ION/CME® N-Series

ION/CME N-Series Digital Drives are compact, PCB-mountable versions of PMD's ION Digital Drive family that provide high performance motion control, network connectivity and amplification. Three power output levels are available - 75, 350, and 1,000 Watts. All IONs can drive DC Brush, Brushless DC and step motors, and are ideal for medical, mobile, scientific, semiconductor, and other automation applications.

Powerful Features

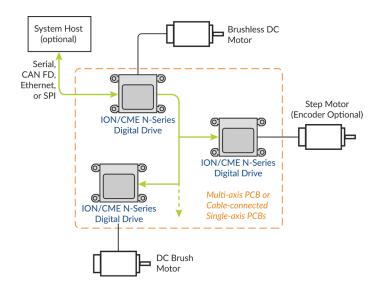
N-Series IONs provide high power density in a patented ultra-rugged form factor. They perform profile generation, servo compensation, stall detection, field oriented control, digital torque control and many other motion control functions. Additional features include Ethernet, CAN, serial, and SPI (Serial Peripheral Interface) communications.

Time to Market Breakthrough

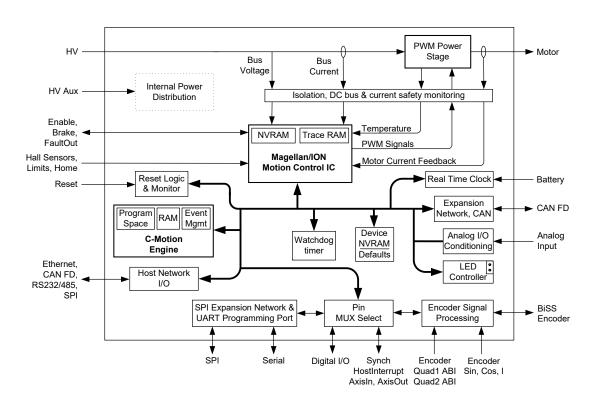
N-Series IONs represent a new paradigm for building application specific controllers. Instead of designing boards from the ground up with dozens or hundreds of IC components, plug and play N-Series ION modules allow fully functional custom boards to be designed and produced in weeks instead of months or even years.

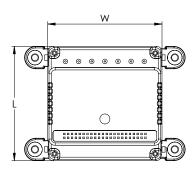
Easy to Use and Program

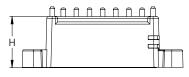
Working with PMD's powerful Pro-Motion® Windows-based GUI makes it easy to graph and analyze motion control performance, while the onboard C-Motion® Engine allows users to directly run their application on the N-Series ION. Most importantly, at the core of every ION/CME N-Series Digital Drive is a PMD Magellan Motion Control IC, guaranteeing software compatibility and insuring performance and reliability second to none.



FEATURES


- DC Brush, Brushless DC and step motor versions
- Ethernet, CAN FD, serial or SPI host communications
- Fully user programmable
- S-curve, trapezoidal, velocity contouring, electronic gearing profiles
- 75 W, 350 W, or 1,000 W power rating
- Up to 20 A continuous output
- 12-56 V single power source
- 20, 40, 80 and 120 kHz PWM frequency
- 20 kHz servo loop rate
- Auxiliary encoder input supports cam, gearing and dual loop applications
- Dimensions:
 1.48" x 1.48" x 0.66"
 (38mm x 38mm x 17mm)
- Patented ultra-rugged PCB-mountable package


- Autotuning for easy setup
- Supports quadrature, sin/cos. BiSS-C encoders
- FOC (Field Oriented Control)
- Sinusoidal commutation
- Stall detection
- Programmable acceleration and deceleration
- Advanced PID filter with velocity and acceleration feedforward
- Programmable dual biquad filters
- +/- 10V high resolution 16-bit ADC input
- 8 general purpose bi-directional I/O's
- Execution of user code at up to 418 MIPS
- 256 KB of programmable user code space
- 256 KB user application RAM space


CONFIGURATION

Technical Overview

SPECIFICATIONS

Parameter	Value		
Supported Motor Types	Brushless DC, step motor, DC Brush		
Power levels available	Low (75 W), Medium (350 W), High (1,000+ W)		
Voltage input	12-56V		
Profile modes	S-curve point-to-point, trapezoidal point-to-point, velocity contouring, electronic gear, user defined		
Position loop	PID with velocity & accel feedforward and dual biquads		
Current loop	t loop PI with FOC (Field Oriented Control)		
Position loop rate Up to 19.53 kHz (user programmable)			
Current loop rate	19.53 kHz		
PWM frequency	20 kHz, 40 kHz, 80 kHz, 120 kHz		
Multi-axis synchronization	<1 uSec using Synch signal		
Host communication	CAN FD, Serial (RS232, RS485, RS422), Ethernet 100 Base-T, SPI (Serial Peripheral Interface)		
Additional communication	Expansion CAN, Expansion SPI		
Encoder formats supported	Quadrature, sin/cos, BiSS-C, pulse & direction		
Quad encoder rate	32 MCounts/sec		
User program NVRAM	256 KB		
Multi-tasking	Yes, up to 16 tasks		
C-Motion Engine speed	428 MIPS		
General purpose I/O	8 bi-directional digital I/Os, 1 analog input (16 bit A/D)		
Drive safety features	Over current, over temperature, over/under voltage, i2T current foldback, brake signal, shunt control		

MECHANICAL DIMENSIONS

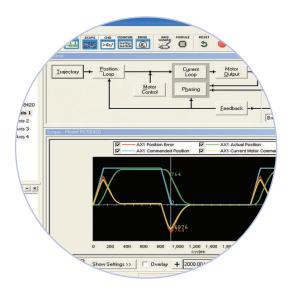
Model	Length (L)	Width (W)	Height (H)	
All Units	1.479 (in)	1.479 (in)	0.663 (in)	
7 00	37.6 (mm)	37.6 (mm)	16.8 (mm)	

RATINGS

Model	Low Power Units	Medium Power Units	High Power Units
Brushless DC current, continuous	1.5 Arms	5.5 Arms	14.8 Arms
Brushless DC current, peak	3.8 A	12.0 A	36.0 A
Brushless DC power, continuous	103 W	379 W	1,018 W
Step motor current, continuous	1.5 Arms	5.0 Arms	13.4 Arms
Step motor current, peak	3.8 A	12.0 A	36.0 A
Step motor power, continuous	119 W	396 W	1,064 W
DC Brush current, continuous	1.5 A	7.1 A	19.0 A
DC Brush current, peak	3.8 A	12.0 A	36.0 A
DC Brush power, continuous	84 W	396 W	1,064 W

SAFETY AND COMPLIANCE

Specifications	Standard		
CE	LVD: EN60204-1, EMC-D: EN61000-6-1, EN61000-6-3, EN55011		
Electrical safety	Designed to UL508C, UL840 and EN60204-1		
Flammability	UL94-HB		
Enclosure	IP20		


Development Tools

INCLUDES

- N-Series ION Developer Kits available
- · Pro-Motion software
- Software Development Kit (SDK) with C-Motion
- Complete manual set
- · Complete cable and prototyping connector set

Pro-Motion is a sophisticated, easy-to-use Windows-based exerciser program for use with PMD motion control ICs, modules, and boards.

FEATURES

- Motion oscilloscope graphically displays processor parameters in real-time
- Autotuning
- Ability to save and load settings
- Axis wizard
- Distance and time units conversion

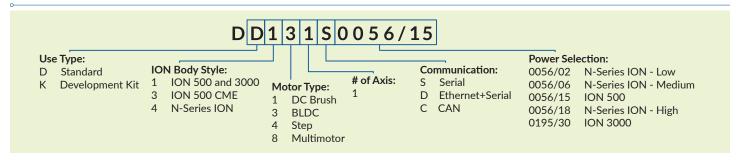
- Motor-specific parameter setup
- Axis shuttle performs programmable motion between two positions
- Communications monitor echoes all commands sent by Pro-Motion to the board
- Advanced Bode analysis for frequency machine response

BUILD THE APP C-Motion®

C-Motion is a complete, easy-to-use, motion programming language that includes a source library containing all the code required for communicating with PMD motion ICs, boards, and drives.

FEATURES:

- Extensive library of commands for virtually all motion design needs
- Develop embeddable C/C++ applications
- Complete, functional examples
- Supports serial, CAN, Ethernet, SPI, and PC104 communications


etrace buffer wrap mode to a one time trace aceMode (hAxis1, PMDTraceOneTime); et the processor variables that we want to capture tTraceVariable (hAxis1, PMDTraceVariable1, PMDAxis1, etTraceVariable (hAxis1, PMDTraceVariable2, PMDAxis1, etTraceVariable (hAxis1, PMDTraceVariable2, PMDAxis1, setTraceVariable (hAxis1, PMDTraceVariable3, PMDAxis1, PMDTraceVariable3, PMDAxis1, PMDTraceVariable3, PMDAxis1, PMDTraceConditionNextUpdate); // set the trace to begin when we issue the next update command SetTraceStart (hAxis1, PMDTraceConditionNextUpdate); // set the trace to stop when the MotionComplete event occurs SetTraceStop (hAxis1, PMDTraceConditionEventStatus, PMDEventMotionCompleteBit, PMDTraceStateHigh); SetProfileMode (hAxis1, PMDTrapezoidalProfile); set the profile parameters tPosition (hAxis1, 200000); velocity (hAxis1, 0x200000); velocity (hAxis1, 0x200000); veleration (hAxis1, 0x1000);

PMD PRODUCT FAMILY OVERVIEW

	# Axes	Motor Types	Format	Voltage	Communication	Features
JUNO® VELOCITY & TORQUE CONTROL ICS	1	Brushless DC DC Brush Step Motor	• 64-pin TQFP • 56-pin VQFN	3.3 V	• RS232/485 • CANbus • SPI	Velocity control Current control Field oriented control
MAGELLAN® MOTION CONTROL ICS	1,2,3,4	Brushless DCDC BrushStep Motor	144-pin TQFP100-pin TQF	3.3 V	RS232/485CANbusSPIParallel	Position controlTorque/current controlField-oriented controlProfile generation
ATLAS® DIGITAL AMPLIFIERS	1	Brushless DCDC BrushStep Motor	20-pin solderable module	12-56 V	SPI Pulse and direction	Torque/current controlField-oriented controlMOSFET amplifier
ION®/CME N-SERIES DIGITAL DRIVES	1	Brushless DCDC BrushStep Motor	Fully enclosed PCB-mounted module	12-56 V	EthernetRS232/485CAN FDSPI	 Position control Torque/current control Field-oriented control Profile generation MOSFET amplifier Downloadable user code
ION® 500 & 3000 DIGITAL DRIVES	1	Brushless DCDC BrushStep Motor	Fully enclosed cable-connected module	12-56 V 20-195 V	• Ethernet • RS232/485 • CANbus	 Position control Torque/current control Field-oriented control Profile generation MOSFET amplifier Downloadable user code
PRODIGY® MOTION BOARDS	1,2,3,4	Brushless DCDC BrushStep Motor	Machine ControllerPC/104Standalone	5 V: PC/104 and Standalone 12-56 V: Machine Controller	EthernetRS232/485CANbusPC/104 bus	 Position control Torque/current control Field-oriented control Profile generation Downloadable user code

C-Motion® is the common motion language for all Performance Motion Devices products.

FOR ORDERING ION DIGITAL DRIVES

To place an order email purchaseorders@pmdcorp.com. For questions email support@pmdcorp.com

80 Central St, Boxborough, MA 01719 Tel: 978.266.1210 Fax: 978.266.1211 e-mail: info@pmdcorp.com www.pmdcorp.com

About Performance Motion Devices

Performance Motion Devices (PMD) is a worldwide leader in motion control ICs, boards and modules. Dedicated to providing cost-effective, high performance motion systems to OEM customers, PMD utilizes extensive in-house expertise to minimize time-to-market and maximize customer satisfaction.

ATLAS, ION, Juno, Magellan, Navigator, Pilot, Prodigy, C-Motion and Pro-Motion are trademarks of Performance Motion Devices, Inc. All other trade names, brand names and company names are the property of their respective owners. 2024 Performance Motion Devices, Inc.

Rev. 2/2024