continuous Current and Foldback Energy Limit parameters to values that are safe for the specific ION 3000 input voltage, ION mounting configuration, and motor setup being used.

### 3.4 DC Bus

### 3.4.1 DC Bus Current Monitoring

ION monitors both the positive and negative DC bus current to detect overcurrent conditions including: line-to-line, line-to-power supply, and line-to-case-ground short circuits. Both hard short circuits and excessive current conditions are detected. ION can even detect some "ground fault" conditions caused by a partial winding short circuit between winding and case within a motor.

When an overcurrent condition occurs, the output stage is shut down and the ION module goes into the hard fault state. See Section 3.6.1, "Hard Fault State" for a description of this state.

### 3.4.2 DC Bus Overvoltage and Undervoltage

ION monitors the main DC bus voltage for overvoltage and undervoltage conditions. These thresholds are usersettable within the voltage operating range of the drive.

When the DC bus voltage drops below the undervoltage threshold, ION shuts down the output stage, indicates the fault with the Module Status LED, and optionally activates FaultOut.

There are two ways for the DC bus to exceed the overvoltage threshold:
1 The supplied DC power is too high. There is little the ION module can do about this. ION simply turns off the output stage, indicates the fault with the Module Status LED and optionally activates FaultOut.

2 The motor is decelerating at a rate too high for the DC power supply to absorb the regenerated energy and the DC bus "pumps up." ION will protect itself by turning off the output stage. It also indicates the fault with the Module Status LED and optionally activates FaultOut.

In either case, the DC bus voltage must then fall below the threshold before the module exits this fault state and can be re-enabled.

### 3.4.3 IO_5V Monitor

ION features a separate 5 V supply for powering external encoders, Hall sensors, and other $\mathrm{I} / \mathrm{O}$ devices. This supply is monitored to detect overloading or out-of-tolerance operation and if either condition occurs, ION goes into the hard fault state. See Section 3.6.1, "Hard Fault State" for a description of this state.

### 3.4.4 Motion Control IC 3.3V Supply Monitor and Reset Circuit

The 3.3 V supply for the motion control IC automatically forces the processor into the reset state if the supply voltage falls out of regulation.

### 3.4.5 DC Bus Scaling Parameters

To correctly control ION DC Bus features via the Magellan Motion Control IC it is necessary to know the DC Bus scale factor. The following tables summarize this value.

### 3.4.5.1 ION 500 DC Bus Scaling Parameters

| Parameter | Commands | Scaling | Example |
| :--- | :--- | :--- | :--- |
| Bus Voltage | GetBusVoltage | $1.361 \mathrm{mV} /$ count | A value of 12,345 from the command |
|  | SetBusVoltageLimits |  | GetBusVoltage corresponds to a |
|  | GetBusVoltageLimits |  | voltage of 12,345 counts * $1.361 \mathrm{mV} /$ |
|  |  | counts $=16.801 \mathrm{~V}$ |  |

### 3.4.5.2 ION 3000 DC Bus Defaults and Limits

| Parameter | Commands | Scaling | Example |
| :--- | :--- | :--- | :--- |
| Bus Voltage | GetBusVoltage | $5.349 \mathrm{mV} /$ count | A value of $I 2,345$ from the command |
|  | SetBusVoltageLimits |  | GetBusVoltage corresponds to a |
|  | GetBusVoltageLimits |  | voltage of 12,345 counts $* 5.349 \mathrm{mV} /$ |
|  |  | counts $=66.033 \mathrm{~V}$ |  |

### 3.4.6 Undervoltage and Overvoltage Limits

### 3.4.6.1 ION 500 DC Bus Defaults and Limits

| Parameter | Default value | Limit |
| :--- | :--- | :--- |
| Undervoltage Limit | 9.935 V | Must be $>=9.935 \mathrm{~V}$ and $<=56.00 \mathrm{~V}$ |
| Overvoltage Limit | 60.02 V | Must be $<=60.02 \mathrm{~V}$ and $>=20.00 \mathrm{~V}$ |

### 3.4.6.2 ION 3000 DC Bus Defaults and Limits

| Parameter | Default value | Limit |
| :--- | :--- | :--- |
| Undervoltage Limit | 20.00 V | Must be $>=20.00 \mathrm{~V}$ and $<=195.00 \mathrm{~V}$ |
| Overvoltage Limit | 195.00 V | Must be $<=195.00 \mathrm{~V}$ and $>=20.00 \mathrm{~V}$ |

### 3.5 Trace Buffer

Trace capture is a powerful feature of the Magellan Motion Control IC that allows various parameters and registers to be continuously captured and stored to an internal memory buffer. The captured data may later be downloaded by the host using software commands.

Data traces are useful for optimizing DC brush and brushless DC performance, verifying trajectory behavior, capturing sensor data, or to assist with any type of monitoring where a precise time-based record of the system's behavior is required.

The ION module features 1.5 kB RAM for trace. This will hold up to 384 trace samples. Refer to the Magellan Motion Control IC User Guide and the Magellan Motion Control IC Programming Reference for complete information on trace configuration and operation.

### 3.6 Operational and Fault Modes

The ION is commanded by the host controller to perform various motion control functions. During the course of these operations it is possible for the ION to enter various fault states based on operational conditions within the power stage, the motor, the electrical bus, or based on the state of the Enable input signal.

Hard electrical faults are serious module or system malfunctions that must be rectified before proceeding.

The following tables summarize the operational and fault modes of the ION Digital Drive. More information about these modes can be found in the Magellan Motion Control IC User Guide.

| Condition | Details | Output Stage | FaultOut | Module Status LED |
| :---: | :---: | :---: | :---: | :---: |
| Enabled | /Enable = low. Normal operation in programmed operating mode | On | Low (inactive) | Green/solid |
| Disabled | /Enable = high | Off | Programmable | Green/blinking (slow) |
| Overvoltage | DC bus voltage exceeded programmable threshold | Off | Programmable | Red/blinking (fast) |
| Undervoltage | DC bus voltage below programmable threshold |  |  |  |
| $1^{2}$ t Current Foldback | Output stage disabled by $\mathrm{I}^{2} \mathrm{t}$ foldback protection | Off | Programmable | Red/blinking (slow) |
| Overtemperature | Power stage temperature exceeded programmable threshold |  |  |  |


| Hard Electrical | Output <br> Stage |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Fault | Details | FaultOut | Module Status LED |  |
| Overcurrent | Short circuit or overload | Off | High (active) | Red/solid |
| Ground Fault | Excessive current to ground |  |  |  |
| IO_5V Fault | Overloaded/out-of-tolerance |  |  |  |
| Internal Logic Fault | Internal hardware failure |  |  |  |

### 3.6.1 Hard Fault State

As an additional safety feature, all hard electrical faults put the ION module into the hard fault state. In this state the module is completely dormant with even communications disabled. A power cycle is required before normal operation can resume.

ION module should be disabled and disconnected from its power source before any attempt is made to fix a hard fault condition..

The following sequence should be used to recover from the hard fault state:
1 Unless the failure is clearly caused by external circumstances, the ION module should be disconnected from the Ethernet, serial or CANbus network, as well as disconnected from all external hardware such as the motor, motor encoder or power supply, etc.

2 With all external hardware disconnected, restore the module power. If the unit is still in the hard fault state as indicated by the red Module Status LED, the drive is likely to have sustained an unrecoverable failure, and should be considered unusable thereafter. A replacement ION module should be used in the application.

3 If the Module Status LED indicates that a fault is no longer present, the cause can be determined by reconnecting the communications cable, cycling power again, and reading the Drive Fault Status from the ION module. See the Magellan Motion Control IC User Guide for more information on reading the Drive Fault Status.

4 Once the nature of the fault is known, it must be corrected. It is always the responsibility of the user to maintain safe operating conditions of the ION module as well as all associated electronics or hardware.

5 With the source of the problem corrected, the ION module can be reinstalled and reconnected. It should now function normally.

### 3.7 Magellan Motion Control IC Functions

The Magellan Motion Control IC forms the core of the ION. Here is an overview of the functions either provided, or managed by the Magellan Motion Control IC:

- Profile generation
- Motor output signal generation
- Quadrature encoder processing and index capture
- DC brush and brushless DC servo loop closure
- Breakpoint processing
- AxisIn and AxisOut signal processing
- Trace
- Motion error detection, tracking windows, and at-settled indicator
- Limit switches

The Magellan Motion Control IC interfaces with motion hardware components such as feedback encoders, motor out signal generation hardware, and others, both directly through its own pin connections, and through various signal conditioning circuitry.

The Magellan instruction set is very flexible and powerful. The following example, which would be used to set up and execute a simple trapezoidal profile, illustrates just a small part of the overall command set:

```
SetProfileMode Axis I, trapezoidal // set profile mode to trapezoidal for axis I
SetPosition Axis I, I2345 // load a destination position for axis I
SetVelocity Axis I, 223344 // load a velocity for axis I
SetAcceleration Axis I, 1000 // load an acceleration for axis I
SetDeceleration Axis I, 2000 // load a deceleration for axis I
SetUpdateMask Axis I, Profile // specify that an update of profile parameters only
// is to occur
Update Axisl // Double buffered registers are copied into
// the active registers, thereby initiating the move
```

Magellan instructions are encoded in packets, which are sent to and from the Magellan Motion Control IC. The Magellan processes these packets, performs requested functions, and returns requested data. Within the ION, the Magellan uses its high-speed parallel-word communications mode to connect to the module's communications bus, which allows the Magellan to be controlled via an external host controller connected to the ION.

### 3.8 Communications

ION Digital Drives are designed to be controlled by an external host controller, which sends commands via one of the available communications ports (Ethernet, serial, or CANbus). IONs support a rich variety of commands, allowing
communication to one or more networked IONs from a single host controller, and allowing all features of the ION and internal Magellan/ION to be exercised.

The protocol for the Serial IONs and CANbus IONs is determined directly by the Magellan/ION Motion Control IC. The protocol for the Ethernet IONs, both for the Ethernet port and the serial port provided with these units is the PRP (PMD Resource Access Protocol). The following table summarizes this, along with the PMD manuals that detail these protocols.

| ION | ION Part Number | Protocol | Manuals with Protocol Description |
| :---: | :---: | :---: | :---: |
| Ethernet/serial | DDIxID0-xxx/yy | PRP (PMD Resource Access Protocol) | PMD Resource Access Protocol (PRP) Programming Reference |
| Serial (RS232 and RS485) | DDIxIS0-xxx/yy | Magellan-defined | Magellan Motion Control IC User Guide <br> Magellan/ION Motion Control IC Programming Reference |
| CANbus | DDIxIC0-xxx/yy | Magellan-defined | Magellan Motion Control IC User Guide <br> Magellan/ION Motion Control IC Programming Reference |

### 3.8.1 Software Development Notes

Most ION users will not concern themselves with the low level details of communication command protocols because they will use the library of C-language routines provided by PMD.

This library of C-language functions insulates the user from protocol and platform details by providing virtualized Clanguage interfaces to all supported commands. So, for example, code that is written to control a Magellan located on a CANbus-connected ION will work just as well when used with a PCI bus-connected Prodigy card, or microprocessor-connected Magellan IC on a user-designed motion control card.

### 3.9 Communicating with Serial or CANbus IONs

For Serial IONs and CANbus IONs, the protocol used to communicate with the ION is defined in the Magellan Motion Control IC User Guide, along with the Magellan Motion Control IC Programming Reference. Please consult these manuals for more information on how to control and communicate with the ION Digital Drive.

### 3.10 Communicating with Ethernet/ Serial IONs

Whether communicating by Ethernet or serial, access to the Ethernet/serial ION is provided by a protocol called PMD Resource access Protocol (PRP). This easy-to-use yet powerful protocol utilizes actions, resources, and addresses to access the Ethernet ION's functions. The ION functions are organized into resources, and resources process actions sent to them. Actions can send information, request information, or command specific events to occur.

A basic communication consists of a 16-bit PRP header, and an optional message body. The message body contains data associated with the specified PRP action, but some actions do not require a message body. After a PRP communication is sent to the ION, a return communication is sent which consists of a PRP header and an optional
return message body. The return message body may contain information associated with the requested PRP action, or it may contain error information if there was a problem processing the requested action.

Although the PRP protocol supports several different resource types, only one resource type is used by the Ethernet/ serial ION. This Device resource is the MotionProcessor resource, meaning the onboard Magellan/ION Motion Control IC.

For a more complete description of PRP, refer to the PMD Resource Access Protocol Programming Reference.

### 3.10.1 Accessing the Magellan Motion Control IC

To send and receive command packets to the Magellan Motion Control IC the PRP action Command is used. The Magellan command packet is loaded into the PRP message body, and the return PRP message body contains the return packet provided by the Magellan. A return without error indicates that the command was processed successfully. If an error occurred while the Magellan was processing the command, the message body is loaded with the specific error that occurred. For more information on Magellan command packet formats and return packet formats, see the Magellan Motion Control IC Programming Reference.

### 3.10.2 Ethernet/Serial ION Command Summary

The following table summarizes all PRP commands provided by the Ethernet/Serial ION.

| Action | Resource | Sub-action | C Procedure |
| :--- | :--- | :--- | :--- |
| NOP | Any |  | N/A |
| Reset | Device |  | PMDDeviceReset |
| Command | MotionProcessor |  | Any Magellan or C-Motion <br> Command |
| Set | Device | Default | PMDDeviceSetDefault |
| Get | Device | Default | PMDDeviceGetDefault |
|  |  | Version | PMDDeviceGetVersion |

For additional information on how PRP packets are formatted, and how they are carried over Ethernet or serial, as well as other details of PRP processing refer to the PMD Resource Access Protocol Programming Reference.

This page intentionally left blank.

## 4. Options and Accessories

In This Chapter

- Stub Cable Set

Developer Kit Cable and Plug Specifications

### 4.1 Stub Cable Set

The following tables summarize the cables and other accessories that come with each ION Developer Kit. See the next section for detailed information on each cable type.

ION 500, Serial

| Cable (PMD Part \#) | Description |
| :--- | :--- |
| Cable-RS232-03-R | 9-pin RS232 Communications Cable |
| Cable-I002-02-R | Feedback Stub Cable |
| Cable-1003-02-R | Aux Stub Cable |
| Cable-1004-02-R | I/O Stub Cable |
| Cable-1005-02-R | ION 500 DC Bus Stub Cable |
| Cable-1006-02-R | ION 500 Motor Stub Cable |
| Adapter-I0I0-0I | RJ45 to DB9 Adapter for RS232 |
| Cable-RJ45-0I | Standard RJ45 Cable |

ION 500, CANbus

| Cable (PMD Part \#) | Description |
| :--- | :--- |
| Cable-RJ45-02-R | RJ45 CANbus Communications Cable |
| TRM-RJ45-02-R | RJ45 CANbus terminator |
| Cable-1002-02-R | Feedback Stub Cable |
| Cable-1003-02-R | Aux Stub Cable |
| Cable-I004-02-R | I/O Stub Cable |
| Cable-1005-02-R | ION 500 DC Bus Stub Cable |
| Cable-1006-02-R | ION 500 DC Motor Stub Cable |

ION 500, Ethernet/Serial

| Cable (PMD Part \#) | Description |
| :--- | :--- |
| Cable-RJ45-02-R | RJ45 Standard Communications Cable for <br>  <br>  <br> Ethernet and Serial Communication <br> Adapter-I0I0-0I <br>  <br> DB9 (female) to RJ45 Socket Adapter for <br>  <br> RS232 Serial communication <br> Cable-1002-02-R Feedback Stub Cable |


| Cable (PMD Part \#) | Description |
| :--- | :--- |
| Cable-I004-02-R | I/O Stub Cable |
| Cable-I005-02-R | ION 500 DC Bus Stub Cable |
| Cable-I006-02-R | ION 500 DC Motor Stub Cable |

ION 3000, Serial

| Cable (PMD Part \#) | Description |
| :--- | :--- |
| Cable-RS232-03-R | 9-pin RS232 Communications Cable |
| Cable-I002-02-R | Feedback Stub Cable |
| Cable-I003-02-R | Aux Stub Cable |
| Cable-I004-02-R | I/O Stub Cable |
| Plug-I007-01-R | ION 3000 DC Bus Plug |
| Plug-I008-01-R | ION 3000 DC Motor Plug |

ION 3000, CANbus

| Cable (PMD Part \#) | Description |
| :--- | :--- |
| Cable-RJ45-02-R | RJ45 CANbus Communications Cable |
| TRM-RJ45-02-R | RJ45 CANbus terminator |
| Cable-I002-02-R | Feedback Stub Cable |
| Cable-I003-02-R | Aux Stub Cable |
| Cable-I004-02-R | I/O Stub Cable |
| Plug-1007-01-R | ION 3000 DC bus Plug |
| Plug-I008-0I-R | ION 3000 DC Motor Plug |

### 4.2 Developer Kit Cable and Plug Specifications

PMD Part \#: Cable-RS23203-R
Description: RS232 Comm cable
Length: 2 m
Cable: 4P, 24AWG, foil shield, Alpha 5474C, or equiv.

Notes: Shield connected to shells at both ends.
*Grounded jumper wire included inside DB9M backshell to use for Select.

| Pin | Signal | Pairing | Color |
| :--- | :--- | :--- | :--- |
| 1 | Select | None | Black |
| 2 | Tx | P2 | White |
| 3 | Rx | PI | Red |
| 4 | No connect |  |  |
| 5 | Gnd | PI | Black |
| 6 | Rx+ | P3 | Green |
| 7 | Rx- | P3 | Black |
| 8 | Tx+ | P4 | Blue |
| 9 | Tx- | P4 | Black |


| PMD Part \#: Cable-RJ45-02-R | Pin | Signal | Pairing | Color |
| :---: | :---: | :---: | :---: | :---: |
| Description: CAN Comm cable | I | CAN_H | PI | Orange/ White |
| Length: 2 m | 2 | CAN_L | PI | Orange |
| Cable: 4P, 24AWG, UTP, Cat5 | 3 | CAN_Gnd | P2 | Green/ White |
|  | 4 | Reserved | P3 | Blue |
|  | 5 | Reserved | P3 | Blue/ White |
|  | 6 | CAN_Shield | P2 | Green |
|  | 7 | CAN_Gnd | P4 | Brown/ White |
|  | 8 | CAN_V | P4 | Brown |


| PMD Part \#: Cable-RJ45-02-R | Pin | Signal | Color |
| :---: | :---: | :---: | :---: |
| Description: Ethernet Communications cable. Male RJ45 to male RJ45 cable wired in a straight- through configuration | I | Ethernet Tx+ | - |
| Length: 2 m | 2 | Ethernet Tx- | - |
| Cable:4P, 24AWG,UTP, Cat 5E | 3 | Ethernet Rx+ | - |
|  | 4 | No Connect | - |
|  | 5 | No Connect | - |
|  | 6 | Ethernet Rx- | - |
|  | 7 | No Connect | - |
|  | 8 | No Connect | - |

PMD Part \#: Cable-I002-02-R
Description: Feedback stub cable
Length: 2 m
Cable: 6P, 22AWG, foil shield, Alpha 2216 C or equiv.

| Pin | Signal | Pairing | Color |
| :--- | :--- | :--- | :--- |
| 1 | Drain |  |  |
| 2 | IO_Gnd | PI | Black |
| 3 | IO_5V | PI | Red |
| 4 | Hall A | P5 | Brown |
| 5 | Hall B | P5 | Black |
| 6 | Hall C | P6 | Yellow |



| PMD Part \#: Cable-I003-02-R | Pin | Signal | Pairing | Color |
| :---: | :---: | :---: | :---: | :---: |
| Description: Auxiliary stub cable | I | Drain |  |  |
| Length: 2 m | 2 | IO_Gnd | PI | Black |
| Cable: 3P, 22AWG, foil shield, Alpha 22I3C or equiv. | 3 | 1 O _5V | PI | Red |
|  | 4 | No conne |  |  |
|  | 5 | A+ | P2 | White |
|  | 6 | A- | P2 | Black |
|  | 7 | B+ | P3 | Green |
|  | 8 | B- | P3 | Black |


| PMD Part \#: Cable-1004-02-R | Pin | Signal | Color |
| :---: | :---: | :---: | :---: |
| Description: I/O stub cable | I | Drain |  |
| Length: 2 m | 2 | IO_Gnd | Black |
| Cable: I3C, 22AWG, foil shield, Alpha 1299C/I5 or equiv. | 3 | 1 O | Red |
|  | 4 | IO_Gnd | Blue |
|  | 5 | 1 O _ 5 V | Red/Yellow |
|  | 6 | IO_Gnd | Brown |
|  | 7 | FaultOut | Pink |
|  | 8 | +Limit | White |
|  | 9 | -Limit | Green |
|  | 10 | Home | Orange |
|  | 11 | High Speed Capture | Yellow |
|  | 12 | Axisln | Violet |
|  | 13 | AxisOut | Gray |
|  | 14 | /Enable | Tan |


| PMD Part \#: Cable-I005-02-R | Pin | Signal | Color |
| :---: | :---: | :---: | :---: |
| Description: ION 500 DC bus stub cable | 1 | HV | Red |
| Length: 2 m | 2 | AuxV | White |
| Cable: 3C,16AWG, foil shield, Alpha 5363C or equiv. | 3 | PGnd | Black |

Note: Drain and PGnd spliced together at Pin 3.

| PMD Part \#: Cable-I006-02-R | Pin | Signal | Color |
| :---: | :---: | :---: | :---: |
| Description: ION 500 Motor stub cable | 1 | A+ (U, M+) | White |
| Length: 2 m | 2 | A- (V) | Green |
| Cable: 6C,16AWG, foil shield, Alpha 5366C or equiv. | 3 | B+ (W, M-) | Orange |
|  | 4 | B- | Blue |
| Note: Drain and PGnd spliced together at Pin 5. | 5 | PGnd | Black |
| PMD Part \#: Plug-I007-01-R | Pin | Signal | Color |
| Description: ION 3000 DC bus plug | I | HV | -- |
|  | 2 | AuxV | -- |
| Cable: Phoenix, p/n 1804917 | 3 | PGnd | -- |
|  |  |  | -- |
| PMD Part \#: Plug-I008-01-R | Pin | Signal | Color |
| Description: ION 3000 Motor Plug | 1 | A+ (U, M+) | -- |
|  | 2 | A- (V, M-) | -- |
| Cable: Phoenix, p/n 1804933 | 3 | $\mathrm{B}+(\mathrm{W})$ | -- |
|  | 4 | B- | -- |
|  | 5 | PGnd | -- |


| PMD Part \#: Adapter-IOIO-0I <br> Description: Custom adapter for conversion from DB9 type | $\begin{aligned} & \hline \text { RJ45 } \\ & \text { Pin } \end{aligned}$ | DB9 Pin | Signal | Color |
| :---: | :---: | :---: | :---: | :---: |
| to RJ45 type serial interface. | 1 | No Connect | - |  |
| Used to establish RS232 communication link from host computer with ION 500 Unit with serial + Ethernet communication option or | 2 | No Connect | - |  |
| ION/B 500 Unit. | 3 | 3 | Rx | Black |
| DB9 end of adapter has generic 9-pin female receptacle which mates | 4 | No Connect | - |  |
| with PMD Cable Part \# cable-RS23203-R. | 5 | 2 | Tx | Green |
| Other adapter end is a generic RJ45 female socket mating with PMD | 6 | No Connect | - |  |
| Cable Part \#: Cable-RJ45-02-R or any generic Ethernet CAT5 cable. | 7 | 5 | Ground | Brown |
| Manufacturer and Part \#: L-COM RA098F or equivalent | 8 | No Connect | - |  |

This page intentionally left blank.

## 5. Electrical Signal Interfacing

## In This Chapter

- Motor Feedback
- Auxiliary Position Input
- Limit and Home Inputs

Position Capture Sources
AxisIn and AxisOut Signals
/Enable and FaultOut Signals

### 5.1 Motor Feedback

The Feedback connector contains the main encoder signals as well as Hall commutation signals. These signals are buffered and filtered in the Quadrature Signal Conditioning and Digital Signal Conditioning blocks, respectively. ION supports incremental quadrature encoders with count rates up to 10 Mcounts per second, and for the ION 3000 module Pulse \& Direction input on the auxiliary position input at up to 10 Mpulses per second.

### 5.1.1 Main Encoder Inputs

The differential input circuitry for the main encoder $A, B$ and Index signals is shown in Figure 5-1. This circuit accepts both differential and single-ended signals in the range of $0-5 \mathrm{~V}$. For single-ended operation, the unused input should be left floating.


For full functionality, ION requires a three channel (with Index) incremental encoder for the main feedback. The required index alignment is shown in Figure 5-2. ION qualifies the Index with the $A$ and $B$ quadrature inputs and recognizes an Index event when all signals ( $A, B$ and Index) are low.

Figure 5-1: Main Encoder Input Circuits

Figure 5-2:
Encoder
Phasing Diagram
i

Figure 5-3: Ethernet/Serial ION Hall Input Circuits


Correct Index phasing and polarity is required for the ION to operate properly. The A \& B channels can be swapped and the quadrature signals inverted as required at the differential inputs to achieve the above phasing alignment...
motion control IC has the ability to invert the polarity of the $A, B$ and Index signals with a software command, this command cannot be used to alter the index alignment because the inversion takes effect after index qualification.

### 5.1.2 Hall Inputs

The input buffer for the Hall $A, B$ and $C$ signals is shown in Figure 5-3. This circuit accepts signals in the range of $0-24 \mathrm{~V}$ and has TTL compatible, Schmitt trigger thresholds. It has a pull-up to 5 V to allow direct interfacing to open collector sources without the need for an external pull-up resistor and an R-C low pass filter to reject noise.

.The Hall signals are only used with brushless DC motors. They are used to directly commutate the motor in 6-step commutation mode or to provide an absolute phase reference for sinusoidal commutation.

On the Ethernet/Serial ION, the circuit is as shown in Figure 5-4.


### 5.2 Auxiliary Position Input

The differential input circuitry for the auxiliary position input signals is shown in Figure 5-5. This circuit accepts both differential and single-ended signals in the range of $0-5 \mathrm{~V}$. For single-ended operation, the unused input should be left floating.


Auxiliary encoder input is optional and can be used for general-purpose position feedback, as the master in electronic gearing applications, or as part of a dual-loop filter compensation scheme. See the Magellan Motion Control IC User Manual for information on these operational modes.

Pulse \& direction input (available on ION 3000 only) is optional and can be used for either general purpose position feedback or as the master in electronic gearing applications. To select pulse \& direction as the input format for the auxiliary position input, use the Magellan command Set Encoder Source with axis \#2 selected. See the Magellan Motion Control IC User Manual for more information.

There is no index pulse input on the auxiliary position input.

Figure 5-4: Ethernet/Serial ION Limit and Home Circuit

Figure 5-5: Auxiliary Encoder Input Circuits

### 5.3 Limit and Home Inputs

Figure 5-6: Limit and Home Input Circuits

Figure 5-7:
Ethernet/Serial ION High
Speed Capture Circuit

The input buffer for the end-of-travel limit and home signals is shown in Figure 5-6. This circuit accepts signals in the range of $0-24 \mathrm{~V}$ and has TTL compatible, Schmitt trigger thresholds. It has a pull-up to 5 V to allow direct interfacing to open collector sources without the need for an external pull-up resistor and a $1.3 \mathrm{kHz} \mathrm{R}-\mathrm{C}$ low pass filter to reject noise.


On the Ethernet/Serial ION, the circuit is as shown in Figure 5-7.


### 5.4 Position Capture Sources

The Magellan Motion Control IC has the ability to capture the instantaneous position of the main feedback encoder when a trigger is received from a hardware input. The ION module supports three trigger sources: Encoder Index, Home and High Speed Capture input. The choice of trigger source is selectable through software. The input circuits for Index and Home are described in sections 5.1.1 and 5.3, respectively.

### 5.4.1 High Speed Capture Input

This dedicated input is specifically designed for high speed signals. It is similar to the Home input with the exception that the R-C low-pass filter bandwidth has been increased to 1.2 MHz . This value is a compromise between noise rejection and trigger latency. The High Speed Capture Circuit is shown in Figure 5-8.


On the Ethernet/Serial ION, the circuit is as shown in Figure 5-9.


### 5.5 AxisIn and AxisOut Signals

The input buffer for the Axisln signal is shown in Figure 5-10. This circuit accepts signals in the range of 0-24V and has TTL compatible, Schmitt trigger thresholds. It has a pull-up to 5 V to allow direct interfacing to open collector sources without the need for an external pull-up resistor and a 13 kHz R-C low pass filter to reject noise.

Figure 5-8:
High Speed Capture

Figure 5-9: Ethernet/Serial ION Axisln Circuit

Figure 5-10: AxisIn Circuit

Figure 5-11: Ethernet/Serial ION AxisOut Circuit


On the Ethernet/Serial ION, the circuit is as shown in Figure 5-11.


The output driver for the AxisOut signal is shown in Figure 5-12. This circuit can continuously sink over 100 mA and source 4 mA from a pull-up resistor to 5 V . The diode in series with the pull-up resistor allows loads powered from up to 24 VDC to be switched. The FET driver is internally protected from shorts up to 30 V .


AxisIn and AxisOut are versatile I/O signals. They are not dedicated to any particular motion control function but can be programmed to implement a wide array of system integration functions. See the Magellan Motion Control IC User Guide for more information on configuring and programming these signals.

On the Ethernet/Serial ION, the circuit is as shown in Figure 5-13.


## 5.6 /Enable and FaultOut Signals

These dedicated signals are typically used to implement a safety interlock between the ION module and other control portions of the system. /Enable is an active-low input that must be tied or driven low for the ION output stage to be active. Similarly, FaultOut indicates any serious problem by going high. When ION is operating properly, FaultOut is low. The polarity of these signals is fixed and cannot be changed via software.

Figure 5-12:
AxisOut Circuit

Figure 5-13: Ethernet Serial ION AxisOut Circuit

The input buffer for the /Enable input is shown in Figure 5-14. This circuit accepts signals in the range of 0-24V and has TTL compatible, Schmitt trigger thresholds. It has a pull-up to 5 V to allow direct interfacing to open collector enable sources without the need for an external pull-up resistor and a 1.3 kHz R-C low pass filter to reject noise.

Figure 5-14: Enable Input Circuit

Figure 5-15: Ethernet/Serial ION/Enable Input Circuit


On the Ethernet/Serial ION, the circuit is as shown in Figure 5-15.


The output driver for FaultOut is shown in Figure 5-16. This circuit can continuously sink over 100 mA and source 4 mA from a pull-up resistor to 5 V . The diode in series with the pull-up resistor allows loads powered from up to 24 VDC to be switched. The FET driver is internally protected from shorts up to 30 V .


On the Ethernet/Serial ION, the circuit is as shown in Figure 5-17.


When the ION is powered off, FaultOut is effectively high impedance and unable to sink current This state should be interpreted as "Fault" by the receiving circuit.

Figure 5-16:
FaultOut Circuit

Figure 5-17: Ethernet/Serial ION FaultOut Circuit

This page intentionally left blank.

## 6.ION 500 Specifications

## In This Chapter

- ION 500 Drive Ratings

ION 500 Controller Performance
ION 500 Electrical
ION 500 Protection Circuits
ION 500 Connectors and Pinouts
ION 500 Mechanical
ION 500 Environmental
ION 500 Safety and Compliance
ION 500 Thermal Operating Curves

### 6.1 ION 500 Drive Ratings

|  | Motor Model |  |  |
| :---: | :---: | :---: | :---: |
| Specification | DC Brush | Brushless DC | Step |
| Nominal supply voltage | 48VDC | 48VDC | 48VDC |
| Supply voltage range transformer isolated power supply | 12-56VDC | 12-56VDC | 12-56VDC |
| Output current (per phase) |  |  |  |
| - Continuous, DIN rail mount, w/heat sink, free air @ 25 C | 6 ADC | 6 Arms (8.5 ADC) | 5 Arms (7.1 ADC) |
| - Continuous, coldplate mount, Tbp ${ }^{*}<50 \mathrm{C}$ | 9.8 ADC | 8 Arms (11.3 ADC) | 5 Arms (7.1 ADC) |
| - Peak (2 sec) | 21.2 ADC | 15 Arms (21.2 ADC) | 15 Arms (21.2 ADC) |
| Maximum continuous output power |  |  |  |
| - Coldplate mount, Tbp $<50 \mathrm{C}$ | 450 W | 500 W | 350 W |

*Tbp $=$ Temperature of base plate

### 6.2 ION 500 Controller Performance

| Supported motor type | DC brush, Brushless DC, Step motor |  |
| :--- | :--- | :--- |
| Communications options | Ethernet, RS232/485, CANbus |  |
| Profile modes | S-curve point-to-point | Position, velocity, acceleration, <br> deceleration, jerk parameters |
|  | Trapezoidal point-to-point | Position, velocity, acceleration, <br> deceleration |
|  | Velocity-contouring | Velocity, acceleration, deceleration |
|  | Electronic gearing | Using auxiliary encoder |
| Position loop filter | Scalable PID with Velocity and Acceleration feedforward, integration limit, offset <br> barameters | encoder feedback. |


| Position error tracking | Motion error window | Allows axis to be stopped upon exceeding programmable window. |
| :---: | :---: | :---: |
|  | Tracking window | Allows flag to be set if axis exceeds a programmable position window. |
| Configurable loop modes | DC brush and brushless DC motor versions | Position, torque/current and voltage |
|  | Step motor version | Open loop with stall detection, current, and voltage |
| Digital current loop | Filter parameters | Scalable PI with integration limit and torque/current limit |
|  | Configuration | Standard phase A/B control or FOC with state-vector PWM (user selectable) |
|  | Current feedback scaling | 100\% full scale equals 21.2A |
| Current foldback | DC brush and brushless DC motor versions | Programmable $\mathrm{I}^{2} \mathrm{t}$ peak limiting |
| Brushless DC commutation modes | Sinusoidal and 6-step (Hall) commutation |  |
| Microstepping resolution | Up to 256 microsteps per step |  |
| Maximum encoder rate | 10 Mcounts per second |  |
| PWM frequency | 20 or 40 kHz (user selectable) |  |
| Loop rates | Commutation \& current loop | $51.2 \mu \mathrm{sec}$ |
|  | Position loop \& trajectory generator | $102.4 \mu \mathrm{sec}$ to 1.67 sec , selectable in multiples of $51.2 \mu \mathrm{sec}$ from $n=2 \text { to } 2^{15}-1$ |

### 6.3 ION 500 Electrical

| AuxV input voltage range | 12-56VDC |  |
| :---: | :---: | :---: |
| AuxV maximum current: | 0.5A |  |
| IO_5V supply output | $5 \mathrm{~V} \pm 2 \%, 300 \mathrm{~mA}$ (total max.), short circuit protected. |  |
| Differential/single-ended encoder inputs | Signals | Main encoder (A+, A-, B+, B-, Index+, Index-) |
|  |  | Auxiliary encoder ( ${ }^{+}+$, $\mathrm{A}-\mathrm{B}+$, $\left.\mathrm{B}-\right)$ |
|  | Voltage range | 0-5VDC |
|  | Logic threshold | RS422 compatible |
|  | Maximum frequency | 2.5 MHz |
|  | Phasing | A leads B by $90^{\circ} \pm 20^{\circ}$. Index low must align with the $A$ low and $B$ low states and be low for less than $540^{\circ}$ total. |
| Digital inputs | Signals | Hall A, Hall B, Hall C, Home, +Limit, -Limit, AxisIn, High-speed Capture, /Enable |
|  | Voltage range | 0-24VDC |
|  | Logic threshold | TTL compatible |
| Digital outputs | Signal | AxisOut, FaultOut |
|  | Voltage range | 0-24VDC |
|  | Output current: | 4 mA source, 100 mA sink, short circuit protected to 30 V |


| RS232/485 communications | Baud Rates | $\begin{aligned} & \text { I200, 2400, 9600, I9.2k, 57.6k, II5k, } \\ & 230 \mathrm{k}, 460 \mathrm{k} \end{aligned}$ |
| :---: | :---: | :---: |
|  |  | Default baud rate is 57.6 k . |
|  |  | 460k support for RS485 only |
|  | Isolation | None |
|  | Termination | None |
| CANbus communications | Compatibility | CANbus 2.0b |
|  | Baud Rates | 10k, 20k, 50 k, 125k, 250k, 500k, 800k, IM |
|  |  | Default baud rate is 20 k . |
|  | Isolation | Optocoupled |
|  | Termination | External I21 Ohm RJ45 terminator |
| Ethernet communications | Compatibility | IOOBASE-TX |
|  | Termination | External 121 Ohm RJ45 terminator |

### 6.4 ION 500 Protection Circuits

| Overtemperature | User programmable between $0^{\circ}-70^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Overvoltage | User programmable between $20 \mathrm{~V}-60 \mathrm{~V}$ |
| Undervoltage | User programmable between $10 \mathrm{~V}-56 \mathrm{~V}$ |
| Overcurrent | Fixed at < $=200 \%$ of drive peak rating |
| Short circuit protection | Line-to-line, line-to-power supply, and line-to-case ground |

### 6.5 ION 500 Connectors and Pinouts

### 6.5.1 High Power Connectors

| Connector: Power | Pin | Signal |
| :---: | :---: | :---: |
| Mating connector mfg/type: Molex MiniFit Jr. plug | 1 | +HV |
| Mating connector P/N: 39-01-4031 | 2 | AuxV |
| Wire range, AWG: 16 | 3 | Pwr_Gnd |

Recommended crimp terminal: 44476-31 I2

| Connector: Motor | Pin | Signal |
| :--- | :--- | :--- |
| Mating connector mfg/type: Molex MiniFit Jr. plug | $\frac{1}{2}$ | Motor+, Motor A, Motor A+ |
| Mating connector P/N: 39-01-405I | 2 | Motor B, Motor A- |
| Wire range, AWG: 16 | 3 | Motor-, Motor C, Motor B+ |
| Recommended crimp terminal: 44476-3II2 | 4 | Motor B- |
|  | 5 | Case/Shield |

### 6.5.2 Signal Connectors

| Connector: Feedback | Pin | Signal |
| :---: | :---: | :---: |
| Mating connector mfg/type: Molex MicroFit 3.0 plug | 1 | Shield |
| Mating connector P/N: 43025-1200 | 2 | IO_Gnd |
| Wire range, AWG: 20-24 | 3 | $1 \mathrm{O}_{2} 5 \mathrm{~V}$ |
| Recommended crimp terminal: 43030-0009 | 4 | Hall A |
| Alternate wire range, AWG: 26-30 | 5 | Hall B |
| Alternate crimp terminal: 43030-00I2 | 6 | Hall C |
|  | 7 | Quad A+ |
|  | 8 | Quad A- |
|  | 9 | Quad B+ |
|  | 10 | Quad B- |
|  | 11 | Index+ |
|  | 12 | Index- |


| Connector: Auxiliary | Pin | Signal |
| :---: | :---: | :---: |
| Mating connector mfg/type: Molex MicroFit 3.0 plug | 1 | Shield |
| Mating connector P/N: 43025-0800 | 2 | IO_Gnd |
| Wire range, AWG: 20-24 | 3 | 1 O _5V |
| Recommended crimp terminal: 43030-0009 | 4 | No connect |
| Alternate wire range, AWG: 26-30 | 5 | Quad A+ |
| Alternate crimp terminal: 43030-0012 | 6 | Quad A- |
|  | 7 | Quad B+ |
|  | 8 | Quad B- |


| Connector: 1/O | Pin | Signal |
| :---: | :---: | :---: |
| Mating connector mfg/type: Molex MicroFit 3.0 plug | 1 | Shield |
| Mating connector P/N: 43025-1400 | 2 | IO_Gnd |
| Wire range, AWG: 20-24 | 3 | 1 O _5V |
| Recommended crimp terminal: 43030-0009 | 4 | IO_Gnd |
| Alternate wire range, AWG: 26-30 | 5 | 1 O _5V |
| Alternate crimp terminal: 43030-0012 | 6 | IO_Gnd |
|  | 7 | FaultOut |
|  | 8 | +Limit |
|  | 9 | -Limit |
|  | 10 | Home |
|  | 11 | High Speed Capture |
|  | 12 | Axisln |
|  | 13 | AxisOut |
|  | 14 | /Enable |

### 6.5.3 Communications Connectors

| Mating connector mfg/type: Generic DB9M (Male) | Pin | Signal |
| :---: | :---: | :---: |
|  | I | Select |
|  | 2 | Tx (RS232) |
| Used For: ION 500 Unit with Serial Communication Option | 3 | Rx (RS232) |
|  | 4 | No connect |
|  | 5 | IO_Gnd |
|  | 6 | Rx+ (RS485) |
|  | 7 | Rx- (RS485) |
|  | 8 | Tx+ (RS485) |
|  | 9 | Tx- (RS485) |


| Connector: CANbus | Pin | Signal |
| :---: | :---: | :---: |
| Mating connector mfg/type: Generic RJ45 8P8C | I | CANbus_H |
|  | 2 | CANbus_L |
| Used For: ION 500 Unit with CAN Communication Option | 3 | CANbus_Gnd |
| *The dual RJ45 jacks are fully connected in parallel. CANbus_V, CANbus_Shield, and the Reserved pins are not connected internally and simply pass the signals through to the other jack. | 4 | Reserved* |
|  | 5 | Reserved* |
|  | 6 | CANbus_Shield* |
|  | 7 | CANbus_Gnd |
|  | 8 | CANbus_V* |


| Connector: Serial RS232/485 | Pin | RS232 | RS485 |
| :---: | :---: | :---: | :---: |
| Mating connector mfg/type: Generic RJ45 8P8C | I | Unused | Unused |
|  | 2 | Unused | Unused |
| Used For: ION 500 Unit with Serial + Ethernet Communication Option. | 3 | Rx | Rx+ |
|  | 4 | Unused | Tx+ |
|  | 5 | Tx | Tx- |
|  | 6 | Unused | Rx- |
|  | 7 | Gnd | Gnd |
|  | 8 | Select $=$ Float/High | Select $=$ low |


| Connector: Ethernet | Pin | Signal |
| :---: | :---: | :---: |
| Mating connector mfg/type: Generic RJ45 8P8C | I | Transmit+ |
|  | 2 | Transmit- |
| Used For: ION 500 Unit with Serial + Ethernet Communication Option | 3 | Receive+ |
|  | 4 | Unused |
|  | 5 | Unused |
|  | 6 | Receive- |
|  | 7 | Unused |
|  | 8 | Unused |

6.6 ION 500 Mechanical

| Specification | Value |
| :--- | :--- |
| Dimensions | See Figure 6-I |
| Weight | $0.6 \mathrm{lb}[0.28 \mathrm{~kg}]$ |
| - without heat sink | $1.1 \mathrm{lb}[0.5 \mathrm{~kg}]$ |
| - with heat sink | Aluminum base and molded plastic cover |
| Enclosure materials | Coldplate, panell |
| Mounting options | \#6, M3, or M3.5 |
| Recommended mounting screws | IP20 |
| Protection class |  |

Figure 6-1: ION 500 Dimensions



### 6.7 ION 500 Environmental

| Specification | Value |
| :--- | :--- |
| Operating ambient temperature | $0^{\circ}-60^{\circ} \mathrm{C}$ |
| Maximum base plate temperature | $70^{\circ} \mathrm{C}$ |
| Storage temperature | $-20^{\circ}$ to $85^{\circ} \mathrm{C}$ |
| Humidity | 0 to $95 \%$, non-condensing |
| Altitude | Up to 2000 meters without derating |
| Contamination | Pollution Degree 2 |

### 6.8 ION 500 Safety and Compliance

| Specification | Standards |
| :--- | :--- |
| CE | LVD: EN60204-I |
|  | EMC-D: EN6I000-6-I, EN61000-6-3, EN550II |
| Electrical safety | Designed to UL508c, UL840, and EN60204-I |
| Hazardous materials | RoHS compliant |
| Flammability | UL 94-V2 or V0 |
| Enclosure | IP20 |

### 6.9 ION 500 Thermal Operating Curves



Figure 6-2:
ION 500
Derating Curve
for DC Brush
Module

Figure 6-3:
ION 500 Derating Curves for Brushless DC Module

Figure 6-4:
ION 500

## Derating

 Curves for Step Motor Module

Note: $\mathrm{IDC}=1.414 * \mathrm{I}_{\mathrm{RMS}}$


[^0]
## 7.ION 3000 Specifications

## In This Chapter

- ION 3000 Drive Ratings
- ION 3000 Controller Performance
- ION 3000 Electrical

ION 3000 Protection Circuits
ION 3000 Connectors and Pinouts
ION 3000 Mechanical
ION 3000 Environmental
ION 3000 Safety and Compliance
ION 3000 Thermal Operating Curves

### 7.1 ION 3000 Drive Ratings

|  | Motor Model |  |  |
| :---: | :---: | :---: | :---: |
| Specification | DC Brush | Brushless DC | Step |
| Supply voltage range transformer isolated power supply | 20-195 VDC | 20-195VDC | 20-I95VDC |
| Output current (per phase) at 48 V nominal voltage |  |  |  |
| - Continuous, coldplate mount, Tbp ${ }^{*}<40 \mathrm{C}$ | 20 ADC | 15 Arms | 10.6 Arms |
| - Peak (per phase) | 30 A | 30 A | 30 A |
| Maximum continuous output power at 48 V nominal voltage | 960 W | 882 W | 650 W |
| Output current (per phase) at I80V nominal voltage |  |  |  |
| - Continuous, coldplate mount, Tbp ${ }^{*}<40 \mathrm{C}$ | 15 ADC | 10.6 Arms | 5.7 Arms |
| - Peak (per phase) | 30 A | 30 A | 30 A |
| Max continuous output power at I80V nominal voltage | 2700 W | 2336 W | 1310 W |

*Tbp = Temperature of base plate

### 7.2 ION 3000 Controller Performance

| Supported motor types | DC brush, brushless DC, step motor |  |
| :--- | :--- | :--- |
| Communications options | RS232/485 and CANbus. Both RS485 and CAN versions are networkable |  |
| Profile modes | S-curve point-to-point | Position, velocity, acceleration, <br> deceleration, jerk |
|  | Trapezoidal point-to-point | Position, velocity, acceleration, <br> deceleration. |
|  | Velocity-contouring | Velocity, acceleration, deceleration. |
|  | Electronic gearing | Using auxiliary encoder or pulse and |
|  |  | direction. |


| Position loop filter parameters | Scalable PID with Velocity and Acceleration feedforward, integration limit, offset bias, dual biquad filter, and settable derivative sampling time. Also supports dual encoder feedback |  |
| :---: | :---: | :---: |
| Position error tracking | Motion error window | Allows axis to be stopped upon exceeding programmable window. |
|  | Tracking window | Allows flag to be set if axis exceeds a programmable position window. |
| Configurable loop modes | DC brush and brushless DC motor versions | Position, torque/current and voltage. |
|  | Step motor version | Open loop with stall detection, current, and voltage |
| Digital current loop | Filter parameters | Scalable PI with integration limit and torque/current limit |
|  | Configuration | Standard phase A/B control or FOC with state-vector PWM (user selectable) |
|  | Current feedback scaling | 100\% full scale equals 42.4A |
| Current foldback | DC brush and brushless DC motor versions | Programmable $\mathrm{I}^{2} \mathrm{t}$ peak limiting |
|  | Step motor version | Programmable automatic holding current reduction |
| Brushless DC commutation modes | Sinusoidal and 6-step (Hall) commutation |  |
| Microstepping resolution | Up to 256 microsteps per step |  |
| Maximum encoder rate | 10 Mcounts per second. |  |
| PWM frequency | 20 kHz or 40 kHz (user selectable) |  |
| Loop rates | Commutation \& current loop | $51.2 \mu \mathrm{sec}$ |
|  | Position loop \& trajectory generator | $102.4 \mu \mathrm{sec}$ to 1.67 sec , selectable in multiples of $51.2 \mu \mathrm{sec}$ from $n=2 \text { to } 2^{15}-1$ |

### 7.3 ION 3000 Electrical

| AuxV input voltage range | 20-95VDC |  |
| :---: | :---: | :---: |
| AuxV maximum current: | 0.5A |  |
| 10.5 V supply output | $5 \mathrm{~V} \pm 2 \%, 300 \mathrm{~mA}$ (total max.), short circuit protected |  |
| Differential/single-ended encoder inputs | Signals | Main encoder (A+, A-, B+, B-, Index+, Index-) |
|  |  | Auxiliary encoder ( $\mathrm{A}+\mathrm{A}, \mathrm{A}, \mathrm{B}+, \mathrm{B}-$ ) or Pulse+, Pulse-, Direction+, Direction- |
|  | Voltage range | 0-5VDC |
|  | Logic threshold | RS422 compatible |
|  | Maximum frequency | 2.5 MHz |
|  | Phasing | A leads B by $90^{\circ} \pm 20^{\circ}$. Index low must align with the $A$ low and $B$ low states and be low for less than $540^{\circ}$ total. |
| Digital inputs | Signals | Hall A, Hall B, Hall C, Home, +Limit, -Limit, Axisln, High-speed Capture, /Enable |
|  | Voltage range | 0-24VDC |
|  | Logic threshold | TTL compatible |
| Digital outputs | Signal | AxisOut, FaultOut |
|  | Voltage range | 0-24VDC |
|  | Output current: | 4 mA source, 100 mA sink, short circuit protected to 30 V |
| RS232/485 communications | Baud Rates | $\begin{aligned} & \text { I200, 2400, 9600, } 19.2 \mathrm{k}, 57.6 \mathrm{k}, ~ I I 5 \mathrm{k}, \\ & 230 \mathrm{k}, 460 \mathrm{k} \end{aligned}$ |
|  |  | Default baud rate is 57.6 k . |
|  |  | 460k support for RS485 only |
|  | Isolation | None |
|  | Termination | None |
| CAN communications | Compatibility | CAN 2.0b |
|  | Baud Rates | 10k, 20k, 50k, I25k, 250k, 500k, 800k, IM |
|  |  | Default baud rate is 20 k . |
|  | Isolation | Optocoupled |
|  | Termination | External I2I Ohm RJ45 terminator |

### 7.4 ION 3000 Protection Circuits

| Overtemperature | User programmable between $0^{\circ}-80^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Overvoltage | User programmable between $20 \mathrm{~V}-95 \mathrm{~V}$ |
| Undervoltage | User programmable between $20 \mathrm{~V}-195 \mathrm{~V}$ |
| Overcurrent | Fixed at $>50 \mathrm{~A}$ |
| Short circuit protection | Line-to-line, line-to-power supply, and line-to-case ground |

### 7.5 ION 3000 Connectors and Pinouts

### 7.5.1 High Power Connectors

| Connector: Power | Pin | Signal |
| :---: | :---: | :---: |
| Mating connector mfg/type: Phoenix | 1 | +HV |
| Mating connector P/N: 1804917 | 2 | AuxV |
| Wire range, AWG: 14 | 3 | Pwr_Gnd |


| Connector: Motor | Pin | Signal |
| :--- | :--- | :--- |
| Mating connector mfg/type: Phoenix | $\frac{1}{2}$ | Motor+, Motor A, Motor A+ |
| Mating connector P/N: I804933 | 2 | Motor-, Motor B, Motor A- |
| Wire range, AWG: 14 | 3 | Motor C, Motor B+ |
|  | 4 | Motor B- |
|  |  | 5 |

### 7.5.2 Signal Connectors

| Connector: Feedback | Pin | Signal |
| :---: | :---: | :---: |
| Mating connector mfg/type: Molex MicroFit 3.0 plug | 1 | Shield |
| Mating connector P/N: 43025-I200 | 2 | IO_Gnd |
| Wire range, AWG: 20-24 | 3 | $1 \mathrm{O}_{2} 5 \mathrm{~V}$ |
| Recommended crimp terminal: 43030-0009 | 4 | Hall A |
| Alternate wire range, AWG: 26-30 | 5 | Hall B |
| Alternate crimp terminal: 43030-0012 | 6 | Hall C |
|  | 7 | Quad A+ |
|  | 8 | Quad A- |
|  | 9 | Quad B+ |
|  | 10 | Quad B- |
|  | 11 | Index+ |
|  | 12 | Index- |


| Connector: Auxiliary | Pin | Signal |
| :---: | :---: | :---: |
| Mating connector mfg/type: Molex MicroFit 3.0 plug | 1 | Shield |
| Mating connector P/N: 43025-0800 | 2 | $1 \mathrm{O}_{\text {_ }}$ Gnd |
| Wire range, AWG: 20-24 | 3 | $1 \mathrm{O}_{-} 5 \mathrm{~V}$ |
| Recommended crimp terminal: 43030-0009 | 4 | No connect |
| Alternate wire range, AWG: 26-30 | 5 | Quad A+ or Pulse+ |
| Alternate crimp terminal: 43030-0012 | 6 | Quad A- or Pulse- |
|  | 7 | Quad B+ or Direction+ |
|  | 8 | Quad B- or Direction- |

Connector: I/O
Mating connector mfg/type: Molex MicroFit 3.0 plug
Mating connector P/N: 43025-1400
Wire range, AWG: 20-24
Recommended crimp terminal: 43030-0009
Alternate wire range, AWG: 26-30
Alternate crimp terminal: 43030-0012

| Pin | Signal |
| :--- | :--- |
| 1 | Shield |
| 2 | IO_Gnd |
| 3 | IO_5V |
| 4 | IO_Gnd |
| 5 | IO_5V |
| 6 | IO_Gnd |
| 7 | FaultOut |
| 8 | +Limit |
| 9 | -Limit |
| 10 | Home |
| 11 | High Speed Capture |
| 12 | Axisln |
| 13 | AxisOut |
| 14 | /Enable |

### 7.5.3 Communication Connectors

| Connector: RS232/485 | Pin | Signal |
| :---: | :---: | :---: |
| Mating connector mfg/type: Generic DB9M | I | Select |
|  | 2 | Tx (RS232) |
|  | 3 | Rx (RS232) |
|  | 4 | No connect |
|  | 5 | IO_Gnd |
|  | 6 | Rx+ (RS485) |
|  | 7 | Rx- (RS485) |
|  | 8 | Tx+ (RS485) |
|  | 9 | Tx- (RS485) |


| Connector: CAN | Pin | Signal |
| :---: | :---: | :---: |
| Mating connector mfg/type: Generic RJ45 8P8C | 1 | CAN_H |
|  | 2 | CAN_L |
| *The dual RJ45 jacks are fully connected in parallel. CAN_V, CAN_Shield and the Reserved pins are not connected internally and simply pass the signals through to the other jack. | 3 | CAN_Gnd |
|  | 4 | Reserved* |
|  | 5 | Reserved* |
|  | 6 | CAN_Shield* |
|  | 7 | CAN_Gnd |
|  | 8 | CAN_V* |

### 7.6 ION 3000 Mechanical

| Specification | Value |
| :--- | :--- |
| Dimensions | See Figure 7-I |
| Weight | IIb I oz $[0.50 \mathrm{~kg}]$ |
| Enclosure materials | Aluminum base and molded plastic cover |
| Mounting options | Coldplate and panel |
| Recommended mounting screws | \#6, M3, or M3.5 |
| Protection class | IP20 |

### 7.7 ION 3000 Environmental

| Specification | Value |
| :--- | :--- |
| Operating ambient temperature | $0^{\circ}-40^{\circ} \mathrm{C}$ |
| Maximum base plate temperature | $70^{\circ} \mathrm{C}$ |
| Storage temperature | $-20^{\circ}$ to $85^{\circ} \mathrm{C}$ |
| Humidity | 0 to $95 \%$, non-condensing |
| Altitude | Up to 2000 meters without derating |
| Contamination | Pollution Degree 2 |

### 7.8 ION 3000 Safetly and Compliance

| Specification | Standards |
| :--- | :--- |
| CE | LVD: EN60204-I |
|  | EMC-D: EN6I000-6-I, EN6I000-6-3, EN550II |
| Safety | UL recognized |
| Hazardous materials | RoHS compliant |
| Flammability | UL 94-V0 |
| Enclosure | IP20 |



Figure 7-1:
ION 3000
Dimensions

Figure 7-2: BLDC Output Current vs Bus Voltage at $40^{\circ} \mathrm{C}$ Ambient

Figure 7-3: BLDC Output Current vs Temperature with 48V Input




Figure 7-4:
BLDC Output Current vs Temperature with 180V
Input

Figure 7-5:
DC Brush Output Current vs Bus Voltage at $40^{\circ} \mathrm{C}$
Ambient

Figure 7-6: DC Brush Output Current vs Temperature with 48V Input



Figure 7-8:
Microstepping Output Current vs Bus Voltage at $40^{\circ} \mathrm{C}$
Ambient

Figure 7-9:
Microstepping Output Current vs Temperature with 48V Input

Figure 7-10: Microstepping Output Current vs Temperature with 180V Input

## Index

## Symbols

Pulse \& Direction input connection summary 22
/Enable and FaultOut Signals 71
/Enable input 32
/Enable signal 71

## Numerics

3.3V supply monitor 51

3-phase bridge 45
4-quadrant operation 45

## A

$A$ and $B$ quadrature inputs 65
auxiliary encoder connector 67
pinouts $20,78,87$
wiring 20
Auxiliary Voltage (AuxV) input 17
AxisIn and AxisOut signals 24, 69

## B

Block Diagram 41
brushless DC motors
connection 16
drive ratings 75, 83
Hall signals 19, 67
phase current feedback 45
power stage configuration 45
buffers
trace 52

## C

CAN
cabling 24, 28
CANbus network 28
CAN_Shield pins 24, 28
communication connection 17
communication rates 45
daisy-chain 28
electrical specifications 77,85
pinouts 28, 79, 88
ports 28
circuits
auxiliary encoder input 67
AxisIn 69
FaultOut 72
Hall input 66

High Speed Capture 69
limit and home input 68
main encoder input 65
protection 77
reset 51
coldplate cooling method 14
Comm connector 25, 79
Comm ports 42
Comm Status LED 32
communication ports 42
RS232/485 version 42
communications
point-to-point 44
ports 42
status LED 32
commutation, sinusoidal 67
compliance and safety specifications 81,88
conditions
operational and fault 53
connectors
auxiliary encoder 20, 78, 87
by module type 16
CAN 79, 88
Comm 25, 79
communication 25,79
DB9M 25, 79, 87
feedback 19, 65, 78
I/O 23, 78, 87
locator 15
motor $18,77,86$
power $17,77,86$
RJ45 28
RS232/485 25
serial 25
signal 78
controller performance specification 75
convection cooling method 14
current foldback. See $I^{2} t$ current foldback
D
daisy chain 45
data traces 52
DB9M connector 25, 79, 87
DC brush motors
connection 16
drive ratings 75,83
phase current feedback 45
power stage configuration 45

DC bus 45
current monitoring 50
overvoltage and undervoltage 50
DC/DC converter 17
Defaults \& Limits 48
diagrams
AxisOut circuit 71
connector locator 15
dimensions 81
encoder phasing 66
main encoder input circuits 65
simplified serial transceiver 43, 44, 45
differential encoder
outputs 19, 20
signals 65
dimensions diagram 81
disabled condition 53
drive ratings 75
Dual Encoder connection summary 21

## E

electrical specifications 76
Enabled condition 53
encoder
auxiliary 67
electrical specifications 76, 85
incremental quadrature 65
Index 68
main 65
Encoder Connections 20
environmental specifications 81,88

## F

FaultOut signal 24, 71
faults, hard 53
feedback connector 65
pinouts 19,78
wiring 19
first time system verification 32
forced air cooling method 14
frequency
PWM 45
ripple current 45

## G

ground fault 50, 53

## H

Hall signals 19, 65, 66
hard electrical faults 53
hard fault state 53
H-Bridge 45
High Speed Capture 24, 69
home inputs 68

## I

I/O connector
pinouts $23,78,87$
signals 71
wiring 24
$I^{2} t$ current foldback 45
energy limit 46
incremental quadrature encoders 65
index
alignment 65
event 65
inputs
/Enable 32
$A$ and $B$ quadrature 65
auxiliary encoder 67
Hall 66
High Speed Capture 24, 69
limit and home 68
main encoder 65
quadrature 65
installation
applying power 30,32
communications configuration 30
configuration and mounting 14
connector pinouts 15
hardware requirements 13
software 28
status LEDs 30, 32
wiring 17
Internal Logic Fault 53
IO_5V 24
auxiliary encoder connector 20
fault 53
feedback connector 19
I/O connector 23
monitor 51
power connector 17
L
LEDs
communications (Comm) status 32
hard electrical faults 53
Module Status 32
operational and fault modes 53
limit inputs 68

## M

main encoder input circuits 65
main encoder signals 67
mechanical specifications 80,88
message URL https
//www.pmdcorp.com/company/patents iii
microstepping drive
connection 16
modes
fault 52
operational 52
Module Status LED 32
monitor
3.3V supply 51

IO_5V 51
MOSFET power stages 45, 46
motor connector
pinouts 18, 77, 86
wiring 18
Motor Feedback 65
motor feedback 65
mounting
cooling methods and 14
dimensions diagram 80, 88
mechanical specifications 80,88
recommended surface 14
multi-drop networking 44

## N

networking
CANbus 28
configurations 25
multi-drop 44
noise
CAN_Shield pins and 24, 28
minimizing electrical 18
R-C lowpass filter and 66
shielded cable and 24,28

## 0

operating temperature 46
orientation, recommended 14
outputs
differential encoder 20
single-ended 19, 20
overcurrent fault 53
overtemperature protection 46
overtravel limits 24
overvoltage threshold 51

## P

packets, communications 32
phase current feedback 45
pinouts
auxiliary encoder connector 20, 78, 87
CAN connector 28 , 79,88
feedback connector 19, 78
I/O connector $23,78,87$
motor connector 18, 77, 86
power connector $17,77,86$
point-to-point communications 44
ports, communication 42
Position Capture Sources 68
power
applying 30, 32
overvoltage threshold 51
power connector
pinouts 17, 77, 86
wiring 17
powerup
module status LED 32
profile modes 75
Pro-Motion application
communications configuration wizard 30
communications configuration wizard $\mathbb{} 10$
protection circuits 77
PWM
frequency 45
ripple current 45
switching scheme 45
PWM Power Stage 45

## Q

quadrature
$A$ and $B$ inputs 65
encoders 19, 20
incremental encoders 65

## R

R-C lowpass filter bandwidth
/Enable and FaultOut signals 72
Hall inputs 66
high speed capture input 69
limit and home inputs 68
reset condition 32

RJ45 connector 28
RS232/485 connector
communication ports 42
electrical specifications 77,85
selection 30
wiring 26

## S

safety and compliance specifications 81,88
safety interlocks 71
servo motors 45
shielded cable 18
auxiliary encoder connector 20
CAN ports 24, 28
feedback connector 19
I/O connector 24
motor connector 18
signal connectors 78
signals
/Enable 24, 71
AxisIn and AxisOut 24, 69
FaultOut 24, 71
single-ended 65
Single Encoder connection summary 21
single-ended
auxiliary encoder signals 67
encoder inputs 76, 85
sinusoidal commutation 67
software installation 28
specifications
controller performance 75
drive ratings 75
electrical 76
environmental 81, 88
mechanical 80,88
safety and compliance 81,88
specifications, ION 3000
drive ratings 83
Specificiations
ION 300083
SPI bus 46
status LEDs 32
step motors
automatic holding current reduction 45
drive ratings 75, 83
phase current feedback 45
power stage configuration 45
stub cable 59

T
temperature sensors 46
termination
CAN 77, 85
CANbus 77
Trace Buffer 52
trace buffer 52
trace capture 52
trigger latency 69
trigger sources 68

## U

undervoltage, condition and threshold 50, 51, 53

## W

wiring
applying power 32
auxiliary encoder connector 20
feedback connector 19
I/O connector 24
motor connector 18
power connector 17
recommended auxiliary encoder 20
typical power 17

For additional information or for technical assistance, please contact PMD at (781) 674-9860.

## You may also e-mail your request to support@pmdcorp.com

Visit our website at http://www.pmdcorp.com


Performance Motion Devices 1 Technology Park Drive Westford, MA 01886


[^0]:    Note: $\mathrm{ldc}=1.414 * I_{\mathrm{RMS}}$

